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Abstract

In recent years, the development of cheap and robust sensors
combined with the ever increasing availability of the internet
led to a revolution in information technology, giving rise to an
amount of data, which was unimaginable just a decade ago. This
explosion in data lead to an increased demand for algorithms
for processing this data. However, an often overlooked aspect
is that with ever sophisticated algorithms there is associated a
demand for equally sophisticated mathematical modelling. In
this thesis, we explore the interaction between algorithm design
and modelling.

Although, the models and methods discussed here are not
limited to any single domain of application, we will base our dis-
cussion on example applications from the domain of biomedical
engineering. This is because the analysis of physiological time
series is characterised by two problems which help to highlight
the importance of modelling. First, the high noise level of biolog-
ical signals requires strong regularization, which can be provided
via a model. Second, in many medical applications the value of
interest is not directly observable. Thus, these latent variables
have to be estimated, e.g. with the help of a model.

In the course of our discussion, we will encounter two ma-
jor modalities. The first one is Ballistocardiography (BCG),
a modality often used in home monitoring applications, which
is based on simple pressure sensors, yielding a scalar signal.
The second modality is functional magnetic resonance imaging
(fMRI), a complex and highly sophisticated method, capable of
generating images of brain functionality.

In the first half of this thesis, we will focus on signal sep-
aration and denoising methods for BCG. The performance of
these methods is then verified with model generated data, which
provides a very common example of how modelling interacts
with algorithm design. However, the relationship between al-
gorithms and modelling goes much deeper, since new insights
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gained through better signal processing methods can also inspire
new models. This can be seen from the improved probabilistic
BCG model, which emerged from the results of the BCG signal
separation and denoising method. Finally, the new model opens
the possibility for probabilistic higher level analysis of the BCG
signal, which exemplifies how improvements in modelling leads
to improved algorithms.

In the latter half of the thesis, we will focus on embedded
clustering for fMRI data, which allows us to perform model inver-
sion and clustering at the same time. Here we see that although
there are great differences between the two modalities BCG and
fMRI, the model based approach reveals how methods developed
for BCG can be applied to fMRI. This again demonstrates the
importance of a model based view on algorithm design.
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Chapter 1

Introduction

Modelling and signal processing are two closely related topics. Every signal
processing technique is based, to a certain degree, on a model, either explic-
itly or implicitly. Thus, increasingly accurate models can help improving or
verifying signal processing techniques, open up new perspectives on existing
algorithms or inspire new algorithms.

In this context, the validation of algorithms with model-generated data is of
special importance, since in some cases only artificial data can provide the
ground truth information, which is necessary to quantify the error of the
signal processing technique under assessment [1, 2].

Since many physiological time series are very noisy, models are needed to
provide constraints and regularization for signal processing techniques. Fur-
thermore, in some cases, the information of interest cannot be measured
directly and model-based methods are necessary to estimate these hidden
or latent variables. This is especially true for medical imaging applications
like magnetic resonance imaging, computed tomography or positron emis-
sion tomography [3]. In addition, the emerging field of data fusion, i.e. the
combination of data from different modalities, represents another scenario
where modelling is an essential part of signal processing [4, 5, 6].

On the other hand, many biological systems are not fully understood and
signal processing techniques can be used to analyse the raw data, providing
new insights into the structure and working principle of these systems. This
process can lead to better models being developed, but it can also benefit
from the emergence of novel modelling concepts. A prime example is the
concept of synchronization in nonlinear dynamics, which is based on a math-
ematical treatment of coupled oscillators [7], but went on to revolutionize
numerous fields in biology and biomedicine [8].
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2 CHAPTER 1. INTRODUCTION

One of the most well-known biomedical applications of this concept is cardio-
respiratory synchronization [9, 10, 11], which is a measure combining infor-
mation from two modalities: electrocardiogram (ECG) and respiratory ef-
fort. It has been shown to be a potential indicator for cardio-vascular health
and a very reliable predictor for sleep apnoea in infants [9, 10].

At the same time the concept of phase synchronization has also led to the de-
velopment of a highly effective processing technique for magnetoencephalog-
raphy data, used for cardiac and ocular artefact removal and identification
of relevant signal components [12, 13]. Thus, advances in modelling can lead
to improvements in very different fields of application. This is also one of
the central themes in this thesis.

In addition, one of the key observations from nonlinear dynamics is that com-
plex behaviour can emerge from systems described by a few low-dimensional,
but nonlinear laws [8]. This raises the question, if it is possible to find simple
low-dimensional models describing the complex behaviour of physiological
systems, by extending our model space to include nonlinear models. And
some results in this area seem to indicate that this is indeed a promising
approach [9, 10].

In this context, it should be mentioned that model-based signal processing
is essentially a cross-disciplinary topic. This is especially obvious for the
field of nonlinear dynamics [8, 14], where many models developed in physics
were adapted by the biomedical community [9, 10, 12, 13]. However, it
also applies to numerous other fields, like e.g. the emerging discipline of
computational psychiatry, which combines methods from high performance
computing [15], statistical inference [16, 17] and neurobiology to address
open questions in psychiatry [18].

Interestingly, many concepts used in statistical inference, like the informa-
tion theoretic entropy or the variational free energy, have their origin in
statistical and quantum physics [19, 20, 21], where computational aspects
also play an important role [22]. Therefore, statistical inference itself can be
viewed as a cross-disciplinary field.

Another important theme discussed in this thesis is that signal processing
methods may help us to refine signals and enhance the understanding of the
underlying principles and mechanisms of the system under investigation,
which allows us to build new models or improve and refine existing models.

We will investigate this iterative aspect of modelling and signal processing
based on several examples from biomedical signal processing, where the in-
teraction between modelling and algorithm design is of special relevance.
The idea behind this approach is that the cycle of model refinement and
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algorithm development should always be driven by experimental data, in
order to allow the results to be validated. Without the guidance through
measured data, it is difficult to relate the models and algorithms to mean-
ingful applications. For this reason, we will base the discussion in this thesis
on two example modalities from biomedical applications.

The first modality is ballistocardiography (BCG), which is a method for
recording the mechanical heartbeat activity via measurement of tiny body
movements caused by the heart and blood flow. We have chosen this modal-
ity to demonstrate techniques for source separation, i.e. the extraction of
several signal components from a noisy scalar superposition. Thus, we will
deal with the problem of extracting high-dimensional dynamics from a low-
dimensional source.

The second modality is the blood-oxygenation-level dependent (BOLD) con-
trast used in functional magnetic resonance imaging (fMRI) studies on brain
activity patterns. Data from this modality is investigated in the context of
embedded clustering (EC), which combines a clustering model with the es-
timation of effective brain coupling via a model known as dynamic causal
modelling (DCM). In contrast to the previous modality, embedded clus-
tering deals with the extraction of a low-dimensional representation from
high-dimensional data.

These two modalities reflect two distinct directions in biomedical engineer-
ing. BCG is currently researched as a simple, robust and cheap modality
for unobtrusive data acquisition in potential home monitoring applications.
The simplicity of the sensor and the uncertainty about the environmental
conditions pose significant challenges since it leads to very noisy data, con-
tamination by artefacts and missing segments in recordings. When dealing
with data of this kind, there is a need for models providing prior information
to guide reconstruction and regularize algorithms.

In contrast, the fMRI BOLD signal is an example for a highly sophisticated
imaging method, which is used in clinical research and practice. This highly
complex method indirectly measures the hidden brain activity, by recording
a signal related to differences in blood-oxygenation-level. As a consequence,
the algorithms, used to derive the hidden variables of interest from the
measured data, have to be based on a model of the underlying process that
generated the measurement.

The above description of the two modalities already contain good examples
for the interaction between aspects of modelling and signal processing. The
processing of data in the presence of noise and uncertainty about the sys-
tem, or the estimation of hidden variables are both cases which require a
model of the underlying process of data generation. Another example is the
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verification of an algorithm with data generated using a model.

Although, the discussion in this thesis often focuses on the two modalities
BCG and fMRI, the overall aim of this work is to discuss the afore-mentioned
interaction between modelling and signal processing based on examples from
biosignal processing. In the course of this discussion, we will be exposed to
a number of concepts which show that the methods used to deal with the
two example modalities BCG and fMRI have many aspects in common,
although they represent entirely different directions in biomedical research.
These concepts include nonlinear dynamical systems for modelling, as well as
probabilistic inference used for model inversion. Throughout the thesis, we
will also encounter the topic of mixture modelling, which serves as another
link between the different chapters.

As mentioned, probability theory will play an important role throughout the
whole thesis. Biosignals are characterized by a high degree of uncertainty
about the generation process and the recording of biosignals is especially
prone to noise contamination. This necessitates the use of probabilistic
inference methods, which are ubiquitous throughout this thesis. Therefore,
we dedicate chapter 2 to an introduction of concepts from probability theory
and techniques for probabilistic inference including methods for approximate
inference such as Monte Carlo and variational Bayes, which originated in
the field of statistical physics. The remainder of the chapters is organized
as follows.

In chapter 3, we will focus on nonlinear source separation applied to BCG
as an example modality. We will demonstrate how model generated data
can be used to verify the accuracy of the source separation algorithms. Fur-
thermore, we will also see how the results of the source separation enables
us to build a better model of the BCG. The improved model allows us to
perform more sophisticated processing tasks, e.g. heartbeat detection in the
BCG.

Chapter 4 deals with the problem of embedded clustering, which provides a
unified framework for model inversion and clustering. This topic is discussed
in the context of psychological fMRI studies with groups of subjects. And
although the application differs strongly from that of the previous chapter,
we will see that on the level of modelling many parallels to the methods
from chapter 3 can be observed.

We conclude this thesis in chapter 5, with a summary presenting a unifying
viewpoint on the different modelling and signal processing aspects exempli-
fied in chapters 3 and 4, as well as an outlook on new and old challenges
which still remain.
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While these chapter provide a detailed discussion of the relevant problems,
some mathematical and technical details are presented for the interested
reader in the appendix. These topics include mathematical basics, such as a
short introduction to Lagrange multiplier or a list of important probability
distributions, as well as technical and mathematical details of the Monte
Carlo method used in chapter 3 and solutions to the integrals in chapter 4.
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Chapter 2

Probability Theory and

Inference

An essential aspect in model building is probability theory, which plays an
important role for modelling uncertainty and chance. However, the mathe-
matical foundations of probability theory and statistics are too broad to be
discussed here. In this chapter, we will provide an introduction to probabil-
ity theory with focus on aspects of applied probability theory and methods
for approximate inference, which will be needed in later chapters.

We start with an introduction to basic concepts of probability theory and
continue with a discussion on inverse problems in section 2.2. Other topics
include Monte Carlo and variational Bayes, two classes of methods for ap-
proximating solutions for inverse problems. In addition, we will introduce a
graphical representation for probabilistic models called Bayesian networks,
which will be used on many occasions throughout this thesis.

2.1 Basics of Probability Theory

In this section, we will introduce basic concepts and definitions of probability
theory. In order to keep the discussion simple and easy to understand, we
follow the example of other authors [23, 24] by introducing the concepts
using a simple random experiment.

The random experiment, we have chosen as a running example for this
section consists of rolling two fair six-sided dice. Each of the dice rolls has six
equally probable outcomes and, assuming the two dices are distinguishable,
the whole experiment has 36 different outcomes. This leads to our first

7



8 CHAPTER 2. PROBABILITY THEORY AND INFERENCE

definition, namely the definition of a random variable.

Formally, a random variable is defined as a function, which assigns a number
to each outcome of a random experiment. A simple example of a random
variable in our dice experiment would be the sum of eyes on both dice.
Sometimes it will be important to distinguish between the random variable
itself and the value of the variable. In these cases, we will use capital letters
for the name of a random variable and lower case letters for its value. Thus,
we will call the sum of eyes random variable X, while x denotes the value
of X.

The set of all values the random variable can take, which in our example
includes the integers from 2 to 12:

x ∈ {2, 3, . . . , 12},

is called the sample space Ω. The sample space is required to be a non-empty
set [23] and subsets A of the sample space are called events. For example,
the subset

A = {2, 4, 6, . . . , 12}

corresponds to the event “the eye count is even”.

In addition, we define a sigma algebra A as a set of events A possessing the
following properties:

Ω ∈ A (2.1)

A ∈ A ⇒ Ā ∈ A (2.2)

Ai ∈ A ⇒
⋃

i

Ai ∈ A. (2.3)

Equation (2.1) means that the sigma algebra A must always contain the
entire sample space as an element. Equation (2.2) means that if an event A
is in the sigma algebra A, the complementary event Ā = Ω 6 A, containing
all outcomes that are not in A, must also be in the sigma algebra A. From
these two axioms, it immediately follows that A must also contain the empty
set ∅. Lastly, equation (2.3) means that if a set of events Ai is in A, their
union must also be in A.

The probability is formally defined as a function p which assigns each event
in the sigma algebra a number and which satisfying three conditions [23, 24]
known as the Kolmogorov axioms:

p(A) ∈ R and p(A) ≥ 0 ∀A ∈ A (2.4)

p(Ω) = 1 (2.5)
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p

(

∞
⋃

i=1

Ai

)

=

∞
∑

i=1

p(Ai), (2.6)

with the events Ai being mutually exclusive.

In our example, p(X=12) is the probability that the sum of eyes is 12 and
p(X= x) the probability that the sum of eyes is x. If the meaning is clear
from the context, we can also simplify the notation by writing p(x) instead
of p(X=x).

The introduction given above applies to random variables with discrete sam-
ple space. Random variables with continuous sample space are often treated
as a separate case, with modifications to the definitions given above, includ-
ing the introduction of probability via the cumulative distribution function.
In addition, a unified theory of discrete and continuous random variables
requires a measure theoretic approach, which is outside the scope of this
work. For an in depth treatment of the foundations of probability theory,
we refer the reader to standard textbooks like [23, 24].

Instead, we will continue with the concept of joint and conditional probabil-
ities, which will become important in later chapters. For this purpose, we
assume that the dice are labelled A and B and we define a second random
variable Y as the number of eyes on dice A. Now, it is possible to form a
joint sample space for (X,Y )-pairs: (X,Y ) ∈ {2, 3, . . . , 12} × {1, 2, . . . , 6}.
The joint probability of the variables X and Y p(X=x, Y=y) is then defined
as the probability of X taking the value of x and Y taking the value of y at
the same time.

However, the value of the joint probability function has to be consistent with
the value of p(X=x) defined above. In this context, p(X=x) is called the
marginal probability of X and can be interpreted as the probability for X
taking the value x, while the value of the variable Y is unknown or not of
interest. The joint probability function must be defined in a way such that
the value of the marginal probability is obtained by “summing out” Y :

p(X) =
∑

Y

p(X,Y ), (2.7)

where
∑

Y means summing over all possible values of Y . For continuous
variables, summation has to be replaced by integration.

The conditional probability p(X=x|Y=y) is the probability of X taking on
the value of x, when Y is known to have the value y. It is defined as:

p(X=x|Y=y) =
p(X=x, Y=y)

p(Y=y)
, if p(Y=y) 6= 0. (2.8)
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In the dice example, p(X=9|Y=5) = 1
6 is the probability that the sum of

eyes is nine, when dice A, which has already been thrown, is showing five
eyes. On the other hand, p(X= 9, Y = 5) = 1

36 is the probability that the
sum of eyes is nine and dice A shows five eyes, before any dice have been
thrown and p(Y=5) = 1

6 is the probability that dice A shows five eyes, while
the sum of eyes does not matter, or is not observed.

When rewriting (2.8) as

p(x, y) = p(x)p(y|x) = p(y)p(x|y), (2.9)

the equation is also known as chain rule. However, in the pattern recogni-
tion community equations (2.7) and (2.9) are also referred to as sum and
product rules, respectively. They represent the two most fundamental rules
in inference, from which most of the remaining rules can be derived [16, 17].

Inserting equations (2.7) and (2.9) into equation (2.8), we obtain Bayes law:

p(Y=y|X=x) =
p(X=x|Y=y)p(Y=y)

p(X=x)

=
p(X=x|Y=y)p(Y=y)
∑

Y p(X=x|Y )p(Y )
, (2.10)

which sometimes is called the law of inverse probability [17]. Again the sum-
mation has to be replaced by an integral for continuous random variables.
As the name already implies, this equation will play an important role when
solving inverse problems, which is the main topic in the next section, where
we deal with inverse problems.

In the dice example, equation (2.10) can be applied to the scenario where
somebody tells us that the sum of eyes is nine and asks for the probability
that the number of eyes on dice A is five. The marginal probability for
the sum of eyes being nine is p(X=9) = 1

9 , while the probability that dice
A shows five eyes at the same time is p(X= 9|Y = 5) = 1

6 . The marginal
probability that dice A shows five eyes is p(Y=5) = 1

6 , since we assumed fair
dice. Thus, according to equation (2.10), the solution is p(Y=5|X=9) = 1

4 .

Note that calculating the denominator in equation (2.10) requires a sum-
mation over all possible values of Y , which in the dice example is limited to
only six possibilities. However, in general, calculating the denominator in
Bayes law is the most challenging part of many model inversion problems,
and we dedicate section 2.4 to the discussion of approximation methods for
solving this problem.
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2.2 Inverse Probability

When dealing with probabilistic models, it is often convenient to distinguish
between forward problems and inverse problems. A forward problem con-
sists of the task of calculating the observation or probabilities for possible
observations generated by a system, under the condition that one knows the
properties of the system.

An example is ballistocardiography, which was mentioned in the introduc-
tion. If the timing of the heartbeats of a subject is known, one can attempt to
build a model which calculates the measurable BCG based on the assumed
heartbeat times. A model that solves the forward problem is sometimes
called a generative model, because it is capable of generating simulated ob-
servations. We will encounter examples of generative models for BCG in
section 3.5.

On the other hand, in inverse problems, one is given the observation and
the task is to infer properties of the system or other unobservable variables
in the problem. In the BCG example, the inverse problem is to estimate the
unobservable heartbeat times from the measured BCG time series. Many
problems of practical interest, including several of the problems in chapter 3
and 4, are inverse problems and one way of solving these kinds of problems
is to apply Bayes law.

We have already seen a very simple example of how to apply Bayes law at the
end of the previous section. In this section, we will introduce a slightly more
complex example, in order to provide additional insight and familiarize the
reader with the concepts involved in solving inverse problems. The example
in this section is a variation on a very common toy problem [16, 17], which
we call the two boxes of fruits.

2.2.1 The Boxes of Fruits Example

Two boxes with apples and bananas are prepared for a guessing game. One
of the boxes has a dark colour and contains two apples and six bananas.
The other box is painted in a light colour and contains four apples and
three bananas. The position of the two boxes are randomized by flipping
a fair coin and a cover is put above both boxes, which prevents the player
from seeing the positions, but allows the player to reach into the boxes. The
player has to pick an opening at random, take out a fruit and guess the
colour of the box based on the type of the fruit taken out. If the guess is
correct the player can keep the fruit as a reward. Figure 2.1 illustrates the
setting of the problem.
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Figure 2.1: The setting for the boxes of fruits example. The light box (on
the left side) contains four apples and three bananas and the dark box (on
the right side) contains two apples and six bananas. Both boxes are covered
such that their colour and position cannot be seen from the outside. The
player has to reach into one of the boxes, take out a fruit and guess the
colour of the box.

In this example, the forward problem consists in predicting the type of fruit
being taken out, from the number of fruits in each box and the probability
of picking the boxes. However, this is not the problem the player has to
solve. The player has to solve the inverse problem, i.e. inferring the colour
of the box from observing the type of the fruit. The correct answer to this
question is very intuitive: Due to the high ratio of bananas in the dark box
and the high ratio of apples in the light box, the answer should be dark when
the fruit taken out is a banana and light if it is an apple. In the following,
we will derive this solution mathematically to provide insight into the way
of solving inverse problems.

To model this problem, we introduce two variables: B is the colour of the
box which can be either dark (d) or light (l), and which is to be inferred.
Such a variable that cannot be observed is called a latent variable. The
second variable F is the type of fruit, which is either apple (a) or banana
(b). This variable can be observed and is therefore called observation or
data variable.

The generative model for this example consists of two steps: In the first
step, we pick a value for B by flipping a fair coin. Mathematically, this
corresponds to assuming a uniform probability of p(B=d) = p(B= l) = 0.5.
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The probability function p(B) is called the prior probability of the box colour
B, since it describes the probability of B prior to observing the data F [17].

In the second step, we have to model the action of taking out a fruit from
the chosen box. This can be described using the conditional probability
function p(F |B), where we plug in the value of B from step one and obtain
the probability of F conditioned on B. This means that if B = d, we flip
a biased coin which lands heads three out of four times and assign F = b if
the coin comes up head and F = a for tail. Conversely, if B = l, we flip a
coin which lands heads three out of seven throws. If we fix the value of F
and interpret p(F |B) as a function of B, then L(B) = p(F |B) is called the
likelihood function [17]. All in all, there are four different configurations for
p(F |B), which are summarized in table 2.1.

Above, we have specified a procedure to simulate the boxes of fruits exper-
iment, which first draws a value for B from the prior probability and based
on that value generates the observation F from p(F |B). However, the full
forward model requires a third and important step in which we specify the
joint probability over all variables in the problem, observed or latent [16].
In the current example, this is achieved simply by applying the chain rule
(eq (2.9)): p(B,F ) = p(B)p(F |B). For more complex problems, it can
become necessary to apply the chain rule repeatedly.

Having specified the forward model, we can now turn to the inverse problem.
In Bayesian statistics, solving the inverse problem corresponds to calculat-
ing the probability of some or all of the latent variables conditioned on the
observed variable. In our example, this would be the probability of B con-
ditioned on F : p(B|F ). In the context of inverse problems, p(B|F ) is called
the posterior probability, since it is the probability of B after observing the
value of F . It can be obtained by applying Bayes law (eq (2.10)):

p(B|F ) =
p(F |B)p(B)

∑

B p(F |B)p(B)
. (2.11)

The sum in the denominator is equivalent to the marginal probability of the
observation, which is often simply called the marginal

p(F ) =
∑

B

p(F |B)p(B). (2.12)

When comparing different competing models this term plays an important
role and is called the model evidence. This topic is discussed in more depth
in section 2.5.1.

Here, we will carry out the calculation for a concrete example. Assuming
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p(F |B)
B

d l

F
a 1

4
4
7

b 3
4

3
7

p(B|F )
B

d l

F
a 7

23
16
23

b 7
11

4
11

Table 2.1: Likelihoods (left) and posterior probabilities (right) for the boxes
of fruits example.

the fruit taken from the box is an apple, the marginal for F =a is:

p(F=a) =
∑

B

p(F=a|B)p(B)

= p(F=a|B=d)p(B=d) + p(F=a|B=l)p(B=l)

=
4

7
0.5 +

1

4
0.5

=
23

56
. (2.13)

Similarly, if the fruit had been a banana, the marginal probability would be:

p(F=b) = p(F=b|B=d)p(B=d) + p(F=b|B=l)p(B=l)

=
3

7
0.5 +

3

4
0.5

=
33

56
, (2.14)

which sums to one with the marginal for F =a.

With the values for the likelihood from table 2.1, we can now evaluate the
posterior probability (eq 2.11). For example, if the fruit is an apple the
posterior probability of the dark box p(B=d|F=a) is given by:

p(B=d|F=a) =
p(F=a|B=d)p(B=d)

p(F=a)

=
1
4 0.5
23
56

=
7

23
,

which is much smaller than 0.5. Thus, the posterior probability confirms
the intuitive solution that if the fruit is an apple, it most likely did not come
from the dark box. The remaining cases can be calculated analogously and
the resulting posterior probabilities are summarized in table 2.1, on the right
side.
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2.2.2 General Discussion

Before concluding this section, we have to mention a few important points.
Aside from confirming the intuitive result, the posterior probability calcu-
lated from Bayes law provides us with the additional information of how
reliable the solution is. In the previous example, a posterior probability
close to 0.5 would indicate that the result is not very reliable. This is one
of the key differences distinguishing Bayesian model inversion from methods
which only provide a point estimate of the variable of interest, i.e. either
B= l or B=d.

We have also seen from the solution to the boxes of fruits problem that
specifying a forward model precedes the solution of the inverse problem.
This generative approach can be extended to many other problems, where
building a forward model and inverting it using Bayes law is more complex,
but holds the advantage of being more easily interpretable [17]. We will see
more examples in the following chapters.

Lastly, we should point out a few critical aspects of Bayesian model inver-
sion. In the Bayesian framework, it is always necessary to specify a prior
probability function or distribution over the latent variables in the model.
The prior probability encodes the information on the latent variables before
any data is observed and it will have an impact on the conclusions of the
model inversion process.

The prior is typically used to encode model assumptions and for many crit-
ics this is a weakness of Bayesian statistics, since the assumptions in the
prior will bias the result of the inference. On the other hand, supporters
of the Bayesian approach to inference argue, that every inference process,
no matter what method it uses, is always based on assumptions [16]. The
difference is that in Bayesian statistics the assumptions are stated explic-
itly via the prior distribution, while in other methods they are hidden, but
present nonetheless.

