000203508 001__ 203508
000203508 005__ 20240712084508.0
000203508 0247_ $$2doi$$a10.1016/j.cplett.2015.08.018
000203508 0247_ $$2ISSN$$a0009-2614
000203508 0247_ $$2ISSN$$a1873-4448
000203508 0247_ $$2WOS$$aWOS:000363953200005
000203508 0247_ $$2altmetric$$aaltmetric:13400503
000203508 037__ $$aFZJ-2015-05429
000203508 041__ $$aEnglish
000203508 082__ $$a540
000203508 1001_ $$0P:(DE-Juel1)156469$$aUrbain, F.$$b0$$eCorresponding author
000203508 245__ $$aSolar water splitting with earth-abundant materials using amorphous silicon photocathodes and Al/Ni contacts as hydrogen evolution catalyst
000203508 260__ $$aAmsterdam [u.a.]$$bElsevier$$c2015
000203508 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1441373056_9506
000203508 3367_ $$2DataCite$$aOutput Types/Journal article
000203508 3367_ $$00$$2EndNote$$aJournal Article
000203508 3367_ $$2BibTeX$$aARTICLE
000203508 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000203508 3367_ $$2DRIVER$$aarticle
000203508 520__ $$aAn all earth-abundant and precious metal-free photocathode based on a low-temperature fabricated amorphous silicon tandem junction is demonstrated to be an efficient device for solar water splitting. With a particular designed Al/Ni layer stack as photocathode/electrolyte contact an onset potential for cathodic photocurrent of 1.7 V vs. RHE and a saturation photocurrent density of 7.2 mA/cm2 were achieved. For a high-cost alternative with a Ag/Pt layer stack an even higher photocathode performance is demonstrated. Above all we present an approach for a dedicated photovoltaic and electrochemical development for solar water splitting.
000203508 536__ $$0G:(DE-HGF)POF3-126$$a126 - Solar Fuels (POF3-126)$$cPOF3-126$$fPOF III$$x0
000203508 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x1
000203508 536__ $$0G:(DE-Juel1)HITEC-20170406$$aHITEC - Helmholtz Interdisciplinary Doctoral Training in Energy and Climate Research (HITEC) (HITEC-20170406)$$cHITEC-20170406$$x2
000203508 588__ $$aDataset connected to CrossRef
000203508 7001_ $$0P:(DE-Juel1)130297$$aSmirnov, V.$$b1$$ufzj
000203508 7001_ $$0P:(DE-Juel1)142337$$aBecker, Jan Philipp$$b2$$ufzj
000203508 7001_ $$0P:(DE-Juel1)143905$$aRau, U.$$b3$$ufzj
000203508 7001_ $$0P:(DE-HGF)0$$aZiegler, J.$$b4
000203508 7001_ $$0P:(DE-HGF)0$$aYang, F.$$b5
000203508 7001_ $$0P:(DE-HGF)0$$aKaiser, B.$$b6
000203508 7001_ $$0P:(DE-HGF)0$$aJaegermann, W.$$b7
000203508 7001_ $$0P:(DE-HGF)0$$aHoch, S.$$b8
000203508 7001_ $$0P:(DE-HGF)0$$aBlug, M.$$b9
000203508 7001_ $$0P:(DE-Juel1)130238$$aFinger, F.$$b10$$ufzj
000203508 773__ $$0PERI:(DE-600)1466293-0$$a10.1016/j.cplett.2015.08.018$$gp. S0009261415006065$$p25-30$$tChemical physics letters$$v638$$x0009-2614$$y2015
000203508 8564_ $$uhttps://juser.fz-juelich.de/record/203508/files/1-s2.0-S0009261415006065-main.pdf$$yRestricted
000203508 8564_ $$uhttps://juser.fz-juelich.de/record/203508/files/1-s2.0-S0009261415006065-main.gif?subformat=icon$$xicon$$yRestricted
000203508 8564_ $$uhttps://juser.fz-juelich.de/record/203508/files/1-s2.0-S0009261415006065-main.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000203508 8564_ $$uhttps://juser.fz-juelich.de/record/203508/files/1-s2.0-S0009261415006065-main.jpg?subformat=icon-180$$xicon-180$$yRestricted
000203508 8564_ $$uhttps://juser.fz-juelich.de/record/203508/files/1-s2.0-S0009261415006065-main.jpg?subformat=icon-640$$xicon-640$$yRestricted
000203508 8564_ $$uhttps://juser.fz-juelich.de/record/203508/files/1-s2.0-S0009261415006065-main.pdf?subformat=pdfa$$xpdfa$$yRestricted
000203508 909CO $$ooai:juser.fz-juelich.de:203508$$pVDB
000203508 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bCHEM PHYS LETT : 2013
000203508 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000203508 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000203508 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000203508 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000203508 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000203508 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000203508 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000203508 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000203508 9141_ $$y2015
000203508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156469$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000203508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130297$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000203508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)142337$$aForschungszentrum Jülich GmbH$$b2$$kFZJ
000203508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)143905$$aForschungszentrum Jülich GmbH$$b3$$kFZJ
000203508 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130238$$aForschungszentrum Jülich GmbH$$b10$$kFZJ
000203508 9131_ $$0G:(DE-HGF)POF3-126$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar Fuels$$x0
000203508 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x1
000203508 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000203508 980__ $$ajournal
000203508 980__ $$aVDB
000203508 980__ $$aI:(DE-Juel1)IEK-5-20101013
000203508 980__ $$aUNRESTRICTED
000203508 981__ $$aI:(DE-Juel1)IMD-3-20101013