000203500 001__ 203500
000203500 005__ 20240619091145.0
000203500 037__ $$aFZJ-2015-05421
000203500 1001_ $$0P:(DE-Juel1)161308$$aDai, Yang$$b0$$ufzj
000203500 1112_ $$aDPG-Frühjahrstagung Berlin$$cBerlin$$d2015-03-15 - 2015-03-20$$wGermany
000203500 245__ $$aNonlinear Dielectric Response in Anisotropically Strained Epitaxial Ferroelectric Films
000203500 260__ $$c2015
000203500 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1441618619_16211$$xOther
000203500 3367_ $$033$$2EndNote$$aConference Paper
000203500 3367_ $$2DataCite$$aOutput Types/Conference Poster
000203500 3367_ $$2DRIVER$$aconferenceObject
000203500 3367_ $$2ORCID$$aCONFERENCE_POSTER
000203500 3367_ $$2BibTeX$$aINPROCEEDINGS
000203500 520__ $$aStrain can not only strongly modify the electronic characteristics of ferroelectric material, it can also induce interesting partially novel properties in their systems. In this work, the impact of ac and dc electric field and field direction on the dielectric properties of anisotropically strained epitaxial SrTiO3 films grown on DyScO3 are examined. The anisotropic lattice mismatch between the SrTiO3 film and DyScO3 leads to different in-plane tensile strain in the different crystalline direction of 0.95% and 1.05%, respectively. As a result, (i) the tensile strain leads to an increase of the ferroelectric-dielectric phase transition temperature to Tmax=288 K and Tmax=258 K under large and small tensile strain, respectively. (ii) With increasing amplitude of ac electric field, the extrinsic contribution to the dielectric permittivity increases nonlinearly, which indicates the dynamic of domain wall is activated by the ac field. (iii) The dielectric permittivity is strongly suppressed by an additional dc bias electric field for the temperature ranging from 180 K to 320 K. The different dielectric responses are discussed in the term of domain wall dynamic and pinning induced relaxor type model. Keywords: anisotropic strain, thin films, ferroelectrics, domain walls
000203500 536__ $$0G:(DE-HGF)POF3-523$$a523 - Controlling Configuration-Based Phenomena (POF3-523)$$cPOF3-523$$fPOF III$$x0
000203500 7001_ $$0P:(DE-Juel1)156302$$acai, biya$$b1$$ufzj
000203500 7001_ $$0P:(DE-Juel1)128631$$aSchubert, Jürgen$$b2$$ufzj
000203500 7001_ $$0P:(DE-Juel1)128687$$aHollmann, Eugen$$b3$$ufzj
000203500 7001_ $$0P:(DE-Juel1)128749$$aWördenweber, Roger$$b4$$ufzj
000203500 909CO $$ooai:juser.fz-juelich.de:203500$$pVDB
000203500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)161308$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156302$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128631$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128687$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203500 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)128749$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000203500 9131_ $$0G:(DE-HGF)POF3-523$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vControlling Configuration-Based Phenomena$$x0
000203500 9141_ $$y2015
000203500 920__ $$lno
000203500 9201_ $$0I:(DE-Juel1)PGI-8-20110106$$kPGI-8$$lBioelektronik$$x0
000203500 9201_ $$0I:(DE-Juel1)ICS-8-20110106$$kICS-8$$lBioelektronik$$x1
000203500 9201_ $$0I:(DE-82)080009_20140620$$kJARA-FIT$$lJARA-FIT$$x2
000203500 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$kPGI-9$$lHalbleiter-Nanoelektronik$$x3
000203500 980__ $$aposter
000203500 980__ $$aVDB
000203500 980__ $$aI:(DE-Juel1)PGI-8-20110106
000203500 980__ $$aI:(DE-Juel1)ICS-8-20110106
000203500 980__ $$aI:(DE-82)080009_20140620
000203500 980__ $$aI:(DE-Juel1)PGI-9-20110106
000203500 980__ $$aUNRESTRICTED
000203500 981__ $$aI:(DE-Juel1)IBI-3-20200312
000203500 981__ $$aI:(DE-Juel1)ICS-8-20110106
000203500 981__ $$aI:(DE-Juel1)PGI-9-20110106