Despite the impact on the inference result, prior probabilities can be very
useful when building models. In addition to encoding model assumptions,
they can be used to enforce constraints on the variables in the model. The
classic example is a model parameter which has to be positive. By choosing
a prior distribution for this parameter with support limited to the positive
real numbers, the posterior distribution is automatically zero for all negative
numbers, since it contains the prior as a multiplicative factor.

In addition, the Bayesian framework, where assumptions or prior knowledge
is encoded by a prior distribution and the information from the data is
encoded in the likelihood function, offers an intuitive approach to handling
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sequential measurements. Assume that in the boxes of fruits example, the
player draws multiple times from the box (with replacement) yielding a
sequence of observed fruit types F1, F2, . . . , FN . One can of course build
a more complex model which treats the N successive observations as one
vector observation. However, the complexity of such a model would increase
exponentially with N .

A much simpler and more intuitive approach offered by Bayesian inference
is to calculate the posterior based on the first observation p(B|F1). After
obtaining the second observation F2, we simply update the posterior distri-
bution p(B|F2, F1) by incorporating the new measurement via the likelihood
function, while the posterior from the first step p(B|F1) becomes the prior
of the second step. This scheme can be continued for each subsequent mea-
surement. Thus, the prior is not only used for encoding assumptions but
can also be used for incorporating past measurements. This idea forms the
basis of many successful algorithms like e.g. the Kalman filter or the particle
filter [25].

Another more subtle aspect is the use of priors to break symmetries in the
model. For example, if a time series model contains two identical parts for
modelling random oscillations on two different time scales and the model
parameter are set by fitting the model to training data, then it can hap-
pen that for some data sets the first part fits the fast oscillation and the
second part fits the slow oscillation, while for other data sets the situation
is reversed. This ambiguity caused by the symmetry in the model can be
avoided by selecting different prior distributions for the parameters of the
two parts of the model.

In the following chapters, we will encounter all the aspects mentioned above.
On the one hand, we will see how to use prior distributions to encode model
assumptions and enforce constraints. However, we will also witness cases
where the prior has an impact on the results of the inference process.

Aside from the controversy about the prior distribution, there is a more
fundamental topic of criticism on Bayesian methods, which revolves around
the use and interpretation of probability. The reader may have noticed
that throughout this section, we have treated every latent variable as a ran-
dom variable. This is due to the Bayesian interpretation of probability as
a measure of uncertainty, which means that unobserved but deterministic
variables, like the colour of the box that has been chosen, are treated as
random, just like the outcome of a coin flip. For some people, this is a vio-
lation of the definition of probability, which should only be used to describe
repeatable random experiments, like flipping a coin or rolling a dice, and
not for deterministic variables with unknown value.
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The debate between Bayesian and non-Bayesian is a complicated issue,
which sometimes leads to heated arguments. In this thesis, we will not delve
further into this topic. Instead, we will apply Bayesian concepts whenever
they offer practical or conceptual benefits, but also acknowledge the weak-
nesses.

As already hinted at the end of the previous section, the calculation of the
marginal probability is the most computationally challenging step in the ap-
plication of Bayes law, since it involves a summation or integration over all
possible values or configurations of all latent variables. In equation (2.13)
and (2.14) this summation included only two summands, because there was
only one binary variableB. However, the number of possibilities will increase
exponentially with the number of variables, which can become computation-
ally infeasible even for models of moderate size. For this reason, there exists
a multitude of methods for approximating the marginal probability and in
section 2.4 we will introduce two families of approximations which we will
apply in chapter 3 and 4 respectively.

However, before doing that, we will first introduce the concept of graphical
models, a tool for illustrating the structure of models using graphs. This
form of illustration will be used extensively throughout the entire document.

2.3 Graphical Models

In the previous section, we have seen that forward modelling and inverse
problems are closely connected. For example, the joint probability density
defined in the forward model is required for the application of Bayes law.
In the following, we will introduce a tool called graphical models, which
can be used to visualize the structure of a model by representing the joint
probability density as a graph.

For the box of fruits example, the joint probability density was obtained
by applying the chain rule. This applies to many models, with the only
difference that for more complex models, the chain rule has to be applied
repeatedly. The result is an expression for the joint probability density
consisting of a product of probability densities defined over subgroups of
the variables involved in the model.

In the above example, the factors in the product are the prior probability
for the box colour p(B) and the conditional probability of the type of fruit
p(F |B), which depends on the colour. However, for larger models, like
e.g. the embedded clustering model in chapter 4, it is difficult to grasp the
structure of the model and the dependencies between the variables just by



18 CHAPTER 2. PROBABILITY THEORY AND INFERENCE

looking at the factors in the joint density. For this reason, graphical models
were proposed as a method to visualize the structure of the model and help
understanding the dependencies among the variables in the joint probability
density.

The visual representation of probabilistic models is a vast topic and for a
detailed treatment we refer the reader to [17, 26, 27]. Different types of
graphical models exist, which can be divided into two groups, depending
on whether the graph used to represent the model is directed or undirected.
Each type has its own advantages and disadvantages and in the following, we
will focus on one type of directed graphical models called Bayesian networks,
which is ideally suited for visualizing the causal structure of a model.

A Bayesian network represents the joint probability density of a model using
a directed acyclic graph (DAG) [17], i.e. a graph with directed edges but
without loops. A loop is a series of edges which, when traversed in the
direction they are pointing, leads back to the node one started at. This, of
course, precludes self-connections in a DAG.

Each node in a Bayesian network represents one factor of the joint proba-
bility distribution and the variables it is defined over. As noted above, each
factor is a probability distribution, conditioned or unconditioned, which is
defined over a subgroup of variables. If the distribution is unconditioned, like
e.g. p(B) in the box example, it is represented by a node without parents.
On the other hand, nodes representing a conditional probability distribution
have parents. The parent nodes are those which represent the variables that
the child probability distribution is conditioned upon. In the box exam-
ple, this means that p(F |B) is represented by a node which has one parent,
namely the node representing p(B). Thus, the Bayesian network for the
boxes of fruits example is given by the graph in figure 2.2, which contains
one node for B and another node for F , with one edge pointing from B to
F .

A common convention is that nodes of latent variable like B are represented
by open circles, while nodes of variables which can be observed like F are
represented by filled circles. Filled nodes are also used to indicate that a
variable is fixed to a known value. An example are the parameters in the
generative mixture of Gaussians model in figure 4.6.

In the Bayesian network, the structure of the model and the dependencies
between the factors in the joint probability distribution are encoded in vi-
sual form. However, the main advantage of Bayesian networks is that they
visualize the causal relationship among the variables in a model. This can
be seen as follows.
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B

F

Figure 2.2: The directed graphical model for the boxes of fruits example
consists of two nodes representing p(B) and p(F |B). Nodes are labelled
with the variables the distribution is defined over and for latent variables
like B, the nodes are represented by open circles, while the node for F is
filled to indicate that the value of F can be observed. The edge from B to
F indicates that the distribution over F is conditioned on B.

The symmetric definition of the chain rule in equation (2.9) suggests that a
mathematically equivalent way of writing the joint probability distribution
in the boxes of fruits example is to multiply the posterior probability with
the evidence: p(B,F ) = p(F )p(B|F ). However, aside from the fact that the
likelihood p(F |B) can be easily specified, while the posterior p(B|F ) cannot,
this way of writing the joint probability is also counter-intuitive. The inter-
pretation given by the model is that the colour of the box B is an internal
state of the system, which cannot be observed, but which influences, or one
could say causes the observation F . To express this relation between cause
and effect, we prefer to write the joint probability as p(B,F ) = p(B)p(F |B),
which is represented visually in the graphical model by having the edge point
towards the observation.

The above considerations apply for most models, where the edges in the
graphical model point from a variable to the variables under its influence.
By employing directed edges, Bayesian networks offer an intuitive way to
specify the causal relationship between the variables in the model. We will
find this property useful when visualizing the embedded clustering model in
chapter 4.

Before closing this section, we will introduce another notational aspect of
Bayesian networks, which will make the graphical representation of large
models more compact. Imaging that in the box of fruits experiment, the
player is allowed to draw repeatedly with replacement from the chosen box.
This means that there is now a series of N observations represented by
the variables F1, F2, . . . , FN . Since the fruit is replaced into the box, the
probability distribution for each of the observations is identical. Addition-
ally, we assume that the content of the box is shuffled before each draw,
such that the observations are also independent. In this case, the variables
F1, F2, . . . , FN are called independent and identically distributed (iid.) and
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F1

B

F2
. . . FN

B

F

N

Figure 2.3: Demonstration of the plate notation in graphical models: The
graphical model for the boxes of fruits example with repeated drawing with
replacement shown on the left has been reproduced in much more compact
form with plate notation on the right.

the joint distribution over the box colour and all observations is given by:

p(B,F1, F2, . . . , FN ) = p(B)
N
∏

n=1

p(Fn|B). (2.15)

This can be represented by a Bayesian network with one node for each
observation Fn and a node for B with edges pointing towards each of the
observations. However, the nodes for the observations all have the same
structure consisting of one node connected to B by an edge pointing towards
the observation. In order to avoid repeating part of the model with identical
structure, we will introduce the plate notation.

A plate is a rectangle in the graphical model that has a number or variable
in the lower right corner. Any nodes or edges contained inside the plate are
replicated as often as the number in the corner of the plate suggests. To
illustrate this idea, figure 2.3 shows two equivalent versions of the Bayesian
network of the boxes of fruits example with repeated drawing. The graph on
the left side shows the model without plate notation, while in the graph on
the right side plate notation was used to make the network more compact.

Note that plate notation is not limited to expressing multiple observations.
Rather, it can be used to represent any part of the model which consists
of a repetition of nodes and edges with identical structure. This will allow
us to draw compact graphs representing large models like the mixture of
Gaussians model or the embedded clustering model in chapter 4.

2.4 Approximate Inference

As previously mentioned, the computationally most demanding part of solv-
ing inverse problems is to calculate the marginal probability in the denom-
inator of Bayes law. Equation (2.10), indicates that in the general case
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one has to sum (or integrate) over every combination between all latent
variables. In the boxes of fruits example, there was only one binary latent
variable, which meant that the sum had only two summands. However, for
larger models the number of terms in the sum grows exponentially with the
number of latent variables, i.e. for a model with two latent binary variables
the sum contains four terms.

As an example, consider a model consisting of a humble 30 × 30 grid of
particles, each described by a binary spin variable [16]. The internal state
of this model is described by a vector of 900 binary variables, which means
that to calculate the evidence, one has to sum over 2900 terms. By way
of comparison, the age of the universe is estimated to be 258 seconds and
the number of electrons in the universe is approximately 2266 [16]. Thus,
we see that the exact evaluation of the marginal probability or evidence
is only possible for the simplest models, while for most practical models
approximations are necessary.

The approximation methods at our disposal roughly fall into two categories.
The first one is the class of Monte Carlo methods, which tries to find a
numerical approximation to the posterior distribution by drawing a set of
representative samples. The second class consists of methods that try to find
an analytic approximation to the model evidence and posterior distribution.
These methods are summarized under the name variational Bayes, since
they are based on minimizing a functional using calculus of variations. In
the following chapters, we will apply methods from both classes to solve a
range of practical model inversion problems. Here, we will introduce these
two categories of approximation methods, starting with Monte Carlo.

2.4.1 Monte Carlo

Monte Carlo is a class of very powerful and popular methods for performing
inference in intractable models. Here, intractable means that exact inversion
of the model by directly applying and evaluating Bayes law is computation-
ally infeasible. The popularity of Monte Carlo methods is partly due to its
broad applicability. A model needs to fulfil only few prerequisites in order
to be invertible via Monte Carlo.

The general idea behind Monte Carlo methods is to approximate a prob-
ability distribution p(X), called the target distribution, by drawing a set
of representative samples {x1, x2, . . . , xN} from it. This set of samples can
then be used to calculate values of interest, e.g. to approximate the expected
value of X using the sample mean x̄ =

∑

n xn. In order to invert a model
with observation Y and latent variable X using Monte Carlo, one simply
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specifies the posterior distribution p(X|Y ) as the target distribution.

At this point, the reader might point out that to obtain p(X|Y ), we first
need to calculate the marginal probability p(Y ), which is assumed to be
intractable. However, a property of many Monte Carlo methods, which
makes these methods so powerful, is that direct access to the target dis-
tribution is not necessary. Instead, it is sufficient if one can evaluate, for
any value of X, a function p∗(X) = const · p(X) which is proportional to
the target distribution up to a constant factor. In the case of the poste-
rior probability, the function p∗(X) is given by the joint probability density
p(X,Y ) = p(X|Y )/p(Y ) (eq (2.8)), which is proportional to the posterior
density up to the model evidence p(Y ). And since p(Y ) does not depend on
X, it can be treated as a constant factor by the Monte Carlo method.

In fact, the statement above means that Monte Carlo methods can even be
used to invert models where the joint probability distribution does not have
a closed-form representation. Since we only need to evaluate the function
p∗(X) for any input argument, even a model in which the joint distribution is
only given implicitly, e.g. via a black box computer program, can be inverted
using Monte Carlo.

Monte Carlo methods which possess the property mentioned above include
importance sampling, rejection sampling and Metropolis-Hastings, as well
as Markov chain Monte Carlo (MCMC), a generalization of Metropolis-
Hastings. While a special case of importance sampling, called the particle
filter, is widely used in practice [25], importance sampling in general does
not scale well to high-dimensional models [16]. Similarly, rejection sampling
is well suited for certain one-dimensional problems, but also does not scale
well with the dimensionality of the problem [16]. However, rejection sam-
pling holds the advantage of producing independent samples, which is not
the case for Markov chain Monte Carlo. In MCMC the output is a set of
samples {x1, x2, . . . , xN} where xn+1 is correlated with xn. On the other
hand, MCMC is applicable to high-dimensional models and requires less
knowledge on the target distribution [16].

MCMC will be used in section 3.5.2 for inverting the probabilistic ballisto-
cardiogram model to detect heartbeats. In the following, we will introduce
the general idea behind MCMC in more detail and introduce the Metropolis-
Hastings algorithm, which is a special case of MCMC.

Markov Chain Monte Carlo

Markov chain Monte Carlo (MCMC) is a special kind of Monte Carlo, which
is very popular due to its broad applicability. The only condition for MCMC
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X1 X2 X3
. . .
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Y3

. . .

Figure 2.4: Top: graphical model of the most basic version of a Markov
chain without observation. Bottom: graphical model of a Markov chain
with observables Yn.

to be applicable is that the target distribution p(X) can be evaluated up to
a constant for any given input argument [16].

MCMC works by generating a sequence of samples x1, x2, . . . , xN where each
sample depends on the previous. This sequence of samples can be viewed
as realizations of the random variables in a so called Markov chain, which
is a sequence of random variables in which each variable depends on its
predecessor. A Markov chain is described by a distribution like:

p(X1, X2, . . . , XN ) = p(X1)p(X2|X1) · · · p(Xn|Xn−1) · · · p(XN |XN−1).
(2.16)

If the so called transition probability p(Xn|Xn−1) is the same for all n, the
Markov chain is said to be homogeneous.

Figure 2.4 shows graphical models of Markov chains, which are often used as
simple models for time series. The famous Kalman filter algorithm, as well as
the particle filter are both based on the Markov chain with observations [25],
which is represented by the lower graph in figure 2.4. The upper graph
shows the basic Markov chain without observation, which forms the basis
for MCMC.

The sequence of samples generated using MCMC has the special property
that if one ignores the ordering of the samples and treat them as multiple
realizations of one random variable X, they will be distributed according
to the target distribution p(X) [16]. However, one has to keep in mind
that these samples are not independent, which means that they should not
be used to calculate second order statistics directly, i.e. the variance of the
target distribution is not equal to the sample variance:

var
(

p(X)
)

6= 1

N

N
∑

n=1

(xn − x̄)2. (2.17)
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On the other hand, the correlation between samples has no impact on the
calculation of first order statistics [28].

In order to achieve the property described above, the Markov chain con-
structed in MCMC must satisfy certain conditions. One of them is the so
called detailed balance condition on the transition probability [28]:

p(x)p(x′|x) = p(x′)p(x|x′). (2.18)

It means that the transition probability has to be chosen in such a way
that the probability of starting from a sample x, which is drawn from the
target distribution p(X), and moving to another sample x′ via the transition
probability distribution p(x′|x) must be equal to the probability of starting
at x′ and moving to x.

A transition probability distribution that satisfies the detailed balance con-
dition ensures that the target distribution p(X) is an invariant distribution
of the Markov chain constructed using that transition distribution [16]. For
p(X), being an invariant distribution means that given a sample xn from
p(X) and moving to another sample xn+1 via the transition distribution
p(xn+1|xn) will ensure that xn+1 is also a sample from p(X).

The other condition that the Markov chain has to satisfy is called ergodicity,
which means that no matter from which distribution the first sample x1 is
drawn, p(Xn) will converge to the target distribution p(X) for n→∞ [16].
In [29], Neal et al. proof that any homogeneous Markov chain is ergodic
under a few weak conditions on the invariant distribution and transition
probability. For the mathematical details, we would like to refer the reader
to the original publication [29].

Above, we have described the idea behind MCMC and the conditions that
the transition density of a Markov chain has to satisfy in order to be useable
in an MCMC scheme. However, the question of how to construct such a
chain in practice remains open. In the subsequent section, we will offer an
answer to this question by introducing the Metropolis-Hastings algorithm
as an example of an MCMC method.

Metropolis-Hastings

The Metropolis-Hastings (MH) algorithm is named after Metropolis, who
first proposed the method in [30] and Hastings, who subsequently gener-
alized the algorithm [31]. The MH algorithm provides a way to construct
a transition distribution such that the target distribution is the invariant
distribution of the Markov chain.
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The scheme works as follows: Given the sample from the last step xn, we
first generate a sample x′ by drawing from a proposal distribution q(x′;xn),
which is a probability distribution over x′ that depends on xn. The so called
proposal x′ is accepted with probability a calculated using the formula:

a = min
(

1,
p∗(x′)

p∗(xn)

q(xn;x
′)

q(x′;xn)

)

, (2.19)

where p∗(·) is a function proportional to the target distribution. Intuitively,
the above formula says that if in a long chain the transition x′ → xn is
more likely to occur than xn → x′, then we always accept. Otherwise, we
accept with probability equal to the ratio between the probabilities of the
transitions.

If the proposal is accepted, it becomes the new sample in the Markov chain:
xn+1 = x′. If x′ is rejected, the old sample becomes the new sample: xn+1 =
xn. This distinguishes MH from rejection sampling, where only acceptance
will lead to gaining a sample.

The standard choice is to obtain the proposal x′ by perturbing the old sample
xn with Gaussian noise [16], in which case the proposal distribution is given
by:

q(x′;xn) = N (xn, σI). (2.20)

It can be shown that the scheme described above satisfies detailed bal-
ance [17]. And that for the correct choice of the proposal distribution q,
p(Xn) indeed converges to the target distribution for n→∞ [16]. However,
the samples in the Markov chain are not independent, but highly correlated
with their predecessor. This means that the accuracy of the result, which for
Monte Carlo methods increases with the number of independent samples,
does not depend directly on the length of the Markov chain in MH.

In order to obtain samples using MCMC which are effectively independent,
one has to pick samples in the chain which are separated by a certain number
of steps m. A simple calculation on a toy problem [16, 17] shows that the
number of stepsm, one has to wait for two samples xn and xn+m in the chain
to become effectively independent, scales quadratic with m ≃ σmax/σmin,
which is the ratio between the largest (σmax) and smallest (σmin) length
scales of the target distribution p(X).

In other words, if the target distribution p(X) is a function with a long and
thin mode and if the ratio between length and width of the mode is about
100, one has to run a MCMC algorithm for N = 10 000 steps in order to
obtain a result with an accuracy equivalent to that of a result obtained with
100 independent samples. The low speed of MCMC is one of its drawbacks.
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Summary

In this section, we have introduced Monte Carlo methods as a way to approx-
imate the posterior distribution for intractable model, i.e. models where the
direct inversion with Bayes law is computationally infeasible. Additionally,
we have described the Metropolis-Hastings algorithm, which is an example
for a Markov chain Monte Carlo method. Due to their complexity and the
number of different variations, Monte Carlo methods represent an own field
of research and the introduction given here can only present the most basic
ideas. For a more detailed introduction to Monte Carlo methods in general,
we refer the reader to [16, 17], while [28] provides an in depth treatment of
MCMC methods.

The disadvantage of Monte Carlo methods in general and MH in particular is
their slow speed and high demand for computational resources. On the other
hand, they possess the asymptotic exactness property, which means that as
the number of samples drawn (N → ∞) increases, the result converges to
the exact solution [16, 17].

In the next section, we will introduce a completely different approach to
the approximate inference problem, which is based on finding an analytic
approximation to the marginal probability. These methods, which are known
as variational approximations or variational Bayes, lack both the universal
applicability and the asymptotic exactness of Monte Carlo, but have the
advantage of being less computationally intensive. The savings in computing
time can be immense, as we will see in chapter 4.

2.4.2 Variational Methods

The reason for the intractability of many model inversion problems is the
computational complexity of calculating the marginal probability. Monte
Carlo methods, introduced in the previous section, solve this problem by
drawing representative samples from the posterior distribution, which does
not require calculating the marginal probability. In this section, we will
introduce a variational approximation method known as variational Bayes,
which pursues the alternative method of approximating the marginal prob-
ability itself [17, 32, 33, 34, 35].

The marginal probability, also called the model evidence, consists of a sum
or an integral, the computational complexity of which is often the reason
for the intractability of the model inversion. For sums, it is mostly the
number of terms which is too high to be evaluated in a timely manner using
the available computational resources. For integrals, the problem lies in the
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integrand which is too complicated to allow for an analytic solution [16, 17].

In variational Bayes, the marginal probability is approximated by deriving
a lower bound on the sum or integral that represents it. This lower bound
depends on parameters, which we call variational parameters. Maximizing
the bound with respect to the variational parameters will provide an ap-
proximation to the marginal probability and at the same time also yields an
approximation to the posterior distribution [17]. In the following, we will
derive the variational Bayes approximation for a general setting. The results
presented here will be applied to a real world problem in chapter 4.

Derivation of the Variational Bound

We start by defining the Kullback-Leibler (KL) divergence as a way of spec-
ifying dissimilarity between two probability distributions. If p(X) and q(X)
are both probability distributions over X, the KL divergence between q and
p is defined by the integral:

KL
(

q(X)||p(X)
)

=

∫

X
q(X) log

q(X)

p(X)
dX. (2.21)

For a discrete random variable, the integral is replaced by a sum over all
possible values of the variable.

Note that the KL divergence is not invariant against exchanging the order
of its arguments, i.e. KL(q||p) 6= KL(p||q). However, it is easily proven
that the KL divergence is always larger or equal zero (KL(q||p) ≥ 0), with
equality only if both probability distributions are equal [16, 17]. This is an
important property, which we will need later on.

If we assume that our model contains observable variables X, as well as
latent variables Z, which we would like to infer from the observation X,
Bayes law is given by:

p(Z|X) =
p(X|Z)p(Z)

p(X)
. (2.22)

As mentioned, the most difficult part is the calculation of the marginal
probability or model evidence in the denominator:

p(X) =

∫

Z
p(X|Z)p(Z)dZ, (2.23)

which often contains an intractable integral or an intractable sum if the
latent variable is discrete. Here, X and Z represent the set of observed and
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latent variables, respectively, and the integral over Z means integrating (or
summing) over all latent variables in the set.

In variational Bayes, the aim is to derive an approximation which is a lower
bound to the marginal probability. For this purpose, we rearrange equa-
tion (2.22) and take the logarithm on both sides:

log p(X) = log
p(X,Z)

p(Z|X)
. (2.24)

Remember that the product between likelihood and prior equals the joint
probability: p(X,Z) = p(Z|X)p(Z).

Now, we choose an arbitrary distribution q(Z), called the variational distri-
bution, over the latent variables Z. We multiply both sides of equation (2.24)
with q(Z) and integrate over Z:

∫

Z
q(Z) log p(X)dZ =

∫

Z
q(Z) log

p(X,Z)q(Z)

p(Z|X)q(Z)
dZ. (2.25)

Since log p(X) does not depend on Z, it can be pulled out of the integral
and

∫

Z q(Z)dZ = 1 by definition. Thus, after expanding the fraction on the
right hand side with q(Z), we have:

log p(X) =

∫

Z
q(Z) log

p(X,Z)

q(Z)
dZ −

∫

Z
q(Z) log

p(Z|X)

q(Z)
dZ (2.26)

= F +KL
(

q(Z)||p(Z|X)
)

. (2.27)

Comparing this equation with the definition of the KL divergence (eq (2.21)),
we recognize the second term in the first line on the right hand side as the
KL divergence between q(Z) and the posterior distribution p(Z|X). The
first term is called the free energy F , the value of which depends on our
choice of q.

