000203507 001__ 203507
000203507 005__ 20210129220408.0
000203507 0247_ $$2Handle$$a2128/15459
000203507 037__ $$aFZJ-2015-05428
000203507 041__ $$aEnglish
000203507 1001_ $$0P:(DE-Juel1)133346$$aSchmitz, Sabine$$b0$$eCorresponding author
000203507 1112_ $$a8th International Symposium on Physical, Molecular, Cellular and Medical Aspects of Auger Process$$cKyoto$$d2015-05-20 - 2015-05-22$$wJapan
000203507 245__ $$aChromosome Aberrations induced by the Auger electron emitter I-125
000203507 260__ $$c2015
000203507 3367_ $$033$$2EndNote$$aConference Paper
000203507 3367_ $$2BibTeX$$aINPROCEEDINGS
000203507 3367_ $$2DRIVER$$aconferenceObject
000203507 3367_ $$2ORCID$$aCONFERENCE_POSTER
000203507 3367_ $$2DataCite$$aOutput Types/Conference Poster
000203507 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1507184003_26344$$xAfter Call
000203507 520__ $$aIntroduction: DNA-associated Auger-electron emitters (AEE) cause cellular damage leading to high-LET type cell survival curves indicating an enhanced relative biological effectiveness. DNA double strand breaks (DSBs) induced by Iodine-125-deoxyuridine (I-125-UdR) decays are claimed to be very complex. To elucidate the assumed genotoxic potential of DNA-associated AEE, chromosome aberrations were analyzed in I-125-UdR-exposed human peripheral blood lymphocytes (PBL). Methods: PBL were isolated from whole blood and stimulated with chromosome medium containing phytohaemagglutinin (PHA). After 24 h cultures were labelled with I-125-UdR for 18 h (activity concentration 1 – 45 kBq) during the S-phase. Following standard cytogenetic procedure, at least 100 metaphases were analyzed microscopically for each activity concentration. Cell death was measured by apoptosis assay using flow cytometry. Radiation doses were determined by using point kernel calculations.Results: After 18 h labeling with I-125-UdR the cell cycle distribution is severely disturbed. About 40 % of PBL are fully labeled and 20 % show a moderate labeling of I-125-UdR, whereas 40 % of cells remain unlabeled. I-125-UdR primarily induces chromatid-type aberrations. The dose-response relationship fits well to a polynomial curve in the low dose range, whereas a linear fit supplies a better estimation in the high dose range. Even the lowest dose of 0.2 Gy leads to significant damage and to a 13-fold increase of aberrations compared to the controls. On average every fifth I-125-decay produces a single chromatid aberration in PBL. In addition, a dose-dependent increase of cell death is observed. Conclusions: I-125-UdR has a very strong genotoxic capacity in human PBL even at very low cellular doses of about 0.2 Gy. Efficiently labeled cells displaying a prolonged cell cycle compared to moderately labeled cells and cell death contribute substantially to the desynchronisation of the cell cycle. Our data, showing that one I-125-decay induces 0.2 chromatid aberrations, are in very good accordance to the data of Sedelnikova [1] and Yasui [2] who found 0.26 DSB per decay, indicating that approximately every DSB is converted into a chromatid aberration.[1] O.A. Sedelnikova et al. Radiation Research 158, 486 (2002)[2] L.S. Yasui, Int. J. Radiat. Biol., 80, 895 (2004)
000203507 536__ $$0G:(DE-HGF)POF3-899$$a899 - ohne Topic (POF3-899)$$cPOF3-899$$fPOF III$$x0
000203507 65027 $$0V:(DE-MLZ)SciArea-160$$2V:(DE-HGF)$$aBiology$$x0
000203507 7001_ $$0P:(DE-Juel1)133339$$aOskamp, Dominik$$b1
000203507 7001_ $$0P:(DE-Juel1)133341$$aPomplun, Ekkehard$$b2
000203507 7001_ $$0P:(DE-Juel1)133469$$aKriehuber, Ralf$$b3
000203507 8564_ $$uhttps://juser.fz-juelich.de/record/203507/files/Poster%20Schmitz%20Kyoto%202015.pdf$$yOpenAccess
000203507 8564_ $$uhttps://juser.fz-juelich.de/record/203507/files/Poster%20Schmitz%20Kyoto%202015.gif?subformat=icon$$xicon$$yOpenAccess
000203507 8564_ $$uhttps://juser.fz-juelich.de/record/203507/files/Poster%20Schmitz%20Kyoto%202015.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000203507 8564_ $$uhttps://juser.fz-juelich.de/record/203507/files/Poster%20Schmitz%20Kyoto%202015.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000203507 8564_ $$uhttps://juser.fz-juelich.de/record/203507/files/Poster%20Schmitz%20Kyoto%202015.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000203507 8564_ $$uhttps://juser.fz-juelich.de/record/203507/files/Poster%20Schmitz%20Kyoto%202015.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000203507 909CO $$ooai:juser.fz-juelich.de:203507$$pdriver$$pVDB$$popen_access$$popenaire
000203507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133346$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133339$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133341$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203507 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)133469$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203507 9131_ $$0G:(DE-HGF)POF3-899$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vohne Topic$$x0
000203507 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000203507 920__ $$lyes
000203507 9201_ $$0I:(DE-Juel1)S-US-20090406$$kS-US$$lSicherheit und Strahlenschutz, Umgebungsüberwachung,Strahlenbiologie$$x0
000203507 980__ $$aposter
000203507 980__ $$aVDB
000203507 980__ $$aUNRESTRICTED
000203507 980__ $$aI:(DE-Juel1)S-US-20090406
000203507 9801_ $$aFullTexts