000203498 001__ 203498
000203498 005__ 20240619091145.0
000203498 0247_ $$2doi$$a10.1039/C4TC02543A
000203498 0247_ $$2ISSN$$a2050-7526
000203498 0247_ $$2ISSN$$a2050-7534
000203498 0247_ $$2WOS$$aWOS:000352870400018
000203498 037__ $$aFZJ-2015-05419
000203498 082__ $$a540
000203498 1001_ $$0P:(DE-HGF)0$$aBretos, Iñigo$$b0
000203498 245__ $$aSolution-derived YBa $_{2}$ Cu $_{3}$ O $_{7−δ}$ (YBCO) superconducting films with BaZrO $_{3}$ (BZO) nanodots based on reverse micelle stabilized nanoparticles
000203498 260__ $$aLondon {[u.a.]$$bRSC$$c2015
000203498 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1441624784_16211
000203498 3367_ $$2DataCite$$aOutput Types/Journal article
000203498 3367_ $$00$$2EndNote$$aJournal Article
000203498 3367_ $$2BibTeX$$aARTICLE
000203498 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203498 3367_ $$2DRIVER$$aarticle
000203498 520__ $$aSuperconducting YBa2Cu3O7-delta (YBCO) films with artificial BaZrO3 (BZO) nanodots were prepared using a chemical solution deposition method involving hybrid solutions composed of trifluoroacetate-based YBCO precursors and reverse micelle stabilized BZO nanoparticle dispersions. Microemulsion-mediated synthesis was used to obtain nano-sized (similar to 12 nm) and mono-dispersed BZO nanoparticles that preserve their features once introduced into the YBCO solution, as revealed by dynamic light scattering. Phase pure, epitaxial YBCO films with randomly oriented BZO nanodots distributed over their whole microstructure were grown from the hybrid solutions on (100) LaAlO3 substrates. The morphology of the YBCO-BZO nanocomposite films was strongly influenced by the amount of nanoparticles incorporated into the system, with contents ranging from 5 to 40 mol%. Scanning electron microscopy showed a high density of isolated second-phase defects consisting of BZO nanodots in the nanocomposite film with 10 mol% of BZO. Furthermore, a direct observation and quantitative analysis of lattice defects in the form of interfacial edge dislocations directly induced by the BZO nanodots was evidenced by transmission electron microscopy. The superconducting properties (77 K) of the YBCO films improved considerably by the presence of such nanodots, which seem to enhance the morphology of the sample and therefore the intergranular critical properties. The incorporation of preformed second-phase defects (here, BZO) during the growth of the superconducting phase is the main innovation of this novel approach for the all-solution based low-cost fabrication of long-length coated conductors.
000203498 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000203498 588__ $$aDataset connected to CrossRef
000203498 7001_ $$0P:(DE-HGF)0$$aSchneller, Theodor$$b1$$eCorresponding author
000203498 7001_ $$0P:(DE-HGF)0$$aFalter, Martina$$b2
000203498 7001_ $$0P:(DE-HGF)0$$aBäcker, Michael$$b3
000203498 7001_ $$0P:(DE-Juel1)128687$$aHollmann, Eugen$$b4
000203498 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b5
000203498 7001_ $$0P:(DE-HGF)0$$aMolina-Luna, Leopoldo$$b6
000203498 7001_ $$0P:(DE-HGF)0$$aVan Tendeloo, Gustaaf$$b7
000203498 7001_ $$0P:(DE-HGF)0$$aEibl, Oliver$$b8
000203498 773__ $$0PERI:(DE-600)2702245-6$$a10.1039/C4TC02543A$$gVol. 3, no. 16, p. 3971 - 3979$$n16$$p3971 - 3979$$tJournal of materials chemistry / C$$v3$$x2050-7534$$y2015
000203498 8564_ $$uhttps://juser.fz-juelich.de/record/203498/files/c4tc02543a.pdf$$yRestricted
000203498 8564_ $$uhttps://juser.fz-juelich.de/record/203498/files/c4tc02543a.gif?subformat=icon$$xicon$$yRestricted
000203498 8564_ $$uhttps://juser.fz-juelich.de/record/203498/files/c4tc02543a.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203498 8564_ $$uhttps://juser.fz-juelich.de/record/203498/files/c4tc02543a.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203498 8564_ $$uhttps://juser.fz-juelich.de/record/203498/files/c4tc02543a.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203498 8564_ $$uhttps://juser.fz-juelich.de/record/203498/files/c4tc02543a.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203498 909CO $$ooai:juser.fz-juelich.de:203498$$pVDB
000203498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128687$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203498 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000203498 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000203498 9141_ $$y2015
000203498 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ MATER CHEM C : 2013
000203498 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203498 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203498 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203498 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203498 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203498 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203498 915__ $$0StatID:(DE-HGF)1160$$2StatID$$aDBCoverage$$bCurrent Contents - Engineering, Computing and Technology
000203498 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203498 920__ $$lno
000203498 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000203498 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000203498 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000203498 980__ $$ajournal
000203498 980__ $$aVDB
000203498 980__ $$aI:(DE-Juel1)PGI-8-20110106
000203498 980__ $$aI:(DE-Juel1)ICS-8-20110106
000203498 980__ $$aI:(DE-82)080009_20140620
000203498 980__ $$aUNRESTRICTED
000203498 981__ $$aI:(DE-Juel1)IBI-3-20200312
000203498 981__ $$aI:(DE-Juel1)ICS-8-20110106