When considering that the KL divergence is always greater or equal zero, we
can draw a few conclusions about the free energy. First, the free energy is
always smaller than the logarithm of the evidence, i.e. F is the lower bound
we are looking for. Second, when maximizing the value of F with respect to
q(Z), i.e. varying the form of the distribution q(Z) as to increase F , one also
minimizes KL

(

q(Z)||p(Z|X)
)

at the same time. This means that the larger
F becomes, the closer q(Z) is to the posterior probability density p(Z|X).
In the extreme case, if we choose q equal to the posterior density, F would
be equal to the evidence. However, this trivial solution does not work in
practice, since we do not have access to the posterior density p(Z|X) due to
the intractability of evaluating the marginal likelihood.
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In this context, it is important to note that a consequence of our ignorance
about p(Z|X) is the inability to evaluate the KL divergence between q and
p(Z|X). This is also the reason why the optimum setting for q must be found
by maximizing F and not by minimizing KL

(

q(Z)||p(Z|X)
)

, although both
operations are mathematically equivalent.

The name variational Bayes comes from the fact that we are maximizing
the free energy F , which is a functional, with respect to the function q.
In practice however, one has to make sure that the integration involved in
calculating F stays tractable. The common strategy is to restrict q(Z) to a
certain class of (simple) distributions such that the integral remains analyt-
ically solvable, and maximize the free energy with respect to the parameters
on which q(Z) depend. A prominent example is to restrict q to a Gaussian
distribution q(Z) = N (Z|µ, σ) and maximize F with respect to the mean
and covariance. This method of restricting q to a Gaussian distribution is
used extensively in [36], where it is called the Laplace approximation.

On the other hand, if Z comprises a set of variables Z = {Z1, Z2, . . .},
another way of restricting q(Z) is to divide Z into subgroups and assume that
q can be factorized into distributions over the subgroups: q(Z1, Z2, Z3, . . .) =
q(Z1)q(Z2, Z3) · · · . This kind of restriction is related to a method known as
mean field approximation in statistical physics [17] and unlike in the previous
case, there are no restrictions on the functional form of the distribution. In
practice, often both kinds of restrictions, i.e. restricting the functional form
and assuming a factorization on q, have to be applied in order to make the
calculation of the free energy F tractable.

Optimization of the Free Energy

Maximizing the free energy with respect to the parameters of q(Z) can in
principle be done with any method. Like in [36], one can simply take the
derivative of F with respect to the parameters of q(Z) and use a standard
gradient optimizer to maximize F .

As an alternative, we will present an iterative scheme which updates the
parameters of q(Z) in a way that is guaranteed to increase F . This scheme
has been applied to many model inversion problems, including learning the
parameters of clustering models [17, 33, 37] and we will use it in chapter 4
to solve the embedded clustering problem.

We assume a mean field approximation, where Z is divided into I subgroups
{Z1, Z2, . . . , ZI} and q(Z) is factored into a product of independent distri-
butions over the I subgroups: q(Z) =

∏I
i=1 q(Zi). Here, each Zi stands

for a whole subgroup of latent variables. When plugging this relation into
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the expression for the free energy from equation (2.26) and isolating the
distribution q(Zj) over one of the subgroups, we arrive at:

F =

∫

q(Z) log p(X,Z)dZ −
∫

q(Z) log q(Z)dZ (2.28)

=

∫ I
∏

i=1

q(Zi) log p(X,Z)dZ −
I
∑

i=1

∫

q(Zi) log q(Zi)dZi (2.29)

=

∫

q(Zj)
(

∫

∏

i 6=j

q(Zi) log p(X,Z)dZi

)

dZj

−
∫

q(Zj) log q(Zj)dZj + const, (2.30)

where const stands for all terms in the summation that do not depend on
q(Zj) and

∏

i 6=j denotes a product over all i ∈ {1, . . . , j − 1, j + 1, . . . , I}.

The inner integral in equation (2.30) can be interpreted as the logarithm of
a probability distribution p̃(X,Zj) over the observation X and the current
group of latent variables Zj :

log p̃(X,Zj) :=

∫

∏

i 6=j

q(Zi) log p(X,Z)dZi + const. (2.31)

Here, const denotes the logarithm of the unknown normalization constant
of p̃(X,Zj). Note also that the integral on the right hand side can be inter-
preted as the expectation of log p(X,Z) under the distribution

∏

i 6=j q(Zi).

With this, we can express the free energy as:

F =

∫

q(Zj) log p̃(X,Zj)dZj −
∫

q(Zj) log q(Zj)dZj + const (2.32)

=

∫

q(Zj) log
p̃(X,Zj)

q(Zj)
dZj + const (2.33)

= −KL
(

q(Zj)||p̃(X,Zj)
)

+ const, (2.34)

which we recognize as the negative KL divergence between q(Zj) and p̃(X,Zj),
up to an additive constant. Since we know that the KL divergence is mini-
mized when the distributions in its arguments are equal, we see that equa-
tion (2.34) is maximized with respect to q(Zj) for q(Zj) = p̃(X,Zj). Thus,
by choosing:

q(Zj) =
exp

(

∫
∏

i 6=j q(Zi) log p(X,Z)dZi

)

∫

exp
(

∫
∏

i 6=j q(Zi) log p(X,Z)dZi

)

dZj

, (2.35)
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or equivalently:

log q(Zj) =

∫

∏

i 6=j

q(Zi) log p(X,Z)dZi + const (2.36)

we can maximize the free energy F with respect to the factor q(Zj). Here,
the const-term corresponds to the negative logarithm of the denominator of
equation (2.35), which does not depend on q(Zj).

However, we also see that the maximization with respect to one factor q(Zj)
depends on the other factors, since the right hand side of equation (2.36)
involves an expectation with respect to all factors expect for q(Zj). There-
fore, equation (2.36) has to be evaluated successively for each of the factors
q(Zj) : j = 1, . . . , I. That is, we have to use the current value of the
parameters of q(Zi) : i = 1, . . . , j − 1, j + 1, . . . , I to evaluate the integral
on the right hand side of equation (2.36). The result can then be used to
update the parameters of q(Zj). Then, we need to increment j and repeat
the process for the next factor. This successive evaluation has to be iterated
until the factors q(Zj) and their parameters converge to a stable value.

It can be shown that each time equation (2.36) is evaluated, the parameters
of q(Zj) will change in a way that the free energy increases [17]. Since
F is also upper bounded by the marginal probability, this means that the
update scheme described above is guaranteed to converge, although the fix
point found can be a local maximum. By repeating the update scheme with
different initial conditions, one can increase the likelihood to find the global
optimum.

It should be noted that the accuracy of the approximation, i.e. how close
the global maximum of F is to the true value of p(X), is determined only
by how many restrictions are put on the variational distribution q(Z). In
general, less restrictions lead to better accuracy, but care must be taken
that all integrals involved stay analytically solvable. On the other hand,
increasing the number of iterations of the variational update scheme does
not increase the achievable accuracy of the variational approximation, but
nevertheless, it can affect the convergence of the scheme.

As mentioned, a variational Bayes approximation using this maximization
strategy has been applied successfully to parameter estimation in mixture
modelling [17, 33, 37], which will be one of the components of the embedded
clustering model we focus on in chapter 4. Aside from the variational free
energy maximization introduced here, there are also other variational ap-
proximation methods e.g. expectation propagation. However, these methods
are outside the scope of this introduction and we refer the reader to [17] for a
more comprehensive documentation on variational approximation methods.
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Connection to Statistical Physics

The concept of minimizing free energy originated from the fields of thermo-
dynamics and statistical physics, where the so called Helmholtz free energy
F is defined as:

F = U − TS. (2.37)

Here, U is the internal energy, T is the (absolute) temperature and S is the
entropy of the system [38, 39]. In this context, we should point out that
the variational free energy, as introduced in equation (2.28), should more
accurately be called the negative free energy [40], since it can be written as:

F =

∫

q(Z) log p(X,Z)dZ −
∫

q(Z) log q(Z)dZ (2.38)

=
〈

log p(X,Z)
〉

q(Z)
+H

(

q(Z)
)

, (2.39)

where the angular brackets 〈 · 〉q denote the expectation of the term inside
the brackets with respect to the distribution q.

The first term in equation (2.38) can be interpreted as the expectation over
the logarithm of a probability distribution, which has a similar functional
form as the negative average energy in statistical physics [38, 39]. The
second term is the information theoretic entropy H [41]. Compared with
equation (2.37), the functional form is very similar except for the sign.

Summary

Before closing this section, we would like to remark that Monte Carlo and
variational Bayes represent the two extremes in the field of approximate
inference, with Monte Carlo being a computationally intensive numerical
method, while variational Bayes offers a much faster analytic alternative.
Monte Carlo is applicable to many problems and requires almost no effort
for adapting it to the specific model, although we will see a counter example
in chapter 3, where the structure of the model does indeed require us to
adapt the MCMC scheme to our needs. On the other hand, the update steps
in variational Bayes requires solving the integral in equation (2.36), which
should possess an analytic solution due to the restrictions to the variational
distribution q(Z), but which still can prove to be hard to solve. In exchange,
one gains a much faster alternative to Monte Carlo.

The current direction of research in this field is to develop approximate
inference methods which combine advantages from both Monte Carlo and
variational methods. An example for this is hybrid Monte Carlo, also known
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as Hamiltonian Monte Carlo, where additional information on the target dis-
tribution p(X) is used to obtain independent samples with shorter Markov
chains. Due to the broadness of this topic, we have to refer the interested
reader to other texts [16, 17, 28], which cover the topic in a more compre-
hensive way than it is possible within the scope of this thesis.

In the next section, we will cover the topics of model comparison and the
relation between parametric and non-parametric methods. These topics will
help the reader to understand the relation between the methods introduced
in the different chapters of this thesis. These topics represent an overarching
theme encountered throughout the entire thesis, which demonstrates how
modelling can help us link seemingly unrelated problems and applications
to a common basis.

2.5 Advanced Topics

In this section, we introduce various advanced topics, which deal with the
relationship between different models. First, we will delve into the topic of
model comparison and model selection. This topic deals with the question of
how to select, based on the observed data, the most appropriate model out
of several competing hypothesis. Then, we will introduce a class of models
known as non-parametric models and discuss the differences between these
models and their parametric counterparts.

The topics in this section are less technical in nature than those of the
previous sections. Instead, they will explore some important concepts and
notions, which we will need in order to understand the common theme un-
derlying the different aspects in this thesis.

2.5.1 Model Comparison

In section 2.2, we have introduced Bayes law as a method to invert a prob-
abilistic model and obtain the posterior distribution over the latent vari-
ables, which can e.g. be model parameters, given the observation. However,
in some situations there are more than one hypothesis about how the ob-
served data has been generated, leading to a multitude of models. In these
cases, we have to solve a model selection problem, in addition to the model
inversion problem.

One approach to this problem is to introduce an additional variable

M ∈ {m1,m2 . . . ,mI}, (2.40)
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which acts as a label for the model [42]. Thus, if we denote the observed
data as X, the posterior distribution over the latent variables Zi in model
mi is given by:

p(Zi|X,M=mi) =
p(X|Zi,M=mi)p(Zi|M=mi)

p(X|M=mi)
. (2.41)

This equation is Bayes law (eq (2.10)), with the inclusion of an additional
variable M , indicating that we have selected model mi.

It is now possible to extend the principles behind Bayesian model inversion
to the problem of model selection by simply applying Bayes law on the level
of models instead of on the level of latent variables and parameters within
each model [16, 17]. Consequently, we can try to calculate the posterior
distribution over the model label M given the data p(M |X), which tells us
how probable model M is in the light of the data X observed so far:

p(M |X) =
p(X|M)p(M)

p(X)
. (2.42)

Here, p(M) is the prior distribution over models and the marginal probabil-
ity of the data p(X) can be obtained by summing over all models:

p(X) =

mI
∑

M=m1

p(X|M)p(M). (2.43)

According to the sum rule (eq (2.7)), we can obtain the likelihood p(X|M) by
summing or integrating out the latent variables Zi of the respective model:

p(X|M) =

∫

Zi

p(X|Zi,M)p(Zi|M)dZi. (2.44)

This approach to model comparison is also known as Bayesian model selec-
tion [16, 17] and the reader might have noticed that the expression p(X|M),
which we called likelihood on the model selection level, is nothing else than
the marginal probability in the model inversion step (eq (2.41)). In light
of this observation, it becomes clear why the marginal probability is also
known under the name model evidence and why, throughout this chapter,
we have stressed the importance of calculating the marginal probability.

Under normal circumstances, there is no reason to prefer one of the models
over the others. Therefore, most of the time, the prior over models p(M)
is chosen flat, i.e. p(M) = const across all models. In this case, the only
difference comes from the model evidence and two model can be compared
to each other via the ratio between their evidence p(X|mi)/p(X|mj), which
is called the Bayes factor [43].
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There are no limits to what kind of models can be compared. The set of
models {m1,m2 . . . ,mI} can be a simple list of different versions of the same
model with varying complexity or degrees of freedom. The classic example
would be polynomials with different degrees or auto regressive models with
different order. On the other hand, nothing prevents us from comparing
completely different hypothesis about how the data was generated, as long
as the model evidence or an approximation thereof can be calculated [42].

In chapter 4, we will see a concrete example of the application of this tech-
nique, where versions of a model are compared, which differ in some of their
parameters. These parameters, when interpreted in the context of the ap-
plication, corresponds to different hypothesis about the system underlying
data generation.

The ideas introduced in this section, are a straight forward extension of
Bayesian inference to the model comparison problem. However, just like in
the case of model inversion, there are scientists who oppose the use of the
Bayesian approach, preferring the classical approach to hypothesis testing
based on p-values [16, 17]. As mentioned, the debate between Bayesians
and non-Bayesians is beyond the scope of this thesis. At this point, we
will only note that despite some shortcomings, Bayesian model comparison
offers a flexible and conceptually simple approach to the problem of model
comparison, which has been applied to problems similar to those discussed
in this thesis and which gives the impetus for some of the approaches taken,
especially in chapter 4.

2.5.2 Parametric and Non-Parametric Models

When dealing with modelling and algorithms, one often comes across a com-
mon distinction between so called parametric and non-parametric models or
methods. In fact, most models or methods can be classified as either para-
metric or non-parametric [16, 17]. In this section, we will provide a short
overview on this topic.

The name non-parametric is a misnomer, as it does not denote a model
or method that has no parameters. Rather, it denotes a model where the
number of parameters is infinite or grows with the number of observed data
points. On the other hand, the term parametric denotes a model with a
fixed number of parameters. This is best illustrated via an example.

A classic example for a parametric method is a polynomial of fixed degree in
the context of curve fitting. In this case the parameters are the coefficients of
the polynomial. Their number is determined by the degree of the polynomial
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Figure 2.5: kNN classification in two dimensions with k = 4. Filled circles
are the vectors in the training data set, where light grey denotes class 1 and
dark grey denotes class 2. The rectangle is a test data point with unknown
class label. The lines connect it to the four closest points in the training set
consisting of three points from class 1 and one point from class 2. Thus, the
label assigned to the test data point by kNN would be class 1.

and not by the number of data points used for fitting the coefficients. Once
the coefficients are fitted, they are sufficient to make predictions, i.e. to
extrapolate the curve, while the data point can be discarded [17].

With non-parametric methods, the number of parameters grows with the
data. In section 3.5.2, we will encounter the Gaussian process, which is the
non-parametric counterpart of the polynomial for curve fitting [44]. Here,
we will introduce the well-known k-nearest neighbours (kNN) classification
method as an example of a non-parametric method.

In kNN, the task is to classify vectors of fixed dimension into one of several
categories [17]. For this purpose, one needs a training database consisting of
a set of example vectors for which the correct category label is known. A new
vector is classified by finding the k closest vectors among all vectors in the
training database and assigning the new vector to the category which holds
the majority among these k nearest neighbours [17]. To measure distance,
any metric can be used. Popular choices are the Euclidean distance or
the Mahalanobis distance, which is obtained by taking the square root of a
quadratic form:

√

(x1 − x2)TA−1(x1 − x2), with A being a suitable positive
definite matrix [16]. Figure 2.5 illustrates the working principle of kNN.

The reason why kNN is considered a non-parametric method is that the
parameters of kNN are the vectors in the training database. The number
of neighbours k is a so called hyper-parameter, which governs the overall
characteristics of the algorithm [17]. The actual classification result is de-
termined mainly by the parameters, i.e. the vectors in the training database
and their associated labels. Their number has no upper limit, which means
the number of parameters grows with the size of the training dataset.
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From the examples given above, we see that the advantage of non-parametric
methods is that they are not limited by an underlying model with finite
degree of freedom. In the case of parametric methods, the flexibility of the
model is limited by the number of parameters, which has to be fixed in
advance. This can act as a bottleneck when fitting a complex dataset [17].

Taking polynomial curve fitting as an example, a polynomial of degree P
can have at most P − 1 extrema. If the true function underlying the data
generation process has more than P − 1 extrema, the polynomial will not
be able to capture the detailed structure of the underlying curve. If one
tries to counter this problem by setting P to a very high value by default,
two problems will arise. First, the complexity of the true function that
generated the data is not known in practice. Second, a very flexible model
with many degrees of freedom will tend to concentrate on capturing small
details and overfit the data in the process, leading to poor generalization
performance [17]. In the case of polynomial curve fitting, a too high degree
results in wild oscillations of the polynomial [17]

A non-parametric method does not suffer from these problems, because it
keeps the entire dataset, which grants access to all available information
about the underlying structure of the problem, even if this structure is highly
nonlinear and difficult to describe [16, 44]. This means that the method
adapts its flexibility to the problem. At the same time overfitting can be
avoided by tuning the hyperparameters [17]. For kNN, the hyperparameter
k has to be chosen large enough such that looking at the k closest neighbours
give stable results, and small enough such that the result is not dominated
by the category with the most data points [17].

However, the disadvantage of non-parametric methods is the increase in
computational complexity with growing size of the dataset. This leads to
a dilemma for non-parametric methods, where, in order to obtain as much
information as possible, one would like to increase the size of the dataset, but
in doing so one also increases the time the algorithm takes to compute the
result [17]. For parametric methods, only the complexity of the fitting step
increases with the size of the dataset, while the time needed for computing
results or making predictions only depends on the number of parameters,
which is fixed [17].

In the coming chapters, it will become clear that the methods and models
introduced throughout this thesis all fall into one of the categories intro-
duced here. However, this categorization will also help us to realize com-
mon themes connecting the models, despite the different ways they were
derived and the seemingly unrelated fields of applications from which they
originated.
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We start with the topic of nonlinear source separation, where we encounter
several modelling aspects. Some of these models were developed specifically
for improving the source separation algorithm, while others were inspired
by the separation result. We will also see that these model are, in fact,
related to the models from chapter 4, which deal with an entirely different
application, namely clustering.



Chapter 3

Source Separation

We start the main part of this thesis with the introduction of a nonlinear
source separation method. By source separation we mean the task of ex-
tracting high dimensional multivariate data from noisy scalar time series.
The approach presented in this chapter is based on a nonlinear noise reduc-
tion method called locally projective noise reduction (LPNR) [14]. Iterated
application of this noise reduction method yields a separation algorithm with
unique properties not encountered in linear methods [45].

In the course of the discussion, it will become apparent that the LPNR
method, which was originally developed to denoise chaotic time series, is
closely connected to mixture modelling, a topic that also plays an important
role later in chapter 4. However, this is not the only modelling aspect in this
chapter. We show that modelling the time series helps verify and improve
source separation results. The ability to simulate data with properties that
can be chosen by the experimenter leads to a better understanding of the
properties of the separation algorithm. On the other hand, source separation
allows creating and improving models for each of the sources. This can lead
to improvement in the subsequent higher level signal processing steps.

Using ballistocardiography (BCG) as an example modality, we demonstrate
the afore-mentioned points. However, these methods are not limited to BCG
and application to other modalities and domains are possible. Examples
include electrocardiography (ECG), magnetocardiography, other mechanical
cardiography methods like seismocardiography or even radar based methods.

The structure of this chapter is as follows. After a short introduction to
BCG, we present the LPNR and discuss the connection of LPNR to mix-
ture modelling. Then, we introduce the LPNR-based signal separation and
apply it to the BCG components separation problem. Furthermore, we

39
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demonstrate how a model of the BCG can be used to verify and improve
the source separation algorithm. After verification, the result of the source
separation algorithm can be used to build an improved model of the cardiac
component of the BCG. This second BCG model can then be used to solve
higher level signal processing tasks, e.g. heartbeat detection. We demon-
strate this by presenting a Monte Carlo beat detection method for BCG
which is built around the improved BCG model.

3.1 Ballistocardiography

In this chapter, we use ballistocardiography (BCG) as an example modality
to demonstrate how the methods introduced here can be applied to real
world problems. Therefore, we will provide a short introduction to this
modality in this section.

BCG is a non-invasive method used to measure mechanical cardiac activity
through measurement of body movements caused by the heartbeat motion.
In contrast to ECG, which assesses the cardiac activity indirectly by mea-
suring the electric excitation that accompanies the activities of the heart
muscles, BCG provides a more direct way to assess the heartbeat activity.

The BCG modality was investigated intensively during the 1960’s [46] and in
this early phase, it consisted of measuring the movement of the suspended
body frame caused as a reaction to the contraction motion of the heart
and the blood flow. For this purpose the subject was attached to a BCG
table, which was suspended from the ceiling using cables [46]. These BCG
tables were carefully calibrated with the aim to derive, from the measured
body movements, quantitative estimates of measures like cardiac output,
the blood volume pumped per beat. Unfortunately, these calibrated BCG
tables were also large and difficult to operate. Along with the development
of alternative methods like ultrasound and echocardiography, this was one
of many factors contributing to the decline in BCG research during the
1980’s [47].

However, with advances in sensor technology and signal processing, there
seems to be a renewal of interest in BCG in the past decade, with a strong
focus on home monitoring applications. Modern sensors allow BCG to be
recorded using very compact devices, e.g. pressure sensitive films or piezo
based sensors [47], allowing BCG recording devices to be built into every-
day objects like weighing scales [48], beds [49, 50] or chairs [51, 52]. Even
wearable BCG devices have been developed [53, 54].

Most of these modern BCG devices are not calibrated, but they open the
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Figure 3.1: Schematic of an uncalibrated bed-mounted BCG acquisition
system used for long-term monitoring. The subject is lying on a normal bed,
while a pressure sensitive sensor is placed under the mattress. BCG recorded
with systems of this type often contain a strong respiratory component.

possibility for unobtrusive long-term BCG acquisition. This reflects the shift
in focus from the classical approach to BCG with calibrated recording de-
vices for diagnosis towards the modern approach with uncalibrated devices
designed for unobtrusive monitoring [47]. Figure 3.1 shows a schematic il-
lustration of a bed-mounted uncalibrated BCG acquisition system, typically
used for long-term home monitoring.

Another important differences between classical and modern BCG devices
lies in the morphology of the observed signal. Similar to ECG, one can
observe in BCG recorded with classical devices a typical signal morphology
with groups of characteristic peaks. Although slight discrepancies exist be-
tween different types of BCG tables, the morphology is consistent within
each type of BCG tables [47] and the peaks in the BCG waveform can be
linked to certain physiological events in the cardiac cycle, e.g. the ejection
of blood from the ventricle [46, 47].

However, as a result of the unobtrusive measurement concept, BCG recorded
with modern devices have no predictable signal morphology. This is because
the sensor is embedded into different objects, e.g. BCG recorded from chair-
mounted sensors differ significantly from those recorded using bed-mounted
sensors. In addition, the subject is free to move during BCG acquisition,
which introduces motion artefacts and which also means that the subject’s
posture and position relative to the sensor may change considerably during
a recording. This makes it difficult to link peaks observed in the BCG to
events in the cardiac cycle. It also has serious implications for modelling
the BCG, and in section 3.5 we present two approaches to this problem.
The first one is based on a hand-optimized custom template and the second
approach is based on a non-parametric model which can adapt itself to the
signal.
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Figure 3.2: A section from a BCG recorded with a bed mounted sensor
(top) with gold standard reference for respiration (middle) and heartbeat
(bottom). Note that the shape of the BCG is dominated by the respiratory
component, while the cardiac component is visible as low amplitude ripples
superimposed on the respiratory component and in synchrony with the ECG
reference.

As mentioned, movements of the subject can cause artefacts in the signal.
Artefacts caused by irregular motion like limb movement are typically char-
acterized by short duration and a large amplitude, often causing clipping
of the signal. Affected segments have to be rejected before analysis of the
signal. On the other hand, respiratory movements are ubiquitous but reg-
ular. They can be considered as a component of the BCG which have to
be filtered out before analysis. However, since the respiratory component
contains physiological information on its own, there is considerable interest
in separating it from the cardiac component of the BCG for further analysis.
In section 3.2, we will use this problem to demonstrate the application of
the LPNR-based source separation.

Figure 3.2 shows a section from a BCG recorded with a modern bed-mounted
system. As a reference, simultaneous recordings of ECG and respiratory
effort via respiration belt are provided. The BCG in this sample has a
strong respiratory component with an amplitude much higher than that of
the cardiac component. This is typical for BCG acquired with bed-mounted
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sensors and it means that the BCG often shows a strong resemblance to the
respiratory reference. The cardiac BCG component in this sample is visible
as a series of small deflections superposed on the respiratory component
and appearing to be in synchrony with the ECG reference. As we will see
in the next section, these two components of the BCG are characterized
by overlapping spectra, which makes them difficult to separate with linear
filters. However, using nonlinear methods this problem can be solved.

3.2 Nonlinear Noise Reduction

In order to understand the nonlinear signal separation scheme, which we
present in this chapter, we need to first introduce a nonlinear noise reduction
method called locally projective noise reduction (LPNR). Thus, we dedicate
this section to an introduction of the LPNR algorithm and a discussion of
the connections between LPNR and the topic of mixture modelling, which
will play an important role later in chapter 4.

In the following, we use bold font to denote vectors and subscripts to denote
samples in a time series. For instance, in a scalar time series x, we denote
the i-th sample with xi and xj denotes the j-th delay vector in the trajectory
obtained by embedding [55, 56] x:

xj = (xj , xj+1, . . . , xj+M )T . (3.1)

Whenever possible, we use the corresponding capital letter to denote limits
of subscripts. In the above example, i runs from 1 to I and j runs from 1
to J . In addition, we use square brackets to index elements of vectors and
matrices: a[i] is the i-th element of vector a and A[i, j] is the element in
row i and column j of the matrix A.

3.2.1 Locally Projective Noise Reduction

LPNR was first proposed in [57] as an algorithm to denoise chaotic time
series, which often have a broad spectrum with non-negligible components
at high frequencies. This poses problems for denoising, since the broad spec-
trum of these signals often overlap with the spectrum of the noise, making it
difficult to reduce noise with low-pass filters without damaging the signal it-
self. Hence, the authors of [57] presented a noise reduction algorithm which
did not rely on representing the signal in frequency domain. Instead, LPNR
embeds the signal into delay space and takes advantage of the geometrical
properties of deterministic time series in delay space [55, 56].
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Derivation of LPNR

Early works on projective noise reduction methods include [58, 59, 60]
and [61]. The name locally projective noise reduction goes back to Kantz
and Schreiber who published a textbook which contains a detailed descrip-
tion of the LPNR algorithm [14], and lists several interesting examples for its
application to denoising chaotic signals, but also for application to problems
outside the field of nonlinear dynamics. These applications include ECG
denoising [62, 63], EEG denoising for the analysis of event related potentials
[64, 65] or denoising speech signals [66, 67].

Furthermore, these applications demonstrate that LPNR, which was origi-
nally developed for chaotic signals, can also be used to denoise stochastic
signals. The prerequisite is that the trajectory obtained by embedding the
signal must lie on or near a low dimensional attractor in delay space [14].
For an M0-dimensional deterministic system, Takens et al. showed that even
if the systems is only observed through a scalar time series, one can recon-
struct an attractor equivalent to the attractor characterizing the original
system, by delay embedding the scalar time series in M ≥ 2M0 + 1 dimen-
sions [55]. However, Kantz et al. pointed out that even for signals which
contain stochastic components, like ECG, the delay space trajectory often
still lies near a low dimensional attractor, which justifies the application of
LPNR [14].

The geometrical meaning of this is illustrated in figure 3.3, where the left
panel shows a noisy time series embedded into two-dimensional delay space.
However, the delay vectors approximately follow a one-dimensional trajec-
tory, which is blurred due to the noise. In the right panel, the same signal
is shown after noise reduction with LPNR and the one-dimensional nature
of the trajectory is more clearly visible.

This already brings us to the basic idea of LPNR: If we know (or assume)
that the trajectory obtained by embedding the noiseless version of a signal
into a high-dimensional delay space lies on or near a low dimensional attrac-
tor, then the deviation of the actual delay vectors from the low-dimensional
attractor must be due to noise. We can attempt to reduce the noise by
estimating the position of the noise free trajectory and moving the delay
vectors towards that position. In [57], Grassberger et al. proposed a method
for estimating a local approximation to the noise free trajectory, which will
be described below.

The LPNR algorithms assumes that the delay vector obtained by embedding
the noiseless input time series into M -dimensional delay space will follow a
trajectory which lies on an attractor with only M0-dimensions and that
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Figure 3.3: A scalar time series is embedded into two-dimensional delay
space. The delay vectors follow a one-dimensional trajectory, which is heav-
ily blurred by noise in the original time series (left). After noise reduction
with LPNR the one-dimensional trajectory is clearly visible (right).

M0 is known. This means that, when making a first order approximation
to the attractor at a certain point x0 on the trajectory, the delay vectors
surrounding x0 will occupy only an M0-dimensional subspace of the M -
dimensional space they are embedded in. This M0-dimensional subspace
will be spanned by M0 vectors t1 to tM0

which are tangent to the attractor.

On the other hand, there will be a space of Q = M −M0 dimensions into
which the nearby delay vectors do not extend. This space is called the
nullspace [14] and it is spanned by Q vectors a1 to aQ, which fulfil the
following relationship:

aq(xk − x0) = 0, q = 1, . . . , Q. (3.2)

Here, x0 is the point on the attractor around which we like to linearize the
attractor, similar to the expansion point of a Taylor series expansion.

We also assume that there is a set of delay vectors X = {xk, k = 1, . . . ,K}
containing all delay vectors xk which are closer to x0 than a certain threshold
ε. This threshold has to be small enough so that the curvature of the
attractor is negligible within a distance of ε around x0. We will discuss the
meaning of ε in a moment. Note that here, the index k is used to identify
the delay vectors in the set X and is not related to the order of samples in
the time series x.

In geometrical terms, equation (3.2) means that the aq are perpendicular
to the attractor. However, the actual time series will contain measurement
noise: yi = xi + ηi. Here, we assume that the noise process η has zero mean
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Figure 3.4: Schematic illustration of the basic principle of LPNR for an
one-dimensional trajectory in two-dimensional delay space. t is the tangent
and a spans the nullspace.

but is not necessarily white. In this case, the above relationship is perturbed
by a noise term:

aq(yk − x0) = ξkq 6= 0, q = 1, . . . , Q. (3.3)

The simple idea of projective noise reduction is to obtain estimates for ξkq
and aq, and correct the noisy delay vector by subtracting ξkq · aq from yk,
which is equivalent to projecting yk onto a first order approximation of the
noise free attractor. In figure 3.4, this is illustrated schematically for an
example in two-dimensional delay space.

In order to obtain the estimates for aq, Grassberger et al. made the assump-
tion that the values of ξkq are small compared to tm0

(yk−x0). Geometrically,
this means that the trajectory is dominated by the shape of the attractor
and the noise is only causing a small perturbation ξkq away from the attrac-
tor. Without loss of generality, the aq can also assumed to be normalized
and orthogonal to each other. Thus, the task is to find Q vectors which fulfil
equation (3.2), as well as the relationship:

‖aq‖ = 1 and (3.4)

aT
p aq =

{

0 if p 6= q
1 if p = q

(3.5)

for p, q = 1, . . . , Q and at the same time minimize the average perturbation
in the neighbourhood [14]:

L =
K
∑

k=1

Q
∑

q=1

ξ2kq. (3.6)

Grassberger et al. solved this task using Lagrange multiplier with the result
that the aq are the eigenvectors corresponding to the Q smallest eigenvalues
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of the (empirical) covariance matrix of the delay vectors y1 to yK . The
details of the Lagrange multiplier approach from [57] are summarized in
appendix A.1. In practice, one would obtain the eigenvectors of the covari-
ance matrix by applying principal components analysis (PCA) to the delay
vectors in the set Y = {yk, k = 1, . . . ,K}.

With this, we have the ingredients of the algorithm, allowing us to give a
summary of all steps needed for LPNR. We start with the noisy time series
y = x+ η which needs to be denoised. The first step is to choose an embed-
ding dimension M , which is larger than the known or assumed dimension
of the attractor M0, and to apply M -dimensional delay embedding to the
time series y. M is one of the parameters of LPNR and we will discuss its
meaning in the subsequent paragraphs. The embedding will give rise to a
delay vectors series, denoted y.

Since projective noise reduction has to be applied to each delay vector sepa-
rately, the following steps are repeated for all delay vectors. For a particular
delay vector yi in the series, the second step consists in choosing a value for
ε and finding all other delay vectors which are closer to yi than ε. The set
of these neighbouring delay vectors is denoted by Yi = {yk, k = 1, . . . ,K}
and its elements satisfy ||yk − yi|| ≤ ε.

Given this neighbourhood of yi, we have to estimate the linear approxima-
tion to the nullspace aq, as well as a point x0 which lies on the attractor and
is close to yi. Because we assume that the noise process η has zero mean,
the estimate of x0 is simply given by the mean of all delay vectors in Yi. To
estimate aq, we first calculate the empirical covariance matrix C of the yk:

C =
1

K

K
∑

k=1

(yk − x0)(yk − x0)
T . (3.7)

Then, we perform a PCA on C and set aq equal to the eigenvectors corre-
sponding to the Q smallest eigenvalues of C.

The next step is to calculate the component in yi which is due to noise and
subtract it from yi. This noise component ξi is a vector consisting of Q
contributions, one from each aq, which are given in equation (3.3). Adding
these components gives us:

ξi =

Q
∑

q=1

aqa
T
q (yk − x0). (3.8)

Thus, the corrected delay vector is given by ỹi = yi − ξi.

Now, we obtained a noise reduced version of the delay vector series, which
we call ỹ. However, what we need is the noise reduced version of the scalar
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Algorithm 1 Pseudo code for locally projective noise reduction

1: function lpnr(y, ε,M,Q)

2: y ← delayEmbedding(y,M)

3: for i← 1, . . . , I do

4: Yi ← {||yk − yi|| ≤ ε}
5: x0 ← 1

K

∑K
k=1 yk

6: C ← 1
K

∑K
k=1(yk − x0)(yk − x0)

T

7: V ← pca(C) ⊲ columns of V contain eigenvectors

8: V ← sort(V ) ⊲ sort in ascending order of eigenvalues

9: for q ← 1, . . . , Q do

10: aq ← V [:, q]

11: ξi ←
∑Q

q=1 aqa
T
q (yk − x0)

12: ỹi = yi − ξi

13: ỹi ← 1
M

∑M
m=1 ỹi−m+1[m]

14: return ỹ

time series y. When transforming ỹ back into a scalar signal, we encounter
the problem that each sample yi in the original time series is part of M
consecutive delay vectors:

yi−M+1 = (yi−M+1, . . . , yi)
T

...

yi = (yi, . . . , yi+M−1)
T ,

each receiving an independent correction. In order to obtain a consistent
estimate for the noise reduced scalar time series, we average over the con-
tributions from each of the M corrected delay vectors:

ỹi =
1

M

M
∑

m=1

ỹi−m+1[m]. (3.9)

The steps given above provide a comprehensive description of the LPNR.
They are visualized in a flow chart in figure 3.5 and additionally, a pseudo
code listing is provided in algorithm 1.

To enhance the geometrical interpretation of LPNR, figure 3.6 illustrates
how the LPNR steps look like in two-dimensional delay space. The four
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Input: y = x+ η.

M -fold delay embedding.

Find neighbours within ε0.

PCA

Subtract projection ξ from y.

Average to obtain a scalar output.

Iterate if needed.

Output: ỹ.

y

y, Y

y,aq

ỹ

ỹ

Figure 3.5: Flowchart of the locally projective noise reduction algorithm.
The noise process η does not have to be white, but is assumed to have zero
mean. The symbols on the right side of each arrow denote the variables
which are passed between the respective steps.

panels illustrate the key steps of finding the local linear approximation via
PCA and projecting towards the attractor, which have to be repeated for
every delay vector.

Parameters of LPNR

The LPNR algorithm has several key parameters, which are discussed in the
following. We begin with the threshold for the neighbour search ε, which
determines the range of the local linear approximation. As stated earlier, the
value of ε has to be small enough such that second order effects are negligible.
This can be seen from figure 3.6: If the radius for neighbour search were
e.g. twice as large, the curvature of the trajectory would influence the PCA
and the eigenvectors would not be aligned tangential and normal to the
attractor any more. In addition, the mean of the neighbouring delay vectors
would not be on the attractor any more. Instead, x0 would be perturbed
away from the attractor in the direction of the curvature.
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Figure 3.6: Illustration of the steps in LPNR for one delay vector in the
trajectory of the time series embedded in two-dimensional delay space. Top
left: position of the target delay vector in the noisy trajectory. Top right:
neighbour search. Bottom left: PCA, the large axis of the ellipse corresponds
to the first eigenvector, while the second eigenvector is not shown. Bottom
right: applying the correction to the target delay vector.

On the other hand, ε should also not be too small. This can also be explained
in an intuitive way using figure 3.6. Imagine the value of ε being only half
as large as shown in the second panel. Then, the neighbourhood would
not range beyond the noise level, but form a circular cloud of delay vectors
instead. Thus the covariance matrix C would have eigenvalues of almost
equal size, which cannot be used to distinguish between tangent and normal
directions.

The above considerations show that when selecting a value for ε, one has to
strike a compromise between limiting second order effects and noise reduc-
tion. This also illustrates the limits of LPNR: The distance on the attractor
at which second order effects become non-negligible is an upper limit on the
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amplitude of the noise that can be removed with LPNR without distorting
the original signal. In practice, one would first visually inspect the signal
and choose ε to be slightly larger than the peak to peak amplitude of the
noise and after noise reduction check the output signal for distortions [14].
The last step is important, since distortion of the signal has been shown
to be among the consequences of careless application of projective filtering
techniques [68].

The parameters M and Q or equivalently M and M0 are closely related.
M is the embedding dimension and must be higher than M0. Embedding
is a complex topic by itself and for time series generated by deterministic
systems there are theoretic results stating that even if we only observe a
scalar time series and the attractor characterizing the original system has
M0 dimensions, the attractor can be reconstructed by delay embedding the
scalar time series in M ≥ 2M0 + 1 dimensions [55, 56]. For example, the
famous Lorenz system [69] is characterized by an attractor with a fractal
dimension between 2 and 3. Consequently, to denoise a noisy Lorenz time
series, we should choose M ≥ 7 and Q = M − 3.

However, in the case of stochastic signals encountered in practical applica-
tions like ECG, it is difficult to define the value of M0, since it is unclear
if there even exists an attractor underlying the generation of these signals.
Although, limit cycle based ECG models [70] have been used with great
success for ECG processing [71, 72]. This would suggest that, at least for
ECG signals, using limit cycle attractors seem to be a good way to model
the signal.

For the practical application of LPNR to denoising experimental time series
which are not strictly deterministic, the recommendation is to set M equal
to the number of samples which corresponds to the duration of deflections
caused by the noise process [14, 45]. Thus, the role of M is complementary
to that of ε: While ε describes the amplitude scale of the noise process, M
describes its time scale.

After choosing M , Q is set to adjust the strength of filtering. The larger
we choose Q, the lower the dimension of the attractor we restrict the time
series to be on. E.g. for ECG, good results were obtained by setting Q =
M − 1 [62]. As with the case of ε, it is important to inspect the signal after
noise reduction and adjust the parameters if necessary.

The choice of parameters for LPNR requires manual effort, which is one of
the disadvantages of LPNR. However, the unusual behaviour of LPNR with
respect to its parameters offers an alternative approach to noise reduction
compared to linear filtering. While linear filters distinguish between noise
and signal by spectral components in frequency domain, LPNR stays in
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time domain and distinguishes signal from noise via the typical amplitude
scale and time scale of the noise component. This means that even when
the spectrum of signal and noise overlap in frequency domain, which would
pose a problem for linear filters, LPNR can still supress the noise, if the
typical amplitude scale and time scale of the noise component differ from
those of the signal. However, we would like to point out that this does not
mean LPNR is superior to linear filtering. Rather, the two methods are
complementary. We will see an example for this in the next section.

A Toy Example

Identifying a signal component via the amplitude scale and time scale is
an unusual concept, especially in the classical signal processing domain,
which has been dominated by the success of linear filtering in frequency
domain. Therefore, we provide an illustrative example, in order to enhance
the understanding of this concept and the behaviour of LPNR.

The top left panel in figure 3.7 shows a series of Gaussian shaped peaks with
two distinct amplitudes. The peaks are shaped after Gaussian bell curves,
which are described by the following equation:

f(t) = a exp
(

− t2

2τ2

)

. (3.10)

a determines the amplitude of the peak, which, in our example, can take
on two distinct values and τ is the width of the peak, which is constant
for all peaks in the top left panel of figure 3.7. The Fourier transform of
equation (3.10) is given by [73]:

F (ω) =
√
2πτ a exp

(

− τ2ω2

2

)

, (3.11)

which shows that the width of the spectrum (also called bandwidth) is de-
termined by the inverse width of the bell curve in time domain. This is
a consequence of a fundamental principle of the Fourier transform, which
states that the shorter a signal is in time domain, the broader its spectrum
is in frequency domain [73].

However, the important implication for our example is that the spectrum
of all peaks have the same extend in frequency domain, since τ is constant
for all peaks. Therefore, if one would apply a linear filter to the signal in
the top left panel of figure 3.7, all peaks would be affected in the same way,
since linear filters, targeting a certain range in frequency domain, cannot
distinguish between signals with the same spectrum. This can be seen in
the bottom panel of figure 3.7. In addition, the FIR filtering introduces a
baseline oscillation that was not present in the original signal.
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Figure 3.7: Demonstrating the properties of LPNR. A mixture of Gaussians
shaped peaks with different amplitudes but identical variance (top left) is
filtered using LPNR (top right) and FIR filters (bottom).

On the other hand, the top right panel in figure 3.7 shows that LPNR
removed all of the small peaks without affecting the large peaks much. The
reason is that we have chosen for ε a value which is slightly larger than the
amplitude of the small peaks but much smaller than the amplitude of the
large peaks. This tells the LPNR algorithm to remove peaks smaller than ε,
but leave peaks larger than ε untouched. In contrast to linear filters, the fact
that both small and large peaks have the same spectrum does not prevent
LPNR from successfully targeting the smaller peaks, as the difference in
amplitude is sufficient to distinguish them from the large peaks.

Inspecting figure 3.7 very carefully, one will notice that the baseline in the
right panel is slightly elevated. This elevation of the baseline will grow with
increasing value of ε and is due to the distortion of the attractor mentioned
at the beginning of this section.

3.3 Connection to Mixture Modelling

An interesting observation is that the noise reduction method, which is a core
component of the source separation scheme introduced in the next section,
is based on local application of PCA, a dimensionality reduction method.
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Thus, dimensionality reduction is a key component of our source separation
scheme.

However, when looking at LPNR on a higher level, it will become clear that
although LPNR has its roots in nonlinear dynamics, where it was developed
as a noise reduction method, there are close connections to other methods
belonging to entirely different fields. Thus, we will dedicate this section to
shedding light on the relationship between LPNR and mixture modelling,
which is a key topic of chapter 4.

We will begin by discussing LPNR in the context of the parametric versus
non-parametric categorization introduced in section 2.5.2, which leads us to
a version of LPNR optimized for online execution. Given this point of view
on LPNR, we will be able to realize the close relationship between LPNR
and mixture modelling. In fact, we will see that LPNR and the mixture of
principal components analysers model can be interpreted as subcategories
of the same model family.

3.3.1 LPNR as a non-parametric method

The application of PCA to the neighbours of each delay vector is what makes
LPNR a non-parametric method. This can be seen by comparing LPNR to
the k-nearest neighbours algorithm, which was introduced in section 2.5.2 as
an example of a non-parametric method, and observing the parallels between
these two methods.

First, the parameters discussed in the previous section, ε, M and Q, should
actually be referred to as hyper-parameters of LPNR. In this context, the
parameters of LPNR are the Q eigenvectors aq calculated for each delay
vector, the number of which grows with the size of the input. This is the
key property of a non-parametric method.

Second, for each input, LPNR is extracting the local information contained
in the data to obtain the result, just as kNN. This way the, the algorithm is
not limited by an underlying model with finite degree of freedom. Instead,
the information about the global structure of the problem, is retained by
storing the entire dataset, while at the same time, the result for each single
point is influenced by detailed information of the local structure. For kNN,
the local approximation consist in finding the k closest neighbours and for
LPNR it consist in finding the neighbours within a range of ε.

However, LPNR also suffers from the disadvantages of non-parametric meth-
ods described in section 2.5.2. Just like kNN, LPNR has to search the entire
dataset when processing each input sample. Not only is this time consuming,
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but it also introduces a dependence of the processing time on the possibly
varying size of the dataset, which is undesirable for an algorithm that has
to run under real-time constraints. Therefore, a version of LPNR optimized
for online execution has been developed [74].

3.3.2 An online version of LPNR

The high computational complexity of LPNR and the fact that in its original
formulation LPNR is non-causal, meaning that it needs the entire input time
series before it can start processing, was the motivation for developing an
online version of LPNR [74]. One of the key modifications proposed in [74] is
to store the eigenvectors tm0

and aq, as well as the mean delay vectors x0, for
certain representative points distributed over the attractor. For each delay
vector, online LPNR first checks if there is a representative point nearby.
If so, the stored eigenvectors are used to make the correction, otherwise
the neighbour search and PCA are performed for the current delay vector,
which is then included into the list of representative points. By limiting the
number of representative points, the LPNR algorithm has been effectively
turned into a parametric method.

The set of eigenvectors tm0
and aq associated with each of the representa-

tive points form a model of the attractor. The information on the attractor,
which in the original LPNR was implicitly contained in the entirety of the
dataset, is now contained explicitly in a parametric model. This model
describes the attractor by covering it with locally computed eigenvectors,
which contain the information on the local tangential and normal directions
of the attractor. Such a model has already been used in [75] for learning
attractors. It has also been proposed independently in the machine learn-
ing and image processing communities, where it is referred to as a manifold
learning technique and used for a variety of applications including handwrit-
ten digit recognition [76, 77], dimensionality reduction [78], image coding [79]
and image interpolation [80].

However, all methods based on modelling the attractor using a set of local
approximations have to face the assignment problem, which deals with the
question of which local approximation to assign each delay vector or data
point to. Assignments can be based on the Euclidean distance measure, but
also the reconstruction error can be used as a criterion [81]. When making
hard assignments, i.e. assigning each delay vector to a single approxima-
tion, the chosen assignments define a partitioning of the attractor. This
can lead to problems for certain applications, since e.g. the criterion used
for finding the optimum assignment becomes non-differentiable with hard
assignments. Also, the treatment for delay vectors at the boundary between
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two approximations is non-optimal [81].

To address these problems, Tipping et al. proposed a probabilistic version
of PCA [81]. Using their probabilistic interpretation of PCA, the attractor
model can be formulated as a mixture model, where data points are assigned
based on the probability that they were generated by a certain component.
These soft assignments allow the model to assign each data point to more
than one component, eliminating many problems caused by hard assign-
ments. In the following, we provide a short description of the probabilistic
principal components analysis (PPCA) model introduced in [81] and discuss
the parallels between the mixture of PPCA model and the LPNR algorithm.

3.3.3 Probabilistic Principal Components Analysis

The PPCA model can be viewed as a latent variable model with a continuous
latent variable [17, 81]. The generative process is as follows [81]: First, a
random vector z is drawn from an isotropic Gaussian distribution

p(z) =
1

(2π)d/2
exp

(

− zTz

2

)

, (3.12)

with d being the dimension of z. However, z is latent, which means it is not
observed. Instead, what we observe is the vector y given by:

y = Wz + µ+ ǫ. (3.13)

Here, ǫ is a Gaussian random vector with variance σ modelling the mea-
surement noise: ǫ ∼ N (0, σI). Thus, z is first transformed by multiplying
it with the e× d matrix W and adding the mean µ, as well as measurement
noise, before we observe it. The conditional probability of y given z is:

p(y|z) = 1

(2πσ2)e/2
exp

(

− ||y −Wz + µ||2
2σ2

)

, (3.14)

and by marginalizing out z, we obtain the marginal distribution over y:

p(y|z) =

∫

p(y|z)p(z)dz

=
1

|2πC|1/2
exp

(

− 1

2
(y − µ)TC(y − µ)

)

, (3.15)

with C = σ2I +WW T .

After observing a number of data points {y1,y2, . . . ,yN}, one way to esti-
mate the parameters W , µ and σ is by maximizing the log-likelihood func-
tion:

L(W,µ) =
N
∑

n=1

log(p(yn)), (3.16)
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Figure 3.8: Graphical model for the mixture of probabilistic principal com-
ponents analysers model. Note the similarity to the graphical model of the
mixtures of Gaussians model in figure 4.6.

with respect to W and µ. Here, p(yn) denotes the function defined in
equation (3.15). Tipping et al. derived two solutions to this maximum like-
lihood estimator, which are both explained in detail in [81]. The first is a
closed-form solution, while the second one is an iterative solution based on
a method called the expectation maximization (EM) algorithm.

3.3.4 Mixture of PPCA and LPNR

Although the PPCA model introduced in the previous section extends the
classical PCA to the domain of probabilistic models, it is still a linear model.
In order to model nonlinear systems, Tipping et al. introduced the mixture
of PPCA model [81], which approximates a nonlinear manifold using a com-
bination of local linear PPCA models. This is accomplished by adding a
discrete latent variable l to the model, which indicates which component is
responsible for generating the current observation.

The complete mixture of PPCAmodel can be described as follows. There are
J PPCA components, each with its own set of parametersWj , µj and σj (j =
1, . . . , J). As with the simple PPCA model, z is drawn from an isotropic
Gaussian distribution. The additional random variable l, drawn from a
categorical distribution (see appendix A.3), determines which component is
used to transform z:

y = Wlz + µl + ǫl. (3.17)

Figure 3.8 shows the graphical model of the mixture of PPCA with J com-
ponents and I observations y1 to yI . There is one latent vector zi, as well
as one li for each observation yi. The vector π contains the weights of the
PPCA components, which correspond to the probabilities that the compo-
nent is chosen by l. Also note the similarity between this model and the
mixture of Gaussians model, which will be introduced in chapter 4.6.
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In a practical setting, one would receive the I observations, which could
e.g. correspond to the series of delay vectors obtained from embedding a
scalar time series. These observations will be used to estimate the set of
parameters of the mixture of PPCA model π, Wj , µj and σj (j = 1, . . . , J)
with the iterative EM algorithm proposed in [81]. The EM algorithm will
also provide soft estimates for the cluster labels li, which for each cluster
approximate the probability that the observation yi has been generated by
that cluster. These results can then be used to estimate a noise reduced
version of the observation.

Comparing the mixture of PPCA model to LPNR, one can draw several par-
allels. The delay vectors in LPNR correspond to the observation y in the
mixture of PPCA model. The noise free delay vectors x in LPNR would cor-
respond to the vector Wz+µ, which is the vector obtained by transforming
z but without adding noise. However, the vector z itself has no counterpart
in LPNR. The noise reduction step in LPNR can be reproduced in the mix-
ture of PPCA model by projecting yi − µj onto the subspace spanned by
Wj for all clusters from 1 to J and averaging the projections according to
the probability that yi belongs to cluster number j. This approach has the
advantage that vectors at the boundary between two clusters are not forced
to one of the two clusters, which can lead to suboptimal results.

In this section, we have shown that LPNR is a non-parametric method, while
online LPNR and related methods based on mixtures of regular PCA models
can be viewed as a parametric variant of LPNR. We have also demonstrated
how closely signal processing is related to modelling by drawing a connection
between manifold learning and LPNR, which was designed without having
mixture models in mind. Furthermore, the mixture of PPCA model has
been established as a parametric and probabilistic version of LPNR. The
relationship between all these methods are illustrated in table 3.1. An in-
teresting topic for further research is the question of how to combine the
advantage of the non-parametric LPNR with the probabilistic framework
provided by the mixture of PPCA model. Such a model would occupy the
lower right corner of table 3.1.

3.4 Nonlinear Source Separation

In this section, we will introduce a scheme for signal separation based on
LPNR. This separation scheme inherits some of the properties of LPNR,
which enables it to separate signal components with overlapping spectra if
certain conditions are met. The effectiveness of this signal separation scheme
is demonstrated on the problem of separating cardiac and respiratory BCG
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parametric non-parametric

non-probabilistic
online LPNR

mixture of regular PCA
LPNR

probabilistic mixture of PPCA open research topic

Table 3.1: Categorization of LPNR and related methods.

components.

LPNR-based source separation has been first developed for extracting the
fetal ECG component from ECG signals recorded by placing the electrodes
on the abdomen of the mother [14, 45, 82]. These abdominal ECG record-
ings are dominated by the maternal ECG component, while the fetal ECG
component is faster and has a much smaller amplitude. In addition, the
components have a very similar spectrum, since they are both ECG signals,
which is the motivation for using the LPNR-based signal separation.

The problem of overlapping spectra between different signal components is
shared by the BCG, where respiratory and cardiac components have partly
overlapping spectra. This is due to subharmonics in the cardiac component,
but also because the respiratory component has a broadband spectrum.
Although, the base frequency of respiration is normally below the heart
rate, the waveform of the respiratory component often contains sharp flanks,
e.g. in the case of ragged breathing. This broadens the respiratory spectrum,
causing an overlap with the spectrum of the cardiac component. Therefore,
signal separation with traditional methods like linear filtering does not work
well for BCG. For this reason, we have adapted the LPNR-based signal
separation scheme for the separation of BCG components [83, 84].

The key idea of LPNR-based signal separation is to apply LPNR iteratively
with varying parameters. Figure 3.9 shows the flow diagram of the non-
linear signal separation process for BCG components. The raw BCG first
enters the left branch in figure 3.9, where it is low-pass filtered with a cutoff
frequency of 3.5Hz to remove the high frequency noise, as well as the high
frequency components of the cardiac component. The output of the low-pass
filter contains the respiratory component and the low frequency parts of the
cardiac component, which have overlapping spectra in frequency domain.

However, inspecting the signal in time domain reveals that the cardiac com-
ponent is faster and has a smaller amplitude than the respiratory component.
Therefore, we apply LPNR to the output of the low-pass filter in order to re-
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Figure 3.9: Flow diagram of the separation algorithm. The raw signal is first
filtered to yield the respiratory component, which is then subtracted from
the raw signal. This difference is filtered again to give the cleaned cardiac
component.

move the remaining cardiac component from the signal. To achieve this, the
parameters are chosen such that ε is slightly larger than the peak-to-peak
amplitude of the cardiac component, while M corresponds to the number
of samples which cover the length of the typical deflections in the cardiac
component. Choosing the parameters this way causes LPNR to treat the
cardiac component as noise. Thus, the final output of the left branch is the
clean respiratory BCG component.

Before the raw BCG enters the right branch in figure 3.9, the respiratory
component is removed by subtracting the output of the left branch. There-
fore, the right branch receives a noisy version of the cardiac component as
input, which is first high-pass filtered with a cutoff frequency of 0.6Hz. The
high-pass filter serves to remove any residual respiratory influence remain-
ing in the signal. After high-pass filtering, the signal is filtered again with
LPNR. This time however, the parameters are chosen such that ε is slightly
larger than the peak-to-peak amplitude of the noise process, but smaller
than the amplitude of the cardiac component. M is chosen to cover the
length of typical deflections caused by noise. Thus, the operations in the
right branch in figure 3.9 remove only the noise and output a clean cardiac
component.

The overall strategy of this scheme is to use fast linear filtering to separate
the non-overlapping parts of the spectrum and to assist the slower LPNR,
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Figure 3.10: A section of a real BCG (top) with the respiratory (middle) and
cardiac (bottom) components extracted via LPNR-based signal separation.
The dashed lines represent the reference signals respiratory effort and ECG.

which is responsible for removing the critical parts with spectral overlap.
The difference between LPNR and other approaches based on linear filters
is that LPNR identifies signal components via typical time and amplitude
scales of the deflections in the signal. This enables LPNR to distinguish
the cardiac from the respiratory component in the BCG, despite the overlap
between their spectra. Thus, LPNR offers a complementary approach to
linear filtering [84].

Figure 3.10 shows a section from a real BCG, together with the cardiac
and respiratory components extracted via LPNR-based signal separation.
There is a clear correlation between the extracted BCG components and
the reference signals. The power spectral density of the extracted BCG
components are shown in figure 3.11, which illustrates that the broadband
characteristic of the respiratory component’s spectrum has been preserved
by the LPNR-based separation process.

Figure 3.12 shows a section from the delay space trajectory of the raw BCG
and the respiratory component obtained after the first LPNR filtering step in
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Figure 3.11: The power spectral density of the signals shown in figure 3.10.

Figure 3.12: A section from the delay space trajectory of the BCG before
(left) and after (right) the first LPNR filtering step to extract the respiratory
component.

the left branch in figure 3.9. The noise process and the cardiac component
cause a strong perturbation of the delay vectors away from the attractor
shown in the left panel of figure 3.12. However, after LPNR, the trajectory
is much cleaner and resembles a limit cycle attractor.

One important condition for the application of LPNR-based separation is
that the amplitude scale and time scale of the BCG components must be
known in advance and time invariant (or changing very slightly). In princi-
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ple, this condition applies to every algorithm. E.g. when using linear filters,
the cutoff frequencies of the filter which lead to optimal performance have
to be known in advance. However, some quantities are more invariant than
others. The typical human heart rate is around 1Hz and although some
variations are to be expected, this still limits the range of sensible cutoff
frequencies for linear filters. On the other hand, the amplitude of the BCG
and its components are influenced by many factors, including the gain of
amplifiers in the recording equipment, the strength of the heart or the size
and position of the patient, which makes it difficult to choose fixed parame-
ters for LPNR-based separation in advance. In order to solve this problem,
we have developed a parameter estimation scheme which attempts to esti-
mate the amplitude scales of respiratory and cardiac components [85]. The
estimates are based on the assumption that the time scale of the heartbeat
activity is relatively invariant and known.

Although, the results in figure 3.10 are visually pleasing, a more objective
assessment of the performance of LPNR-based separation is needed. In the
next section, we will present an approach for verifying the BCG separation
scheme presented here, which is based on modelling the BCG. This has the
advantage that we can generate arbitrary amounts of BCG data, leading to
a more accurate assessment. More importantly, simulation is the only way
to obtain ground truth for the different BCG components, which cannot be
measured directly.

3.5 Modelling BCG

In the last section, we have seen how modelling plays an important role in
algorithm design. Even if we do not explicitly include a model during the
design process, the assumptions made while deriving the algorithm often
implicitly define a model. In the case of LPNR, we showed that the online
version is closely related to mixture modelling. Furthermore, models are
useful even after completing the design process, e.g. for improving or verify-
ing an algorithm. If real data is difficult to obtain in sufficient quantity or
quality, model generated data can be used for verification.

Thus, modelling is important for algorithm design, but on the other hand,
algorithms can contribute to improvements in models. Advances in sig-
nal processing can lead to more advanced models, e.g. by helping to verify
model assumptions, improving the choice of parameters or contributing new
evidence to model selection problems.

In this section, we further investigate the two sides of this relationship. First,
we take a closer look at BCG separation. Since real BCG recordings do not
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provide acceptable means to obtain ground truth for the isolated respiratory
and cardiac components, the performance of the LPNR-based separation can
be verified only with artificial data. In section 3.5.1, we present a model for
generating BCG which offers the possibility to freely select model parame-
ters such as heart rate, respiration rate or the ratio between the amplitude
of both components. This model relies on templates which are fitted to
the cardiac and respiratory BCG components, in order to simulate their
morphology. Using the ground truth for respiratory and cardiac BCG com-
ponent from this model, it is possible to quantify the performance of the
LPNR-based separation [84].

In the second part, we show how the LPNR-based BCG separation leads to
a new improved model of the BCG cardiac component. The new model is
probabilistic, which opens up the possibility to apply powerful methods from
statistics and machine learning to higher level signal processing tasks like
heartbeat detection. In addition, this model is non-parametric allowing it to
adapt itself to changes in morphology of the BCG [86]. We have published
part of the content from this section in [84] and [86].

3.5.1 Dynamic Nonlinear Model

One obstacle, which prevents us from quantifying the accuracy of the LPNR-
based signal separation, is the difficulty of obtaining ground truth for the
respiratory and cardiac BCG component in an experimental way. The car-
diac component can be measured individually by asking the subject to hold
his or hers breath. However, this requires the co-operation of the subject and
only works for about a minute for healthy subjects. In addition, for patients
with reduced lung capacity, it might be very difficult to voluntarily hold the
breath. An even more serious problem with this method is that holding the
breath for extended periods of time will increase the carbon dioxide con-
centration in the blood, which will affect heartbeat dynamics [87]. These
changes in heartbeat dynamics are based on the physiological properties of
the human body and cannot be avoided.

Recording a clean respiratory BCG component without cardiac influence
is even more challenging and we do not know of any attempts to achieve
this. Thus, we adopt a different strategy: We find short segments of clean
respiratory and cardiac components in BCG recordings or substitute signals.
These short segments are then used to fit models and generate more data in
quantities large enough for verifying the LPNR-based separation.

This section is divided into two parts. First, we present our models for
the respiratory and cardiac BCG components and describe how they are
combined into the final BCG. Then, we present the performance results of
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the LPNR-based BCG separation scheme, which we compare against the
performance of FIR filters for reference.

BCG Component Models

The models for both respiratory and cardiac components are deterministic
models based on simulating motion on a suitable limit cycle attractor in
phase space [84]. These kinds of models have been successfully applied to
modelling [70] and filtering [71, 72] ECG signals. Interestingly, the appli-
cations described in [71] and [72] are very similar to the problems where
LPNR has been applied with great success.

Mathematically, our models consists of sets of coupled differential equa-
tions ẋ = f(x), which are integrated to obtain the BCG. A similar concept
called dynamical causal modelling (DCM) is used in computational neu-
roscience [88] to model interactions between brain regions. An in depth
treatment of DCM is provided in chapter 4.2.

From a modelling perspective, the difference between modelling ECG and
BCG is that for ECG, given a certain electrode placement, the signal mor-
phology is essentially fixed. In fact, the ECG morphology is so consistent
and reproducible that the series of recurrent peaks in ECG are designated
capital letters from P to T [87]. These peaks have been linked to certain
electrophysiological events in the cardiac cycle, e.g. the P-peak is associated
with the electrical excitation of the atrium, while the R-peak is linked to
ventricular depolarization [87].

To a certain extent, these characteristics are shared by BCG recorded using
calibrated BCG tables. That is, for a given type of BCG table, the signal
morphology is consistent and reproducible [47]. The difference is that BCG
is linked to the mechanical cardiac activity instead of the electrical activity.
Peaks in the BCG are designated capital letter from H to K, and some
are associated with mechanical events in the cardiac cycle, e.g. the group
of peaks I to K has been linked to ventricular ejection and aortic blood
flow [46, 47].

However, modern BCG acquisition systems are optimized for home moni-
toring, which means that they are not calibrated and the position of the
subject relative to the sensor is not well defined. This means that it is not
possible to observe a consistent and reproducible signal morphology like in
ECG or with calibrated BCG systems. The morphology can even change
abruptly during a session, e.g. after a change of posture.

Given these challenges, our approach is to build a custom template from
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samples of BCG with simultaneously recorded reference for ECG and res-
piration. The template is then used to build a model which is limited to
generating BCG having the same morphology as the original sample, but
with freely variable parameters like heart and respiration rate, or amplitude
ratio between the components. This model provides ground truth for the
cardiac and respiratory components by generating them separately. In the
following, we first describe the model for the cardiac component and then
the model for the respiratory component.

The Cardiac Component

In order to extract a template for the cardiac BCG component, we look for
periods in the BCG, where the subject held his or her breath. Holding ones
breath involuntarily during sleep is a natural process [89]. However, if the
breathless period lasts longer than 10 s, it is called a sleep apnoea. The in-
creased occurrence of apnoea is an indicator for sleep apnoea syndrome [89].
For creating the templates, we choose BCG samples from periods without
breathing which last for several seconds and contain up to 20 heartbeats.
These samples were chosen to be not too long, in order to minimize the risk
of changes in heart dynamics within the duration of the sample.

Having found a BCG section which satisfies these conditions, we begin by
segmenting the BCG section into segments each containing a single heart-
beat, using the ECG reference. Then, we calculate a BCG heartbeat tem-
plate by ensemble averaging these segments. Next, we fit a Gaussian bell
curve to each major peak in the template, while we ignore minor peaks with
amplitudes which do not range more than one standard deviation beyond
the samples surrounding it. In addition, we use a sine wave to simulate the
baseline.

To quickly obtain a solution, we have done the fitting manually by reading
of the amplitude, width and relative position within the template of each
peak. The result is a list of values for amplitudes, width and positions. This
procedure is also used in [70] and it has the additional advantage of avoiding
overfitting the model. In chapter 4, we will see how a similar model can be
fitted by optimizing a suitably chosen criterion.

Given the information extracted from the template, we would like to define
a set of differential equations which, after integration, provide us with the
desired cardiac BCG component c. For this purpose, we will define the
cardiac phase θc driven by the cardiac angular frequency ωc, as well as the
system equation fc(θc) driven by the cardiac phase:

θ̇c = ωc(t) (3.18)

ċ = fc(θc). (3.19)
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Since the cardiac template is parameterized by amplitude, width and posi-
tion of several peaks, we would like to define equation (3.19) in such a way
that the result after integration is a sum of Gaussian shaped bell curves. The
Gaussian bell curve parameterized by phase and its derivative with respect
to time are given by:

g(θ) = a exp
(

− (θ(t)− θ0)
2

2σ2

)

(3.20)

ġ(θ) = −aθ̇(t)(θ(t)− θ0)

σ2
exp

(

− (θ(t)− θ0)
2

2σ2

)

, (3.21)

where the dot denotes derivation with respect to time. a is the peak ampli-
tude, σ the peak width and θ0 the position within the cardiac cycle. Thus,
the system equation is given by a sum over terms, each representing one
peak:

fc(θc) = −
ω2
c

ωc,0

(

a0 cos(θc) +

I
∑

i=1

ai∆θi
σ2
i

exp
(

− ∆θ2i
2σ2

)

)

. (3.22)

ωc,0 is the mean cardiac frequency and ∆θi is the phase difference between
the current cardiac phase θc and the phase position θi of the i-th peak, which
is defined in a circular way as:

∆θi =

{

θc − θi mod 2π if θc − θi mod 2π ≤ π,
θc − θi mod 2π − 2π else.

(3.23)

The cardiac frequency ωc can be varied continuously to determine the in-
stantaneous heart rate. In principle, the model allows us to choose any
definition for ωc. However, physiological studies indicate that there is a
coupling between the respiratory phase and heart rate [9, 10, 90] called res-
piratory sinus arrhythmia (RSA). In addition, it has been known since the
early days of BCG research that the amplitude of the cardiac BCG com-
ponent is modulated by the respiratory phase [46, 91]. Although, recent
results suggest that the respiratory influence on the cardiac BCG compo-
nent includes a modification of the morphology of the cardiac signal which
goes beyond amplitude modulation [92].

To keep our model simple, we do not consider the effect described and
modelled in [92]. However, we do model the modulation of heart rate and
amplitude of the cardiac component by coupling the cardiac frequency ωc

to the base oscillation of the respiratory component. For this to work, we
need to define the model for the respiratory component.

The Respiratory Component

We have pointed out that recording a clean respiratory BCG component
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without cardiac influence is difficult. Therefore, for training a respiration
model, we turn to a substitute signal: the respiratory effort recorded with
a respiration belt. In BCG studies, the respiratory effort is often recorded
as a reference for the respiratory activity by means of a belt around thorax
or abdomen, which contains a pressure sensor. From the way respiratory
effort is recorded, one can imagine that it is very similar in nature to the
respiratory component of the BCG recorded by a bed mounted sensor or by a
sensor mounted in the back rest of a chair. This impression is also reinforced
by the samples shown in figure 3.2. The sensors built into respiratory belts
have a lower sample rate and are less sensitive compared to BCG sensors,
since the respiratory activity is slower and has a larger amplitude than the
cardiac BCG activity. Thus, the cardiac influence in the respiratory effort
signal is much smaller than in the BCG.

Similar to the cardiac model, we extract a respiratory template from the res-
piration belt signal by ensemble averaging the signal over several breaths.
The boundaries between breaths are segmented using an automated algo-
rithm for minima detection and visually checked for errors. The template
obtained using this procedure can contain some low amplitude fluctuations
which could be due to remaining cardiac influence or reflect noise and arte-
facts present in the original sample. We suppress these fluctuations by
calculating the Fourier coefficients of the template and discard coefficients
with low amplitude, while at the same time we ensure that the remaining
coefficients account for 99% of the signal energy.

The list of the indices kj of the non-zero Fourier coefficients along with the
complex values of the coefficients ckj = cr,kj + ici,kj are the parameters of
our respiration model, which is characterized by the following equations:

θ̇r = ωr(t) (3.24)

ṙ1 = fr1(θr) (3.25)

ṙ2 = fr1(θr). (3.26)

θr is the respiratory phase, r1 is the base oscillation of the respiratory com-
ponent used to define the cardiac frequency and r2 is the respiratory BCG
component. Since the signal after integration should be a sum of sine and
cosine waves weighted by the coefficients, the system equations are defined
as a sum over the derivatives of sine and cosine functions with the respective
weights. Thus, fr1 is defined as:

fr1 = −ωrk1
|ck1 |

(

cr,k1 sin(k1θr) + ci,k1 cos(k1θr)
)

(3.27)
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and fr2 as:

fr2 = −2ωrar
Nt

J
∑

j=1

kj
(

cr,kj sin(kjθr) + ci,kj cos(kjθr)
)

. (3.28)

The instantaneous amplitude ar(t) of the respiratory component r2 is defined
as a sine shaped modulation with period Ta and phase offset φa,0:

ar(t) = 1 +∆ar sin
(2π

Ta
t+ φa,0

)

, (3.29)

where ∆ar is the maximum relative amplitude variation. Nt denotes the
length of the respiratory template in samples.

To complete the model description, we have to define the angular frequencies
for the respiratory and cardiac components, ωr and ωc. Since respiration
rate depends on many factors, we decided to keep our model simple by
modelling ωr as a slow oscillation around a base frequency ωr,0:

ωr(t) = 2πωr,0

(

1 + ∆ωr sin
( 2π

T∆r
t
)

)

(3.30)

with period T∆r and maximum relative amplitude variation ∆ωr. We think
that this is an appropriate model for breathing during resting state. In
addition, we also experimented with non-periodic oscillating respiratory fre-
quencies by replacing the sine in equation (3.30) with one of the components
from the Rössler equations [93]. Alternatively, one could also attempt to ex-
tract the information on the respiratory frequency from experimental data,
e.g. respiration belt recordings.

Earlier, we pointed out that for physiological reasons, the cardiac frequency
is coupled to the respiratory phase [90] due to the RSA. In order to model
this aspect, we define the cardiac frequency ωc as:

ωc(t) = ωc,0

(

1 + ∆ωcr1(t)
)

, (3.31)

with ωc,0 being the mean cardiac frequency and ∆ωc the maximum rela-
tive deviation from the mean frequency. This definition ensures that the
heart rate increases while breathing in and decreases while breathing out.
At the same time, the amplitude modulation of the cardiac component with
respiratory phase is realized by the multiplicative factor of ω2

c/ωc,0 in equa-
tion (3.22). An interesting problem for future research would be the inclusion
of the direct coupling between the cardiac and respiratory phases reported
in [9, 10] into the model.

The advantage of specifying our model as a dynamical system consisting of
sets of coupled differential equations lies in the smoothness of the model
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Figure 3.13: The templates of the cardiac (left) and respiratory (right) BCG
components plotted against the cardiac and respiratory phase, respectively.

output. The resulting BCG components show no discontinuities at the tem-
plate boundaries and are continuously differentiable. The reason is that the
information on the shape of the template is decoupled from the calculation
of the cardiac and respiratory frequencies and amplitudes. Therefore, the
model enables us to vary amplitude and frequency of both components in a
continuous fashion, which allows us to define instantaneous heart rates and
respiration rates. In contrast, models which model heartbeat by generat-
ing heartbeat instances have to define the heart rate in a piecewise fashion,
e.g. as a step function, or perform interpolation [86]. Although this is possi-
ble (we will introduce such a model in section 3.5.2), it is not as convenient
as having access to a well-defined instantaneous heart rate. In figure 3.13,
the respiratory and cardiac BCG templates are plotted against the cardiac
and respiratory phase, respectively.

Verifying the BCG Components Separation

As mentioned, the primary application of our BCG model is to generate
synthetic BCG with available ground truth for the cardiac and respiratory
components, in quantities sufficient for the evaluation of the LPNR-based
signal separation. After obtaining the respiratory and cardiac templates
and fitting the model, we have to choose physiological plausible values for
a number of parameters described in the previous section, before we can
generate data. These parameters include the mean respiration rate ωr,0, the
maximum relative deviation from this mean ∆ωr or the time scale T∆r on
which the fluctuation of the respiration rate takes place. Table 3.2 contains
a list of all these parameters and their values used for generating the data
for our simulation in [84].
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Respiratory Parameters
Cardiac

Parameters

Name ωr,0 ∆ωr T∆r φa,0 ∆ar Ta ωc,0 ∆ωc

Value 0.2 s−1 0.2 30 s 1 rad 0.3 20 s 5.7 s−1 0.2

Table 3.2: Numerical values of the respiratory and cardiac model parameters
used for the simulation in [84].

In addition to the respiratory and cardiac components, the simulated BCG
should also contain a noise component. For the experiments in [84], we used
a noise component with low-pass characteristics. Since the mechanical cou-
pling between subject and BCG sensor, as well as the electronic recording
equipment have low-pass characteristic, one cannot assume that the noise
component in real BCG is white. Therefore, we generated the noise com-
ponent by filtering white noise with a 2nd order infinite impulse response
filter with coefficients 1 and −0.9. The experiments are repeated for eleven
different noise levels, which range linearly between no noise and noise with
a standard deviation of −8 dB relative to the cardiac component [84]. The
simulated BCG segments were 70 s long. But to average out random effects,
we generated 100 realizations for each noise level. Thus, the results of the
experiments are based on more than 21 h of simulated data.

Figure 3.14 shows a 9 s sample from the artificial BCG together with the
ground truth for the cardiac and respiratory components. For visual refer-
ence, a section from a real BCG recording is shown in the bottom panel. The
power spectral density for the artificial BCG and its components is shown in
figure 3.15. One can notice how the spectrum of the respiratory component
falls off sharply at 1.5Hz. This is due to cutting off the Fourier coefficients
while creating the respiratory template. However, the cardiac component
already has significant spectral components starting at 0.5Hz, which means
that there is an overlap between the spectra of the respiratory and cardiac
components in the range from 0.5Hz to 1.5Hz. As a reference, the bottom
panel in figure 3.15 shows the power spectral density of a segment from a
true BCG, which displays more pronounced peaks, but otherwise resembles
the spectrum of the artificial signal.

Using the generated BCG, we can assess the separation performance of the
LPNR-based BCG separation algorithm by comparing the components after
separation c̃ and r̃2 to their respective ground truth values c and r2. For
this purpose, we defined the normalized mean square error as a performance
measure in [84]:

nmsec =
〈(c̃− c)2〉
〈c2〉 and (3.32)
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Figure 3.14: Sample of an artificial BCG segment with the corresponding
cardiac and respiratory components and a section from a real BCG recording
for visual reference.

nmser =
〈(r̃2 − r2)

2〉
〈r22〉

. (3.33)

The angular brackets denote taking the expectation of the terms inside the
brackets.

In order to provide a reference, we evaluate this performance measure not
only for the LPNR-based separation, but also for separation based on lin-
ear filters. For the separation with linear filters, we used zero-phase finite
impulse response (FIR) filters of order 1024 with a sampling frequency of
200Hz. The respiratory component was extracted using a low-pass filter
and the cardiac component was extracted with a band-pass filter. The cut-
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Figure 3.15: The power spectral density of the artificial BCG components
shown in figure 3.14.

off frequencies of both filters were optimized individually, i.e. for each noise
level and each component we chose the cutoff frequencies that yielded the
lowest error.

The parameters for the LPNR-based separation were set manually according
to the criteria given in section 3.4. After visual inspection of the BCG, ε
is chosen slightly larger than the peak-to-peak amplitude of the cardiac
component in order to extract the respiratory component. In the second
step, ε is chosen larger than the noise level but smaller than the cardiac
component to extract the cardiac component and reduce noise. To assess
the sensitivity of LPNR-based separation scheme to misspecification of ε,
we varied ε by ±20% relative to the chosen value. The results of this
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σ σ

Figure 3.16: Normalized mean squared error obtained from the simulation
in [84] plotted against the noise level. Here, shown for the respiratory com-
ponent extracted with linear filters (left) and the LPNR-based separation
(right).

σ σ

Figure 3.17: Normalized mean squared error obtained from the simulation
in [84] plotted against the noise level. This time for the cardiac component
extracted with linear filters (left) and the LPNR-based separation (right).

analysis are summarized in figure 3.16 for the respiratory component and in
figure 3.17 for the cardiac component.

The graphs show that for both components and at all noise levels the LPNR-
based separation achieves superior results than the FIR filters. This holds
true even in the case where ε is perturbed from the manually chosen value.
An interesting observation is that in general the manually chosen values of
ε lead to optimum results for the LPNR-based separation. However, for low
noise levels perturbing the values sometimes results in a slightly lower error.

Also note that the error increases more rapidly with the noise level for the
FIR filter based separation than for the LPNR-based version; especially for
the cardiac component shown in figure 3.17. This means that the nonlinear
noise reduction is more effective at reducing the low frequency noise compo-
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nent in the artificial BCG. On the other hand, the fact that the LPNR-based
separation achieves a lower error, even in the noise free case, indicates that
the LPNR-based separation is inherently better at preserving the signal
morphology of the BCG components in the presence of a spectral overlap
between the components.

The BCG model presented in this section models both the cardiac and res-
piratory components using sets of differential equations. It is a parametric
model and except for the additive measurement noise, it is also purely de-
terministic. The data generated with this model is used to validate the
LPNR-based BCG separation presented in section 3.4. In the next sec-
tion, we will present a model for the cardiac BCG component only, which
is non-parametric and probabilistic. The new model will allow us to apply
powerful, statistical methods for model inversion

3.5.2 Probabilistic Model

Throughout this thesis, much emphasis has been put on the close relation-
ship between modelling and signal processing. In the previous section, we
have shown how model generated data contributes to the verification pro-
cess of our signal separation scheme. Now, we are changing the perspective
by showing how the LPNR-based separation of BCG enables us to build an
improved model of the cardiac BCG component. Part of the content in this
section has been presented in our previous publication [86].

The dynamic nonlinear model from the previous section is deterministic,
i.e. the morphology of the generated BCG is fixed and predetermined by the
template. Some parameters like heart and respiration rate or the amplitudes
of the components can be varied. But once the parameters governing the
signal shape are fitted to a given template, the model cannot be adapted
to changes in the signal morphology. In addition, the model is essentially
a parametric model, since all information is contained in a fixed number of
parameters, which are fitted to the template or set by hand.

In this section, we present a non-parametric, probabilistic model of the car-
diac BCG component, which adapts itself to the current morphology of the
BCG. The model is governed by the central assumption that the BCG is
quasi-periodic, i.e. the signal follows a pattern consisting of several subse-
quent peaks, which repeats itself for each heartbeat. The peak pattern of
adjacent heartbeats are very similar, but the morphology can change with
time and becomes more dissimilar with growing temporal distance. The
model has hyper-parameters controlling general properties of the BCG like
amplitude range and time scale of the peaks, but the exact morphology of
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the signal is learned from the data. In addition, the model is probabilistic,
which means that when using this model, we have very powerful methods
from statistics and machine learning at our disposal to solve inference tasks
like heartbeat detection.

The model presented in this section consists of two parts. The first part
is a model of the heartbeat sequence underlying the BCG. For this part,
we used an inverse Gaussian (IG) renewal process [86]. The second part
of the model is tasked with modelling the morphology of the BCG, given
a certain heartbeat sequence. This is done with a Gaussian process (GP)
model. In the following, we first present the heartbeat sequence model.
Then, we describe the signal morphology model and how the two parts
are combined to yield the complete BCG model. Finally, we present an
approach to heartbeat detection in BCG, as an example of how this model
can be applied to a practical problem.

Modelling the Heartbeat Sequence

The task of the beat sequence part is to model the time intervals between
subsequent heartbeats. In principle, any model predicting heartbeat interval
times can be used for this part. However, we prefer a probabilistic model,
which means that the model output is not a single estimate of the time
to the next heartbeat. Instead, the model should provide a distribution
over possible values of heartbeat time intervals, with values having higher
probability when they are more likely to occur. For this reason, we chose the
inverse Gaussian (IG) distribution (see appendix A.3) to model heartbeat
intervals in our framework.

The IG distribution is a probability distribution with support over the non-
negative real numbers. It is the distribution of the first crossing time of
a Gaussian random walk with drift [94] and has been used primarily as a
model for failure time. However, Barbieri et al. demonstrated that it is
also a good model for heartbeat intervalls [95, 96], since the physiology of
heartbeat generation can be modelled as a Gaussian random walk with drift
of the action potential in the sinoatrial node towards a threshold [87].

It is interesting to note that the same model is known in computational
psychology as the drift diffusion model, where it is used model decision
making in uncertain environments [97].

The model proposed in [95] consists of an IG process with a mean parameter
which depends on the history of past heartbeats. For our purpose, we have
simplified the model to an IG distribution with static parameters µ and λ,
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which can be learned e.g. from ECG data:

IG(∆t|µ, λ) =
√

λ

2π∆t3
exp

(

− λ

2µ2∆t
(∆t− µ)2

)

. (3.34)

Equation (3.34) defines the distribution over a single beat interval ∆t with
0 ≤ ∆t < ∞. If we allow a whole sequence of heartbeats {tb}b=1...B to be
contained in the observation interval, the distribution is given by:

log(p({tb}|µ, λ)) = log(1− IG′(t1 − tmin|µ, λ))

+
B−1
∑

b=1

log(IG(tb+1 − tb|µ, λ))

+ log(1− IG′(tmax − tB|µ, λ)), (3.35)

where the IG′ symbol in the first and last term denotes the cumulative
distribution function of the IG distribution (eq (A.30)). The first term
describes the probability that the first heartbeat occurs at t1, while the
last term is the probability that the last beat occurs at tB. The sum is
the probability of the B heartbeat intervals in between. Note that in our
notation tb is the time when the b-th heartbeat occurs, while ∆tb = tb+1− tb
is the time interval between the b-th heartbeat and the next beat.

The model described by equation (3.35) does not depend on the measured
BCG, but assumes that heartbeat intervals are drawn independently from
a static IG distribution. Thus, equation (3.35) can be viewed as a prior dis-
tribution on the heartbeat sequence in the observation interval (tmin, tmax).

Modelling the BCG Morphology

The task of the second part of the model is to model the morphology of
the BCG, given a possible heartbeat sequence. Since the morphology of the
BCG acquired with modern uncalibrated devices can vary substantially, we
would like the model to adapt itself to the waveform. For this purpose, we
choose a Gaussian process (GP) model for this part.

The Gaussian process is a non-parametric model for regression and classifi-
cation [44]. Informally, it can be viewed as a generalization of the Gaussian
distribution over finite dimensional vectors to a probability distribution over
functions. Given an underlying function f(x), which is sampled at points
x1, . . . ,xN , the Gaussian processes provides a way to specify a Gaussian
distribution over the set of function values {f(xn)}n=1,...,N . If a new sam-
ple f(xN+1) is added, the Gaussian process allows the distribution to be
extended to the new sample in a consistent way.
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The key component, which provides the GP with this flexibility is the co-
variance function k(x,x′). It has the same structure as a kernel function,
which means it accepts two inputs and outputs a scalar value. The matrix
formed by plugging pairs of function arguments (xi,xj) into the covariance
function forms the covariance matrix for a Gaussian distribution over the
vector of (noise free) function values f =

(

f(x1), . . . , f(xN )
)T

, i.e.:

f ∼ N (0,K) and (3.36)

K =











k(x1,x1) k(x1,x2) . . . k(x1,xN )
k(x2,x1) k(x2,x2) . . . k(x2,xN )

...
...

. . .
...

k(xN ,x1) k(xN ,x2) . . . k(xN ,xN )











. (3.37)

When adding a new sample f(xN+1), K is simply extended by one row and
one column using the covariance function. The data variable, which in our
case is the recorded BCG y, is modelled as a noisy observation of f with
variance σ:

y ∼ N (f , σI). (3.38)

However, the covariance function has to guarantee that the matrix K is
always positive definite, irrespective of the exact values of the function ar-
guments xn. Thus, not any function of two arguments can be used as a
covariance function. In addition, the form of the covariance function deter-
mines which properties the function f(x) needs to have in order to receive a
high probability under the Gaussian process model. In this respect, the co-
variance function in a Gaussian process is analogous to the covariance matrix
in a Gaussian distribution, since in a Gaussian distribution the covariance
matrix determines which vectors receive a high probability value. [44] pro-
vides a comprehensive overview on Gaussian processes, including a list of
functions that can be used as covariance functions and their properties.

For the BCG model, we need a Gaussian process with a covariance function
which prefers signals that are periodic with respect to the underlying beat
sequence. However, we must also take into account that the true BCG is not
exactly periodic and that the shape of the signal can change with time. To
achieve this, we define a compound covariance function consisting of several
components [86].

The most important part of the compound covariance function is the peri-
odic component:

kp(t
′, t) = σ2

p exp
(

− 2 sin2(φ(t′)− φ(t))

τ2p
− (t′ − t)2

2τ2c

)

, (3.39)
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Figure 3.18: Illustrating the phase calculation for a sequence of five heart-
beats t1 to t5. The phase is fixed to multiples of π at the beat times marked
by dots, and linearly interpolated or extrapolated elsewhere. Phase extrap-
olation is capped at π/2 before the first beat and 11/2π after the last beat.

which depends on the cardiac phase function φ(t), defined as:

φ(t) =







































π
2 if t < t1 − ∆t1

2

π
(

1− t1−t
∆t1

)

if t1 − ∆t1
2 ≤ t < t1

π
(

b+ t−tb
∆tb

)

if tb ≤ t < tb+1

π
(

B + t−tB
∆tB−1

)

if tB ≤ t < tB +
∆tB−1

2

π
(

B + 1
2

)

else.

(3.40)

tb and ∆tb are the heartbeat times and heartbeat intervals of the under-
lying beat sequence, which for this part of the model can be treated as
known inputs. The intuitive meaning of equation (3.40) is that the phase
φ(t) is set to multiples of π at the heartbeat times, i.e.: φ(tb) = bπ. For
time instances between two heartbeats, the phase is linearly interpolated
and for times shortly before the first and after the last beat, the phase is
linearly extrapolated. However, the extrapolation is capped beyond π/2
and π(B + 1/2). Figure 3.18 visualizes the cardiac phase function for an
example sequence containing five beats t1 to t5. This piecewise definition of
the cardiac phase is not as convenient as the continuously defined phase of
the nonlinear dynamic model introduced in section 3.5.1, but our experience
with the Gaussian process model showed us that it works well in practice.

With this, we can now give an interpretation of equation (3.39). The sine
term in the argument of the exponential is causing the preference for periodic
behaviour. This is because, when t and t′ happen to be at the same phase
within the cardiac cycle, the phase difference in the argument of the sine
will be a multiple of π and the sine will be zero. Thus, the exponential, and
with it the covariance, will be maximized for combinations of inputs which
are at the same phase within the cardiac cycle. The hyper-parameter τp can
be used to express the time scale we expect the variations in the signal to
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be on.

The second term in the argument of the exponential serves to decrease the
covariance with increasing temporal distance between the input times. This
means that if we sample the BCG at time instances which are on the order
of τc seconds apart, we expect a difference in the signal amplitude, even if
the time instances happen to be at the same phase within the cardiac cycle.

Aside from the periodic component, we also defined two contributions to
the covariance function which model noise components in the signal. Both
components are described by the same squared exponential [44] type equa-
tion:

kSE,i(t
′, t) = σ2

SE,i exp
(

− (t′ − t)2

2τ2SE,i

)

(i = 1, 2),

while the difference lies in the values of the τSE,i parameter. In [86], we
choose τSE,1 on the order of 1 s to model irregular variations on a beat-to-
beat level like baseline wander. τSE,2 is set to a value on the order of 0.1 s
to model intra-beat variations.

The covariance function used in the GP model of BCG is the sum of these
three components:

kB(t
′, t) = kp(t

′, t) + kSE,1(t
′, t) + kSE,2(t

′, t). (3.41)

Given a section from a BCG recording y = (y1, y2, . . . , yN )T sampled at time
instances ts,1, ts,2, . . . , ts,N , the covariance matrix K is obtained by plugging
the sampling time pairs into the covariance function from equation (3.41):

K =











kB(ts,1, ts,1) kB(ts,1, ts,2) . . . kB(ts,1, ts,N )
kB(ts,2, ts,1) kB(ts,2, ts,2) . . . kB(ts,2, ts,N )

...
...

. . .
...

kB(ts,N , ts,1) kB(ts,N , ts,2) . . . kB(ts,N , ts,N )











. (3.42)

The log-probability of the BCG y conditioned on a beat sequence {tb}b=1,...,B

is given by plugging in y and the covariance matrix K from equation (3.42)
into the general formula for the log-marginal probability of a Gaussian pro-
cess derived in [44]:

log
(

p(y|{tb}b=1,...,B)
)

= −1

2
yT (K + σ2

nI)
−1y

− 1

2
log |K + σ2

nI| −
N

2
log(2π). (3.43)

Here, I is an identity matrix of size N , σn denotes the standard deviation
of the measurement noise and N is the number of samples in the BCG y.
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Equation (3.43) is the so called log-likelihood function of our model. It tells
us how probable the observed BCG y is if we knew the underlying heartbeat
sequence {tb}b=1,...,B, which in our case is the latent variable we would like
to infer. Together with equation (3.35), it forms the two parts of our BCG
model, which we can combine using the logarithmic form of the chain rule
(eq. (2.9)):

log
(

p(y, {tb})
)

= log
(

p({tb})
)

+ log
(

p(y|{tb})
)

(3.44)

=
B−1
∑

b=1

log
(

IG(tb+1 − tb|µ, λ)
)

+ log
(

1− IG′(t1 − tmin|µ, λ)
)

+ log
(

1− IG′(tmax − tB|µ, λ)
)

− 1

2
yT (K + σ2

nI)
−1y

− 1

2
log |K + σ2

nI| −
N

2
log(2π). (3.45)

This equation provides us with the logarithm of the joint probability den-
sity over the data y and the latent variable {tb}b=1,...,B and forms the key
component of our model. In addition, it is one of the terms in Bayes law
(eq. 2.10), which provides us with the posterior density

p({tb}b=1,...,B|y) =
p(y, {tb}b=1,...,B)

p(y)
(3.46)

used for inverting the model. Note that the denominator p(y) in the above
equation, which is called the model evidence, depends only on the data y and
is a constant with respect to the beat sequence. Thus, the joint probability
from equation (3.45) is proportional to the posterior density:

log
(

p(y, {tb})
)

= log
(

p({tb}b=1,...,B|y)
)

+ const. (3.47)

This observation will be important for the application of the model to heart-
beat detection, which we introduce in the next section.

Application to Heartbeat Detection in BCG Signals

The list of potential applications for the BCG model introduced in the last
two sections includes many problems. Similar to the nonlinear dynamic
model introduced in section 3.5.1, we can use the GP model to generate
data for verifying other algorithms. The difference to the nonlinear dynamic
model, which except for the measurement noise was deterministic, is that
data generated with the GP model will be inherently random, even if we do
not add measurement noise.
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The generation of data for testing algorithms is of special relevance to BCG
since there are no freely accessible data bases for BCG, like there are for
ECG or EEG [98]. A reason that contributed to this situation in the past
is certainly that BCG has never been established as a widespread method.
However, with modern BCG devices for home monitoring another contribut-
ing factor is the variety of acquisition systems being developed, often for
commercial purposes. These systems are based on different working prin-
ciples and have different characteristics, which makes it difficult to find a
common standard. On the other hand, the comparability of results across
publications would certainly benefit from a common database to compare
the algorithms on. Until such a database is established, model generated
data might be a solution to this problem.

Another possible application, which we explored in [86], is the reconstruction
of missing data from damaged BCG recordings if a simultaneously recorded
ECG reference is available. The advantage of the GP model in this setting
is that it does not only provide a single estimate of the missing BCG in
the damaged part of the recording, but also provides the variance of the
estimate with little additional computational effort.

However in this section, we will discuss the application of the Gaussian
process BCG model to the problem of detecting heartbeats in the BCG.
We have chosen heartbeat detection as an example application for several
reasons. First of all, heartbeat detection in BCG is a problem with high
practical relevance, which is evident from the multitude of proposed methods
in the BCG literature including but not limited to [99, 100, 101, 102, 103,
104, 105, 106]. Furthermore, it seems that so far, the approach of treating
the heartbeat detection problem as a probabilistic inference task has been
neglected in the BCG literature. This could be due to the sparseness of
probabilistic BCG models which support statistical inference.

The BCG model introduced in equation (3.45) provides a description of how
probable a certain BCG y is, in combination with a certain heartbeat se-
quence. In practice, one knows the BCG y and the aim is to infer the heart-
beat sequence based on the observed information. The approach advertised
in Bayesian statistics is to treat the heartbeat sequence as a random variable
and calculate its probability distribution conditioned on the observation y.
This conditional distribution, which is called the posterior distribution, is
proportional to the joint-distribution (eq. (3.47)) and expresses how prob-
able a certain beat sequence is, given the information from the observed
BCG.

In order to obtain an approximation to the posterior distribution, we turn
to the method of Markov chain Monte Carlo (MCMC), which has been
introduced in section 2.4.1. Applied to the heartbeat detection problem,
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MCMC draws a set of representative samples from the space of possible beat
sequences, which form an approximation to the posterior distribution that
becomes more and more accurate with increasing number of samples. Thus,
a sample consists of a heartbeat sequence and the output of the MCMC
scheme is a set of plausible beat sequences that could have generated the
observed BCG.

As described in section 2.4.1, MCMC obtains the set of representative sam-
ples by starting with an initial sample and continuing with proposing a small
change to the current sample. The modified sample is accepted or rejected
based on its and the current sample’s probabilities. If accepted, the modified
sample becomes the new current sample, otherwise the old sample stays the
current sample. This way, a chain of samples is formed which is the set of
representative samples we want. The distribution over the samples in this
chain is guaranteed to converge to the target distribution, which in our case
is the posterior distribution over heartbeat sequences, as long as the detailed
balance condition is satisfied [28].

One problem with this scheme is that, since our samples consists of heartbeat
sequences of potentially different length, the standard methods of proposing
modified samples do not work [28]. In [86], we have solved this problem by
introducing a custom proposal scheme that was specifically developed for
the inference of heartbeat sequences with the Gaussian process BCG model.
The details of the proposal scheme are given in appendix B.

In figure 3.19, a typical result from a run of the MCMC scheme is illustrated.
The top panel shows the BCG for which the heartbeat positions should be
detected. The second panel shows the beginning of the chain of samples
generated by the MCMC scheme including the first 23 samples, while the
third panel shows the last 23 samples in the Monte Carlo chain.

Each line corresponds to one sample consisting of a potential heartbeat se-
quence that could have generated the BCG in the top panel and the first line
marked by init corresponds to the initial sample. Note how the heartbeats,
marked by black dots, in the samples at the beginning of the chain change
their position rapidly and sometimes even appear at very unlikely positions.
On the other hand, the samples at the end of the chain are more stable,
since the chain has reached convergence.

Upon completion, the MCMC scheme returns the chain of samples as the
output, which consists of a set of potential heartbeat sequences. The beat
sequences in this chain represent the approximation to the posterior distribu-
tion and should in principle be treated as the result of the inference process.
However, the user of a heartbeat detection algorithm will typically request
an answer to the question: At which time instances did the heartbeats oc-
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cur? In order to make the result of the MCMC scheme more interpretable,
we apply a kernel density estimator to the samples in the chain by placing
a small Gaussian curve on the position of each heartbeat in each sequence
of the chain and summing over all Gaussian curves.

The fourth panel in figure 3.19 illustrates the output of the kernel density
estimator, which is a smooth curve approximating the marginal beat prob-
ability density. Roughly speaking, it approximates the probability for each
time instance t that there is a heartbeat in an infinitesimal interval around
t. It is evident from figure 3.19 that the probability at t is high whenever
there are many sequences with a heartbeat near t. In addition, the peaks of
the marginal beat probability density correlate well with the r-peaks of the
ECG reference in the last panel of figure 3.19.

In order to provide a quantitative error estimate, we calculate the time differ-
ence between the peaks of the marginal beat probability density and compare
them with the r-peak intervals of the ECG reference. The MCMC heart-
beat detector achieved a mean error of 24ms and a median error of 10ms
on a test dataset of 150 segments of BCG recordings with 10 s length [86].
Compared to the mean estimation error reported for state-of-the-art BCG
heartbeat and beat interval detectors of 7ms [104] and 13ms [106], the error
of the MCMC detection scheme are higher, but still in the same magnitude.

On the other hand, the MCMC based heartbeat detection introduced here
is not intended to compete with state-of-the art beat detection methods. In-
stead, it is designed as a proof of concept for inference based beat detection.
Thus, considering that the MCMC beat detection scheme mainly consists of
general purpose software, with only the implementation of the specialized
proposal function being specific to the heartbeat detection problem [86], the
estimation error achieved by the MCMC scheme is a promising result. It in-
dicates that with further specialization to the specific task at hand, methods
based on statistical inference can be considered as an interesting alternative
for BCG beat detection.

Additionally, caution is advised when comparing results across publications,
since the detection error is subject-dependent and can vary substantially
even between subjects within the same study. For example, the estimation
error between the subjects reported in [104] differ by a factor of four to five
and those reported in [106] differ by a factor of up to seven.

The reason for choosing MCMC as the inference method is based on the gen-
erality of the method and the simplicity of its implementation. MCMC can
be used to invert any statistical model, as long as the posterior probability
density (eq. (3.47)) can be evaluated up to a constant factor for any given
point. This makes MCMC a very powerful and popular method, which can
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even be applied to models where the posterior probability density cannot
be written down in closed form. However, this flexibility comes at the cost
of speed. In our example application, the MCMC scheme needs on average
more than 100 s for detecting the heartbeats in a 10 s BCG segment. For an
application like heartbeat detection, a method capable of online processing
would be desirable. In the next chapter, we will encounter an alternative
method for approximate inference called variational Bayes. In contrast to
Monte Carlo, variational Bayes is an analytic approximation method which
can be significantly faster than sampling from a distribution.

3.6 Summary

In this chapter, we have discussed a number of interrelated topics on mod-
elling and signal processing for BCG data. Starting with a BCG separation
scheme based on LPNR, we have developed a deterministic BCG model in
order to generate artificial BCG data for validating the separation scheme.
The availability of ground truth is one of the strongest advantages of syn-
thetic data.

Using the result from the validated BCG separation, we were able to create
a new, non-parametric and probabilistic model for the cardiac BCG compo-
nent. This model allows us to apply powerful inference schemes, which offer
the potential for finding solutions to more sophisticated signal processing
tasks. As a proof of concept, we have designed a special MCMC scheme
that allowed us to perform statistical heartbeat detection in the BCG, clos-
ing the cycle between modelling and signal processing.

In the course of the discussion, we have also seen that a modelling viewpoint
can help to identify common concepts behind seemingly unrelated topics.
This has lead us to the discovery that LPNR, which was developed in a
nonlinear dynamics setting, can be reinterpreted as a non-parametric and
non-probabilistic version of a mixture of PPCA model.

Mixture models are also an important topic in the next chapter, which intro-
duces the embedded clustering framework. Although embedded clustering
is applied to data from a different modality, i.e. functional magnetic reso-
nance imaging, we will see that from a modelling perspective, there are many
common threads and connections to the ideas presented in this chapter, in-
cluding system description via differential equations, mixture modelling and
statistical inference.
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Figure 3.19: The MCMC scheme applied to the BCG (top panel) produces
a chain of samples, of which the first 23 (second panel) and the last 23
(third panel) are shown here. Each sample, which consists of one heartbeat
sequence, corresponds to one line, where the heartbeat positions are marked
with black dots. The marginal beat probability density (fourth panel) is
obtained via kernel density estimator. Black dots mark the peaks in the
marginal beat probability density, which correlate well with the r-peaks of
the ECG reference (bottom panel).



Chapter 4

Embedded Clustering

In this chapter, we focus on the second methodological aspect in this thesis,
which is embedded clustering. In contrast to the previous chapter, we focus
on the task of clustering instead of separation. Additionally, the applications
we demonstrate the methods on shift from BCG based home monitoring to
functional magnetic resonance imaging (fMRI) in the context of computa-
tional psychology. However, we will see that models still play a vital role in
this chapter. Since clustering is an unsupervised learning technique, it lacks
the user input that helps to interpret the data. This role has to be filled by
a model, which determines on what criteria similarity between data points
should be based.

The example modality in this chapter will be fMRI, which is analysed with
dynamic causal modelling (DCM), a method for estimating the effective
coupling strength between brain regions in the context of psychological ex-
periments. The DCM framework includes a model comparison aspects, since
different connectivity estimates correspond to different models of how brain
regions communicate and interact with each other. This model selection
problem lends itself to a treatment via the Bayesian framework described in
section 2.5.1.

The embedded clustering problem, which is the main focus of this chapter,
goes one step further. The aim is to cluster unknown brain region connec-
tivity parameters of a group of subjects into subgroups. These connectivity
parameters have to be estimated via DCM first. This introduces a second
modelling aspect, since we have to build a clustering model, in addition to
the DCM. DCM helps us to solve the inverse problem of estimating the
connectivity parameters, which we then cluster with the help of the clus-
tering model. In the embedded clustering concept, a unified model is build
consisting of a DCM part modelling brain connectivity and another part
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modelling the clusters. The two tasks of inverting the system model and
perform the clustering are then solved jointly by inverting the embedded
clustering model.

The clustering part in the embedded clustering framework introduces a sec-
ond model selection problem which pertains the question of how many sub-
groups are present. As we will see, this problem is solved automatically
when using the variational Bayes scheme to invert the embedded clustering
model.

The structure of this chapter is as follows. Since the primary modality in
this chapter is fMRI, we will begin with an introduction to the working prin-
ciple of fMRI with focus on the blood-oxygenation-level dependent (BOLD)
contrast. We will then introduce the two components of the embedded clus-
tering framework in separate sections, beginning with DCM for fMRI and
continuing with the mixture of Gaussians model, which is a popular choice
for clustering problems. Lastly, we combine these two models in the embed-
ded clustering framework and demonstrate its application in the context of
multi-subject fMRI studies. Throughout this chapter, we will make heavy
use of graphical models, which were introduced in section 2.3, to illustrate
the structure of the models we use.

4.1 Functional Magnetic Resonance Imaging

In this section, we will provide a short introduction on functional mag-
netic resonance imaging (fMRI) via the blood-oxygenation-level dependent
(BOLD) contrast. The fMRI BOLD contrast is the main modality to which
the embedded clustering model discussed in this chapter is applied. Due to
the vastness of this topic, we will only provide an overview of fMRI. For
a comprehensive review, we refer the interested reader to text books such
as [107] or [108].

Magnetic resonance imaging (MRI) is a very versatile modality, which can
be used for both anatomical and functional imaging [108]. It is based on
recording the signal of the precessing magnetization of certain atomic nuclei
(mostly protons) in a static magnetic field, initialized by a radio frequency
excitation. This effect of magnetic resonance has been known since the
1930s due to the work of Rabi et al. [109]. However, it was not until the
1970s before first ideas for using the magnetic resonance signal for imaging
purpose were presented by Lauterbur and Mansfield [108].

Figure 4.1 show a schematic illustration of the basic principle of MRI. The
main components of MRI are the static magnetic field ( ~B0) used to align the
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~B0

subject

nuclei

excitation/
receiver coil

RF signal

Figure 4.1: Basic principle of magnetic resonance imaging (MRI). The sub-
ject lies in a strong, static magnetic field ( ~B0), which aligns the spins of
protons in the subject’s body. A radio frequency (RF) signal from the exci-
tation coil is used to induce precession of the proton spins (here illustrated
symbolically). The RF response caused by the decaying spins is measured
with the receiver coil, which can be identical to the excitation coil

spins, as well as the radio frequency coil used to excite the spin precession
and receive the response. In order to target a specific region of the subject,
a so called slice, gradient coils are needed, which are omitted in figure 4.1
to keep the image uncluttered.

The first human MRI was demonstrated by Damadian et al. in 1977 [108] and
subsequent improvements in imaging techniques, including the development
of the echo-planar imaging technique, led to significant speed up of the
image acquisition process. While the techniques used by Damadian et al. to
demonstrate the feasibility of human MRI required imaging times of hours
for a single relatively coarse image, modern scanners can acquire images
at a speed of 20 slices per second [108]. As we will see, this is one of the
prerequisites for functional imaging.

Modern MRI systems can be used to record the spatial density of atomic
nuclei, e.g. protons, in the human body. Since proton density varies across
tissue types, this can be used to obtain anatomical images of the subject.
Alternatively, it is possible to record MRI images sensitive to relaxation
properties of the signal. These images are called T1, T2 or T ∗

2 weighted
images, where T1 is the time constant for the recovery of the longitudinal
magnetization and T2 and T ∗

2 are time constants for the relaxation of the
transversal magnetization [108]. These time constants are also tissue depen-
dent, which allows recording of anatomical images.

Figure 4.2 shows two T1-weighted, anatomical images acquired with MRI.
The left image is acquired in the so called coronal view, which shows the
brain from the front. The right image shows a sagittal slice showing the
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Figure 4.2: Two slices from an anatomical MRI scan. The image on the
left side shows a coronal slice, i.e. the view from the front of the head. The
image on the right shows a sagittal slice, i.e. the view from the side of the
head. (Image courtesy of Johannes Lindemeyer, INM-4.)

brain from the side. As is typical for T1-weighted MRI scans, white matter
appears brighter than grey matter and the cerebrospinal fluid appears almost
completely black.

The door to creating images of brain function was opened by the discov-
ery of Ogawa et al. that the T ∗

2 -weighted MRI intensity of oxygenated and
deoxygenated blood is different [110]. Since neuronal activity raises energy
demand and the brain has no local energy storage [108], the increased rate
of metabolism following neuronal activation causes a change in the con-
centration of oxygenated and deoxygenated haemoglobin in the capillaries
surrounding the activated brain region. Deoxygenated haemoglobin has a
smaller T ∗

2 time constant, which leads to a faster relaxation of the MR signal
and thus to a darker image compared to oxygenated haemoglobin. There-
fore, T ∗

2 -weighted MRI can be used to detect the change in deoxygenated
haemoglobin content following neuronal activity. This type of functional
imaging is called blood-oxygenation-level dependent (BOLD) contrast.

However, the exact change in MRI signal depend not only on the increased
oxygen consumption induced by neuronal activity, but is also influenced by
the dynamics of blood flow, which will increase oxygen supply as a reaction
to increased activity. Thus, the time course of the MR signal follows compli-
cated dynamics, where the increase in oxygen supply after neuronal activity
lead to a delayed peak in MR signal intensity followed by an undershot. To
allow for an interpretation of the BOLD signal, hemodynamic models are
required and for this purpose, different theories have been proposed, among
them the so called balloon model [111]. In this chapter, we will mainly rely
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on the models presented in [112] and [113], which are derived from the bal-
loon model. These models help us to resolve the relationship between the
observed MRI signal, which is a function of the amount of oxygenated and
deoxygenated haemoglobin, and the underlying brain activity.

The balloon model and related models describe hemodynamics by mod-
elling the interactions among four hemodynamic state variables and the
impact of the neuronal brain activity on these variables. The hemodynamic
state variables include the vasodilatory signal, blood flow, blood volume
and deoxyhaemoglobin content which are used to predict the fMRI signal.
In simplified terms, the idea behind the balloon model is that the increase
in blood flow triggered by neuronal activation causes a temporary increase
in blood volume, since the increase in outflow lags behind the increase in
inflow of oxygenated blood [111]. Thus, the venous compartment behind the
activated region expands like a balloon filled with oxygenated blood, which
accounts for the increase in MRI signal. After neuronal activity stops, the
influx of oxygenated blood reverts to baseline. However, the excess blood
volume, which now contains more deoxygenated blood, takes some time to
reduce. This causes the undershot in fMRI intensity.

Mathematically, the interaction between the hemodynamic state variables is
governed by a set of differential equations depending on so called hemody-
namic parameters. Some of these parameters depend on the physiology of
the subject, while others depend on the fMRI system, e.g. the field strength
of the scanner. Empirically validated estimates of these parameters can be
found in the fMRI literature; and in addition, these parameters can also be
estimated from the fMRI data [36, 113]. Since the mathematical details of
this model are discussed in depth in [112] and [113], we will omit the details
of the model here and refer the reader to these two publications.

Since its inception, fMRI BOLD has become one of the standard modalities
in functional MRI studies with many applications in psychology and neu-
roscience [108]. In the context of embedded clustering and DCM, the aim
is to study brain region connectivity and to cluster subjects with respect to
connectivity. The information supplied by fMRI BOLD serves as the data
basis which, together with an algorithm for inverting the DCM model, al-
lows us to obtain estimates for the effective connectivity between the brain
regions of interest. Figure 4.3 shows samples from a simulated fMRI BOLD
time series for two brain regions, which is used to verify the solution to the
embedded clustering problem presented in the subsequent sections.

As embedded clustering requires a clustering step in addition to the DCM
inversion, we will continue in the next sections by first discussing the basic
ideas behind DCM and then introducing a class of models known as mixture
models, which are used to solve the clustering problem.
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Figure 4.3: Samples of simulated fMRI BOLD time series for two brain
regions of an imaginary subject.

4.2 Dynamic Causal Modelling

Dynamic causal modelling (DCM) is a modelling technique developed for
inferring the effective coupling strength between brain regions and their
modulation by external factors in the context of psychological experiments.
Initially, it was designed to be applied to fMRI BOLD time series [88], which
is also the version of DCM we will focus on in this chapter. Subsequently,
it was also adapted for evoked responses in EEG and MEG [114].

The DCM model consists of two parts. The first part is a model of the
brain regions involved in the experiment and the connections between those
regions. The brain regions are modelled as the nodes of a graph connected
by directed edges with weights representing the connections between the re-
gions. In addition, the model contains inputs, which can be used to model
experimental variables. These experimental variables can either represent
stimuli presented to the subject, which have a direct influence on the activity
in the brain regions or they can represent effects like attention, which influ-
ence the dynamics by changing the connectivity between brain regions [88].

Mathematically, each brain region is described by a variable xr representing
the neuronal activity in that region. The dynamics of the vector containing
the neuronal activity of all regions x = (x1, x2, . . . , xR)

T is described by a
differential equation, which depends on the inputs u, as well as parameters
θc that describe the connection strength between the regions:

ẋ = f(x,u,θc). (4.1)

This equation means that the change in brain activity ẋ is given by a fixed
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function f which depends on the current activity x and the time varying
but known input u. In addition, a set of fixed but unknown parameters θc
governs the behaviour of f and determines how exactly current state x and
input u will influence the state evolution through f [88]. Note the similarity
to equations (3.18) to (3.19), as well as equations (3.24) to (3.26) from
section 3.5.1, which describe the dynamics of the nonlinear deterministic
BCG model. Thus, both the nonlinear deterministic BCG model as well as
DCM models, which come from entirely different areas of medical research,
are based on the same structure, namely sets of differential equations that
describe the dynamics of the systems.

The relationship in equation (4.1) has the most general form possible. How-
ever, in practice most applications use the so called bilinear approxima-
tion [88] to the function f given by:

f(x,u,θc) ≈ Ax+

J
∑

j=1

ujB
(j)x+ Cu (4.2)

=
(

A+

J
∑

j=1

ujB
(j)
)

x+ Cu, (4.3)

where the set of connection parameters θc corresponds to the three matrices:
θc = {A,B,C}. Here, the matrix C determines how the inputs u influence
the state variable x, which is also called the extrinsic influence on x [88].

The roles of A and B are more complex. Intuitively, A describes the intrinsic
or resting state connectivity, i.e. how the states x influence themselves in the
absence of inputs (u = 0) [88]. B is a set of matrices containing one matrix
per input: B = {B(1), B(2), . . . , B(J)}, with J being the number of inputs.
Each of the B(j) can be interpreted as the differential connectivity with
respect to input uj [88]. Thus, B(j) encodes how the connectivity between
regions change when input uj is present. This interpretation of A and B is
most evident from equation (4.3), which shows that the influence of x on ẋ

is given by A in the absence of inputs. If inputs are present, the relation
between x and ẋ is modified by ujB

(j).

The second part of the DCM is the observation model, which models the
modality used to observe the hidden neuronal brain activity. In the case of
DCM for fMRI studies, this part is a hemodynamic model, which describes
how the hidden neuronal activities x invoke the measured fMRI BOLD
responses y = (y1, . . . , yR)

T , consisting of one time series per brain region.
However, for EEG or MEG studies this part of the model can be easily
swapped for an appropriate model of the EEG or MEG signals, since it is
essentially independent from the first part. The standard observation model
for fMRI BOLD, called the balloon model, was first proposed in [111] and
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Figure 4.4: Example of a DCM with three interacting brain regions x1 to
x3. y1 to y3 represent the fMRI time series of each region, while u1 and u2
are inputs that influence the regions directly or modify the coupling between
regions.

subsequently refined and extended in [112] and [113].

The DCM model is often illustrated graphically as a network of nodes con-
nected with edges. Figure 4.4 shows such a network which represents a
simple example of a DCM with three interacting brain regions x1 to x3,
which are observed through fMRI BOLD signals y1 to y3.

The edges from the x-nodes to the y-nodes represent the hemodynamic
model [113]. On the other hand, the edges between the x-nodes represent
elements of A and the edges from the u-nodes to the x-nodes represent
elements of C. The elements of the B(j) correspond to the edges which
points from the u-nodes to the edges between the x-nodes. Thus, for the
model shown in figure 4.4 the connectivity parameters are:

A =





a11 0 0
a21 a22 a23
a31 a32 a33



 , (4.4)

B(1) = 0, (4.5)

B(2) =





0 0 0

0 0 b
(2)
23

0 0 0



 and (4.6)

C =





c11 0
0 0
0 0



 . (4.7)

At this stage, we would like to point out two things. First, the kind of
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graphical representation of DCMs shown in figure 4.4 is not a Bayesian
network. Although the edges in the graph are directed, cycles are allowed
in these kinds of graphs, i.e. one can move along the direction of the arrows
and return to the node one started at. This makes sense, since the graph
should reflect effective connectivity between brain regions and these can
include feedback loops. However, attention should be paid not to confuse
the graphical representation of DCMs with Bayesian networks, which we
will use in the next sections.

Second, since brain activity cannot diverge to infinity, one would like to
restrict the DCM model such that the intrinsic neuronal activity in the
absence of inputs is guaranteed to stay finite. In a dynamical system, this
corresponds to requiring the principal Lyapunov exponent of the system to
be negative [8]. And for systems described by equation (4.2), it means that
the largest real eigenvalue of A has to be negative. Unfortunately, there is
no simple way to parameterize a matrix, such that its real eigenvalues are
negative. When paying close attention to the graph in figure 4.4, one can
notice that all x-nodes have self-connections. Such self-connections which
are fixed to have negative values, are included in all DCM models, since
Friston et al. showed that including negative self-connections, combined with
restricting the amplitude of the remaining connections in relation to the self-
connections, will limit the probability of getting a matrix A with positive
eigenvalues [88]. Restricting the amplitude of the cross-connections can be
done by using appropriate prior distributions [88].

Combining equation (4.1) with the hemodynamic model provides us with
a deterministic forward model of neuronal activity and the related fMRI
BOLD responses. The system described by DCM receives inputs u, which
encode experimental conditions or stimuli presented to the subject, and is
governed by connectivity parameters θc describing effective brain connectiv-
ity, as well as hemodynamic parameters θh describing hemodynamic proper-
ties [88]. With these parameters, the model predicts, from the known inputs
u, the neuronal activity of the brain regions involved in the experiment and
the corresponding fMRI bold response.

However, from the point of the neuroscientist, the neuronal activity x of the
brain regions are not of primary interest. Instead, most experiments aim at
estimating the unknown parameters θc encoding the effective connectivity
between regions, with the hemodynamic parameters θh also being of interest.
Thus, the form of the DCM model which we will encounter most often is
the following:

y = g(θ,u) + η, (4.8)

with θ = (θT
c ,θ

T
h )

T defined as the concatenation of θc and θh. The function
g denotes the entirety of the operations involved in evaluating the DCM
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model to obtain the fMRI BOLD response. This starts with taking the
input u and the connectivity parameters θc and integrating equation (4.2)
to obtain the neuronal activity x. And it continues with integrating the
hemodynamic equations that map the neuronal activity x onto the fMRI
BOLD response y. Since x is not of primary interest, it is not included in
the output of g. The variable η represents the measurement noise, which is
assumed to be mean free and normal-distributed: η ∼ N (0,Λ−1) [88].

The precision matrix Λ is often assumed to be a diagonal matrix [115],
with a main diagonal of the form λ1, . . . , λ1, λ2, . . . , λ2, . . . , λR, . . . , λR and
zeros elsewhere. Thus, Λ is parameterized by a set of real positive entries
{λr}r=1,...,R, which denote the scalar noise precisions for each of the brain
regions. Each of the entries λr appears multiple times in the main diagonal
and we denote the number of times entry number r appears by qr. If we
assume qr = 2 for all r, the noise precision matrix for the DCM shown in
figure 4.4 is given by:

Λ =

















λ1 0 0 0 0 0
0 λ1 0 0 0 0
0 0 λ2 0 0 0
0 0 0 λ2 0 0
0 0 0 0 λ3 0
0 0 0 0 0 λ3

















. (4.9)

The number qr corresponds to the number of samples in the fMRI time
series for each region and for real datasets it is typically in the range of
1000. For use in later sections, it will be convenient to define Qr as a matrix
with the same structure as Λ, but with ones on the positions of λr in Λ and
zeros elsewhere. With this definition, we can express the precision matrix
compactly as:

Λ =

R
∑

r=1

λrQr. (4.10)

For the example in equation (4.9), Q1 would be given by:

Q1 =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

















. (4.11)

Thus, the inverse problem for DCM lies in reversing the g-function to esti-
mate the unknown connectivity and hemodynamic parameters θ from the
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Figure 4.5: Graphical model showing the Bayesian network for the fMRI
DCM model. For consistency with the embedded clustering model intro-
duced in section 4.4, we have split the parameter vector θ across two nodes:
one for the connectivity parameters θc and one for the hemodynamic pa-
rameters θh. The node representing the input u is optional.

observed fMRI BOLD time series y. The parameter estimates answer ques-
tions about the connectivity among brain regions and their modulation by
certain conditions in the experiment. Solutions to this inverse problem for
single subject DCM models using expectation maximization [88] and vari-
ational Bayes [36] have already been proposed. These solutions have been
adapted by several groups in the neuroscience community and are included
in an open source software package [116].

Figure 4.5 shows the graphical model for DCM. Note that this is the Bayesian
network representing DCM, while the graph in figure 4.4 is a graphical illus-
tration of the connectivity between the brain regions and the influence of the
inputs. In the Bayesian network shown here, the signal generation process,
starting from the inputs u and ending with the fMRI BOLD response y, is
summarized in the edges pointing from θ and u towards y, which represent
the g-function. Since the input u is part of the experiment design, it is an
observed variable, which is represented in figure 4.5 by shading the respec-
tive node. In addition, the node representing the input u in this graphical
model is considered to be optional and is often left out.

It might be worth noting that the structure of the DCMmodel consisting of a
combination of a state evolution model (eq (4.2)) with an observation model
(hemodynamic model) is a very common theme in statistical modelling.
Other examples for well-known models with this structure include Markov
random fields and the Markov chain which was introduced in section 2.4.1
in the context of Markov chain Monte Carlo.

In addition, estimating the values of the A, B and C matrices can be viewed
as a model selection problem, since different values for the connectivity be-
tween the regions correspond to different models of how the brain functions
in the given experiment. Thus, inverting a DCM is closely related to the
model comparison problem introduced in section 2.5.1.
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4.3 Mixture Models for Clustering

In section 3.3, we introduced the mixture of PPCA as a generalization of
the online LPNR algorithm. The mixture of PPCA is a member of a class of
models called mixture models. In general, a model defines a probability den-
sity function over the space of objects we want to model. In doing so, it has
to achieve a trade-off between accuracy and model complexity. Typically,
we would like to be able to describe the probability density with simple an-
alytic functions. On other hand, the model should be able to reproduce the
real probability density over the objects of interest with sufficient accuracy.

One strategy, to achieve this trade-off is to build a complex model by super-
posing a number of simple models. This strategy, called mixture modelling,
is characterized by probability density functions of the form

p(x) =

K
∑

k=1

πkpk(x|θk), (4.12)

where x is the variable we would like to model, πk is the weight of the k-th
component, pk(·) is the probability density defined by the k-th component
and K is the number of components. Typically, the mathematical form of
the components is identical and the distinguishing factors are the different
parameters sets θk.

There are different motivations for using mixture models. One reason is
that the probability density we would like to model is too complex to be
described by a single analytic function. By using a mixture model, we
can attempt to break up the x-space over which p(x) is defined into several
parts, and use simple analytic component to model each part. This approach
is often encountered in density modelling applications and the mixture of
PPCA model, in its role as a generalization of the online LPNR scheme
(section 3.3), falls into this category. Another example is the application of
mixture of PPCA to modelling points distributed on a sphere [81].

In the case described above, using a mixture model is only a convenient way
of specifying a complex model from simple building blocks and the compo-
nents do not have a sensible interpretation or carry any abstract meaning.
However, in some applications dividing the data space does reflect an under-
lying structure of the problem. This is often the case for clustering problems,
where the assumption is made that data points belong to different categories,
with each category being represented by one model component.

In this context, mixture models are often interpreted as latent variable
models: Each data point is associated with a discrete component label
which is unobserved, i.e. it is a latent variable drawn from a distribution
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p(d = k|π) = πk. Given the component label d, the observed data point
is generated from the simple model specified by the respective component:
p(x|d= k) = pk(x|θk). And since the component label is unobserved, the
marginal distribution over x is given by the superposition of the probability
density of all the components:

p(x) =
K
∑

k=1

p(d=k|π)p(x|d=k) (4.13)

=

K
∑

k=1

πkpk(x|θk). (4.14)

Note that to derive the above relation, we have used the sum (eq (2.7)) and
product rules (eq (2.9)) introduced in section 2.1. In this context, the model
weights πk in equation (4.12) are interpreted as the probability of the data
being generated from the k-th component.

For the components in mixture modelling, different models can be used. If
x is a counting variable defined over the space of integers or as a vector
of integers, the components pk(x) are typically chosen to be multinomial
distributions. If x is continuous, a popular choice for pk(x) is the Gaussian
distribution, which leads to the well-known mixture of Gaussians model.
The Gaussian mixture model is also our choice for the clustering part in
the embedded clustering framework for DCM parameters. Therefore, we
will dedicate the next section to an in depth discussion of the mixture of
Gaussians model in the context of clustering applications, as well as infer-
ence schemes which are often used for learning the parameters of Gaussian
mixtures.

As a side note, we would like to point to an interesting connection between
mixture models and the single PPCA model, which both belong to the
same model family. Equation (4.14) shows us that mixture models can be
interpreted as latent variable models where the latent variable is discrete.
However, in section 3.3, we pointed out that the PPCA model can also
be viewed as a latent variable model [17, 81], with the difference that the
latent variable in PPCA is continuous. Thus, mixture models and PPCA
are both latent variable models, with the difference that a mixture model is
a discrete latent variable model and PPCA is a continuous latent variable
model. On the other hand, this also means that the mixture of PPCA model
is a two-fold latent variable model: On the mixture level it has a discrete
latent variable, while on the component level it consists of continuous latent
variable models.
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4.3.1 Mixture of Gaussians

This section will introduce the mixture of Gaussians model with a focus
on applications to clustering problems. We will begin with an introduction
to the general structure of the mixture of Gaussians model, followed by a
discussion of how to learn the parameters of the model from measurements
using the variational Bayes scheme introduced in section 2.4.2. In the course
of this discussion, we cannot avoid coming across a few mathematical details
of the variational approximation scheme for mixtures of Gaussians. However,
we deem this to be a necessary evil for the understanding of the overall topic,
since the mixture of Gaussians is an important component of the embedded
clustering scheme.

The clustering problem belongs to the category of unsupervised learning,
which deals with the task of discovering structure in unlabelled data. Other
unsupervised learning problems include density estimation, which we en-
countered in the discussion on mixture of PPCA in section 3.3.

In clustering, the assumption is that there are unobserved categories or
clusters underlying the data generation process. The aim is to assign the
observed data points to the clusters and at the same time estimate the clus-
ter parameters. For data points x defined in a continuous space, the mixture
of Gaussians is a popular model, which is often used for the clustering prob-
lem [17, 37].

Structure of Gaussian Mixture Models

In a mixture of Gaussians model, the components of the mixture are Gaus-
sian distributions, with probability distribution given in equation (A.26):

pk(x) = N (x|µk,Σk). (4.15)

The Gaussian distribution is a popular choice for modelling continuous vari-
ables because it has several nice properties. It has a well-studied analytical
form, and the central limit theorem states that the sum of a set of in-
dependent random variables with finite variance tend towards a Gaussian
distribution with increasing number of summands [23, 24].

The generative process of the mixture of Gaussians model is as follows.
First, a value for the component label d is drawn according to a categori-
cal distribution: p(d = k|π) = πk. Here, π = (π1, . . . , πK)T is the vector
of component probabilities. Then, the value of d is used to pick from one
of K different Gaussian distributions. The chosen component is used to
generate the data point x. Thus, the model equation is given by plugging
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K

Figure 4.6: A graphical model illustrating the generative process of the
mixture of Gaussians model. Note that for the generative process, the pa-
rameters are assumed to be fixed to known or chosen values, indicated by
shading.

equation (4.15) into the general mixture model distribution given by equa-
tion (4.14):

p(x|π, {µk,Σk}k=1,...,K) =
K
∑

k=1

p(d=k|π)pk(x|µkΣk) (4.16)

=

K
∑

k=1

πkN (x|µk,Σk). (4.17)

Viewed from the point of the whole mixture model, the component density
pk(x) from equation (4.15) is equivalent to the conditional distribution of the
data given the cluster label: pk(x) = p(x|d=k). And as already mentioned
in the beginning of this section, the cluster weight πk is equivalent to the
prior probability of the respective component: p(d=k) = πk.

Equation (4.17) corresponds to the likelihood function with cluster label
d marginalized out. This function describes the probability of the data
point x given the parameters of the model, but without knowledge of the
labels. Here, the parameters are the mean and covariance matrix for each
Gaussian component {µk,Σk}k=1,...,K , as well as the cluster weights π =

(π1, . . . , πK)T , which are constrained to sum to one:
∑K

k=1 πk = 1.

Figure 4.6 illustrates the generative process of the mixture of Gaussians
model with a graphical model. The parameters are shaded, since for the
generative process they are considered to be fixed to known values. Here,
we have used the plate notation as a compact way to denote that there are
multiple components (K) and multiple realizations of data points (N). Note
the similarity to the graphical model of the mixture of PPCA in figure 3.8.
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Learning the Parameters

In practice, the parameters are unknown, just like the cluster labels, and the
aim is to estimate them from a number of observed data points {xn}n=1,...,N .
With the Bayesian approach to statistical inference, learning the parameters
is equivalent to inverting the model in order to obtain the posterior proba-
bility distribution, i.e. the conditional probability of the parameters given
the data: p(π, {µk,Σk}k=1,...,K |{xn}n=1,...,N ).

As introduced in section 2.2, the posterior distribution can be obtained using
Bayes rule (eq (2.10)), which for the mixture of Gaussians model is given
by:

p(π, {µk,Σk}|{xn}) =
p({xn}|π, {µk,Σk})p(π)p({µk,Σk})

p({xn})
. (4.18)

Note that in the above equation, we have dropped the subscript by using
the shortcut {xn} to denote the set of all data points {xn}n=1,...,N , in or-
der to avoid cluttering the notation. In the following, we will always use
this notation, whenever it is clear from the context that we mean a set of
variables.

The term p({xn}|π, {µk,Σk}) is the likelihood function, which is given in
equation (4.17) for a single data point. For multiple data points the like-
lihood function is given by the product of the likelihood of each of the
data points, under the assumption that the data points have been drawn
independently from the same distribution. This so called iid. assumption
(independent and identically distributed) is a very common assumption in
statistical inference, which leads to the following form for the likelihood of
a set of observations:

p({xn}|π, {µk,Σk}) =
N
∏

n=1

K
∑

k=1

πkN (xn|µk,Σk). (4.19)

A common practice in statistics is to work with the logarithm of the likeli-
hood, the so called log-likelihood:

log p({xn}|π, {µk,Σk}) = log
N
∏

n=1

K
∑

k=1

πkN (xn|µk,Σk)

=

N
∑

n=1

log

K
∑

k=1

πkN (xn|µk,Σk). (4.20)

The other terms in the numerator of equation (4.18) are the prior distribu-
tions of the parameters. These distributions encode model assumptions and
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enforce constraints on the parameters. For example, the values in π have to
be positive and sum to one, since they encode cluster probabilities. There-
fore, it is common practice to define p(π) as a Dirichlet distribution [17, 37],
which is a distribution defined over the space of probability vectors (see
appendix A.3).

The prior distribution over cluster parameters p({µk,Σk}k=1,...,K) is a dis-
tribution over µk, which is a vector, and Σk, which is a covariance matrix.
For convenience, one typically picks a prior distribution, which factors across
clusters:

p({µk,Σk}k=1,...,K) =

K
∏

k=1

p(µk,Σk). (4.21)

This way the variational distribution q({µk,Σk}k=1,...,K) will also factor
across clusters [17, 37].

For the multiplicands in the product p(µk,Σk), which are the prior distri-
butions of the parameters of each cluster, the standard choice is the normal-
inverse Wishart distribution:

p(µk,Σk) = N (µk|µ0,Σk/τ0)W−1(Σk|Σ0, ν0). (4.22)

This distribution consists of a Gaussian distribution over µk, which depends
on Σk and an inverse Wishart distribution over Σk, which is a distribu-
tion defined over symmetric, positive definite matrices. Thus, the inverse
Wishart distribution helps to enforce that Σk is a valid covariance matrix.

The parameters of the prior distributions are called hyper-parameters. In
this case, they are α0 for the Dirichlet distribution and µ0, τ0,Σ0 and ν0 for
the normal-inverse Wishart distribution. Through the value of the hyper-
parameters, one can encode certain model assumptions. E.g. when defining
α0 as a vector with large (α0,k ≫ 1) but equal elements, the model will
favour an outcome where the cluster weights tend to be similar for all clusters
in the mixture. On the other hand, one can encode the assumption that one
cluster might dominate the others by setting the elements of α0 to values
much smaller than one (0 < α0,k ≪ 1). Alternatively, one can also specify
a flat prior (α0,k = 1), which does not favour any of the extreme cases
described before [17].

In addition to helping us enforce constrains and encode model assumptions,
the above choices for the prior distributions have the special property of
being so called conjugate priors. These are prior distributions which have
a convenient mathematical form allowing the posterior distribution to be
described by the same functional form as the prior distribution [17, 117].
We will see what this means in detail when we discuss the variational Bayes
scheme for embedded clustering in section 4.5.



104 CHAPTER 4. EMBEDDED CLUSTERING

π dn xnα

N

µk,Σk

K

µ0, τ0
ν0,Σ0

Figure 4.7: Graphical model for the inference for mixture of Gaussians mod-
els. In contrast to figure 4.6, the graphical model shown here contains parent
nodes for the parameter variables π, µk and Σk, representing the prior dis-
tributions. Additionally, the data variable xn is shaded to indicate that they
are observed, while the parameters are unobserved.

Figure 4.7 illustrates the graphical model of the inference process for the
mixture of Gaussians model. Again, we have used plate notation to denote
the existence of multiple components (K) and multiple observations (N).
In contrast to the graphical model shown in figure 4.6, which describes the
process of generating data, this graphical model illustrates the inference of
the model parameters from observed data. Thus, the data variables xn

are now shaded to indicate that they are observed and the parameters π,
µk and Σk are unknown. In addition, this graphical model includes the
prior distributions indicated by the parent nodes of the parameter variables,
which represent the hyper-parameters µ0, τ0, ν0, Σ0 and α0. These hyper-
parameters are known, since they are chosen prior to inference, in order to
encode model assumptions and enforce constraints on the parameters.

The only term remaining is the evidence in the denominator of equation (4.18),
which according to the sum and product rules (eq (2.7) and (2.9)) can be
obtained by integrating over the product of likelihood and prior:

p({xn}) =
∫

π,{µk,Σk}

p({xn}|π, {µk,Σk})p(π, {µk,Σk})dπd{µk,Σk} (4.23)

=

∫

π,{µk,Σk}

N
∏

n=1

( K
∑

k=1

πkN (xn|µk,Σk)

)

×

D(π)
K
∏

k=1

N (µk)W−1(Σk)dπd{µk,Σk}. (4.24)

The evidence corresponds to the probability of the observed data given the
current model, with the parameters marginalized out. As mentioned in
section 2.5.1, this term is named evidence or model evidence because it is
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used for model comparison and model selection. In the context of mixture
modelling, the model selection problem is related to the question of how
to choose K, i.e. how many clusters the mixture needs to have in order to
best explain the observed data. As we will see later, the advantage of the
Bayesian approach to model fitting is that it will automatically achieve a
trade-off between fitting the data and limiting the complexity of the model
by optimizing the model evidence with respect to K [17, 117].

Approximate Inference for Gaussian Mixtures

The problem with equation (4.23) is that the integration needed for eval-
uating the model evidence is analytically intractable. For the mixture of
Gaussians, the problem lies in the summation inside the product under the
integral in equation (4.24), which prevents us from factoring the integrand
and integrating over each factor separately. In fact, this problem applies to
all mixture models and is not limited to mixture of Gaussians [37]. Thus,
in order to obtain estimates of the model evidence, we need to resort to ap-
proximation schemes, which can be divided into two categories. On the one
hand, we have Monte Carlo methods, which were introduced in section 2.4.1
and which we have already encountered in section 3.5.2 in the context of
inference in the Gaussian process BCG model. Alternatively, there is the
variational Bayes approximation introduced in section 2.4.2, which we will
focus on in the following sections.

As introduced in section 2.4, the difference between Monte Carlo and vari-
ational Bayes is that Monte Carlo is a numerical approximation method,
which works by drawing a number of samples from a target distribution and
using these samples to calculate estimates. Variational Bayes, on the other
hand, relies on optimizing an analytic bound to the evidence called free en-
ergy. In general, the free energy approach is much faster, but it lacks the
asymptotic exactness, which distinguishes Monte Carlo methods.

The details of the variational Bayes scheme, which aims at deriving a lower
bound to the model evidence, are described in section 2.4.2. The first step in
this process is to distinguish between the set of observed variables X, which
in the case of the mixture of Gaussians are the set of data points {xn}, and
the set of unobserved variables Z, which consists of the cluster labels dn and
the model parameters π and {µk,Σk}k=1,...,K [17].

In the next step, we have to choose a factorization by dividing the set Z into
subsets Z1, Z2, . . . and approximating each subset with its own variational
distribution q(Z1), q(Z2), . . .. This will cause the variational distribution
over Z to factor into several components q(Z) = q(Z1)q(Z2) · · · , which sim-
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plifies the evaluation of the free energy bound (eq (2.28)). For the mixture
of Gaussian model, one typically assumes a factorization between the set of
cluster labels Z1 = {dn} and the model parameters Z2 = {π, {µk,Σk, }} [17].

To optimize the free energy bound, one can in principle use any optimization
algorithm. However, for the mixture of Gaussians model, a popular choice is
to use the iterative update scheme proposed in [33], which is closely related to
the expectation maximization (EM) algorithm [118]. The EM algorithm is a
method for estimating model parameters by maximizing the likelihood func-
tion (eq (4.19)) instead of the free energy. This will provide point estimates
of the model parameters. In contrast, the variational Bayesian approach
provides an estimate for the posterior distribution over the parameters, as
well as a lower bound on the model evidence, which allows us to determine
the optimum number of mixture components by optimizing the lower bound
with respect to K. Details on the variational update equations for the mix-
ture of Gaussians model, which can be viewed as an extension of the EM
update equations, are given in [17].

Summary

In this section, we have discussed how to learn the parameters of a Gaussian
mixture model from observed data using the variational Bayes approach.
However, in the embedded clustering problem the data corresponds to the
DCM parameters, which cannot be observed directly. This means that in
order to solve the embedded clustering problem, we have to estimate the
DCM parameters while performing the clustering. In the next section, we
will show how to define a unified model for DCM and clustering in the
embedded clustering framework, and invert the model using a variational
Bayes approach. In this discussion, the reader will notice that much of
the embedded clustering framework can be viewed as an extension of the
mixture of Gaussians model.

Analogous to the discussion from section 3.3 on non-parametric and para-
metric models in the context of the LPNR algorithm, we should point out
that the mixture of Gaussians model discussed in this section is a paramet-
ric method, just like the mixture of PPCA. This is because the number of
Gaussian components in the mixture is fixed in advance. However, there
exists non-parametric extensions of mixture modelling to infinite mixtures,
i.e. mixture models where the number of components is not limited in ad-
vance. These non-parametric mixture models are based on the Dirichlet
process [119], and although we will not deal with them in this thesis, we
would still like to point out that these kinds of models would occupy the
lower right quarter of the diagram in table 3.1.
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4.4 Embedded Clustering for DCM

In this section, we will introduce the embedded clustering framework for
dynamic causal modelling (DCM). This framework combines the DCM de-
scribed in section 4.2 with the mixture of Gaussians model for clustering
from section 4.3. In the following, we will first explain the motivation for
embedded clustering and then derive the model equations.

Throughout the section, we will continue following the simplified notation
introduced in the last section, which involves dropping the subscript when it
is clear from the context that we are referring to a set. Thus, {yn} denotes
the set of fMRI measurements from all subjects {yn}n=1,...,N and similarly
{µk,Σk} is the set of cluster parameters for all clusters from 1 to K. µk,
on the other hand, denotes the mean of cluster number k, only.

4.4.1 Motivation

The motivation for embedded clustering arises from the need to extend the
DCM framework to multi-subject studies. The task of embedded clustering
within the context of such a study is to identify subgroups within the subject
population. In the simplest case, this corresponds to distinguishing between
patients and healthy control subjects. However, in more sophisticated sce-
narios this task can also include distinguishing between different diseases or
between subtypes of the same disease [115].

The straight forward way of solving this problem consists of obtaining DCM
parameter estimates for each subject separately. Methods for inverting sin-
gle subject DCM [36, 88] are well established and available as open source
software [116]. If the inversion scheme for the single subject DCM pro-
vides a posterior distribution over the parameter space, point estimates for
the parameters θ̂n can be obtained by choosing the maximum a posteriori
(MAP) solution θn,MAP , i.e. the parameter that maximizes the posterior
probability:

θ̂n,MAP = argmax
θn

p(θn|yn). (4.25)

Alternatively, one can also obtain point estimates by maximizing the like-
lihood function with respect to the parameters, which yields the so called
maximum likelihood (ML) solution:

θn,ML = argmax
θn

p(yn|θn). (4.26)

These point estimates for the DCM parameters of all subjects {θ̂n}n=1,...,N

can be treated as the observation xn in a clustering model like mixture of
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Gaussians, or as inputs to a classification algorithm, irrespective of the way
they are obtained. Thus, the subjects are clustered or classified based on
the point estimates of the DCM parameters.

This approach has already been tested with success in [120] with data from
an fMRI study, where DCM parameter estimates where classified using an
algorithm called support vector machine. However, there are also a few
disadvantages associated with this approach. Firstly, by using a point es-
timate of the DCM parameters, one disregards the information about the
reliability of the parameter estimate, which is encoded in the posterior dis-
tribution. Thus, the clustering or classification algorithm in the second step
cannot take the uncertainty of the parameter estimates from the first step
into account. In addition, the parameter estimation will not benefit from
the results of the clustering or classification process.

The alternative to the stepwise approach of first obtaining point estimates
and then performing clustering or classification on the point estimates is
to build a unified model for joint DCM inversion and clustering, where the
clustering process is integrated into a multi-subject DCM model. By invert-
ing the unified model, which will be described in the following, one performs
the DCM parameter estimation and the clustering simultaneously. In ad-
dition to avoiding the drawbacks mentioned above, this method holds the
advantage that applied to the single subject scenario, it can be considered
as an empirical Bayes method, since it integrates out the parameters of the
prior distribution on the DCM parameters [115]. In the following, we will
derive the joint probability distribution of the embedded clustering model.

4.4.2 Model Equations

The unified model for DCM inversion and clustering is obtained by plac-
ing the mixture of Gaussians model over the connectivity parameters of the
DCM model, with separate prior distributions over the hemodynamic pa-
rameters and the precision matrix of the measurement noise. The model
can be best explained with a graphical representation, which is shown in
figure 4.8.

It is easily noticed that the Bayesian network representation of the embedded
clustering model contains both the graphical model for DCM from figure 4.5,
as well as the graphical model for the mixture of Gaussians from figure 4.7.
Here, the connectivity parameter θc has taken the place of the data variable
x in the Gaussian mixture part and the entire DCM part of the model is
placed inside the N -plate, in order to indicate that there is one DCM for
each subject.
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Figure 4.8: Graphical model of the embedded clustering model. This model
contains both the graphical model for DCM (fig 4.5) and the graphical model
for the mixture of Gaussians (fig 4.8).

One of the advantages of Bayesian networks is that the joint distribution can
be easily read off from the graphical model. Thus, based on figure 4.8, the
joint probability distribution over the observed data variable and the unob-
served parameters and latent variables of the embedded clustering model is
given by:

p({yn, dn,θn,Λn},π, {µk,Σk}) =
N
∏

n=1

(

p(yn|θn,Λn) ×

p(θc,n|dn, {µk,Σk})p(dn|π)p(θh,n|µh,Σh)p(Λn|a0, b0)
)

×
K
∏

k=1

(

p(µk,Σk|µ0, τ0, ν0,Σ0)
)

p(π|α0). (4.27)

Similar to the mixture of Gaussians model, we have made the assumption
that the data variable yn is independent and identically distributed (iid.)
for each of the subjects. Additionally, we also use the same prior for the
cluster mean µk and covariance Σk as in the mixture of Gaussian case,
which factors across clusters. This is reflected in the plate notation in the
graphical model, where the data and the cluster parameters are contained
in their own plate, as well as in equation (4.27), where the distribution over
the data and the cluster parameters factors into their own product over n
and k, respectively. The plate notation has been introduced in section 2.3.

The graphical model shown in figure 4.8 already includes the prior distribu-
tions and their functional form is chosen analogous to the regular mixture of
Gaussians model, as far as the mixture modelling part is concerned. Thus,
the prior for the mixture weights is given by a Dirichlet distribution with
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hyper-parameter α0,
p(π|α0) = D(π|α0), (4.28)

while the prior for the mixture parameters µk and Σk is given by a normal-
inverse Wishart distribution with hyper-parameters µ0, τ0, ν0 and Σ0 (see
equation (4.22)).

The hemodynamic parameter vector θh, on the other hand, inherits its Gaus-
sian prior distribution from the original formulation of the DCM model [36]:

p(θh,n|µh,Σh) = N (θh,n|µh,Σh). (4.29)

In the single subject DCM, the model would have an additional Gaussian
prior on the connection parameters θc, just like the one for θh. In the
embedded clustering model however, this role is taken by the mixture of
Gaussians part of the model, which has become the parent node of θc in
figure 4.8:

p(θc,n|dn, {µk,Σk}) = N (θc,n|µdn ,Σdn). (4.30)

Due to the parameterization of the precision matrix Λn introduced in sec-
tion 4.2 (eq (4.9)), it is sufficient to work with distributions over the set
of diagonal elements {λr,n}r=1,...,R. As with the other variables, the prior
distribution for the noise precisions also factors across subjects. However,
we will introduce an addition factorization across brain regions r:

p({Λn}) =
N
∏

n=1

p(Λn) (4.31)

=
N
∏

n=1

R
∏

r=1

p(λr,n), with (4.32)

p(λr,n) = Gam(λr,n|ar,0, br,0). (4.33)

The distribution over each of the factors p(λr,n) is chosen as a gamma dis-
tribution (see appendix A.3). In this respect, we deviate from the original
formulation of the single subject DCM model, which uses a log-normal prior
distribution. This decision is based on the observation that for λr,n, the
Gamma distribution is a conjugate prior, while the log-normal distribution
is not. As we will see in section 4.5, choosing the conjugate prior will lead to
a very simple form of the update equations, as the variational distribution
q(λr,n) will also be a Gamma distribution.

Just like in the case of the mixture of Gaussians model, the inversion of
the embedded clustering model is analytically intractable. And just like in
section 4.3.1, we have the choice between two fundamentally different solu-
tions to this problem: numerical approximations using Monte Carlo based
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methods and analytic approximations using variational methods. A solution
based on Markov chain Monte Carlo (MCMC), which we already encoun-
tered in section 3.5.2 in the context of BCG heartbeat detection, is presented
in [115]. The advantage of this approach is that it is a flexible and very pow-
erful method, which at the same time is easy to implement. Additionally,
like all Monte Carlo methods, MCMC possesses the asymptotical exactness
property, making it an attractive choice if high accuracy is needed. However,
the major disadvantage of MCMC is its slow speed [28].

On the other hand, the variational Bayes approximation lacks the asymp-
totical exactness property of Monte Carlo methods, which means that even
after reaching the maximum of the free energy function the approximation
error will not vanish. However, variational methods are typically much faster
than numerical approximations based on Monte Carlo and the difference in
running time can span several magnitudes. Possible application scenarios
for a variational solution to the embedded clustering problem could include
doing quick preliminary analysis on data from fMRI studies with moderate
computational resources. The results of the preliminary analysis can be used
to suggest which options are most promising for further analysis. Among
other possibilities, this can include picking better starting points for the
Markov chain to speed up the MCMC method or to conduct a preselection
among possible models, which are then investigated in more detail using
MCMC.

In the following section, we will derive the variational update equations for
the embedded clustering model, which we introduced above. This includes
deriving expressions for updating the parameters of the variational distribu-
tions q(Z), as well as an expression for the free energy of the model, which
is a lower bound on the model evidence. Some of these update equations are
very similar to their respective counterparts from the mixture of Gaussians
model, which shows that these two model are closely related to each other.

4.5 Variational Bayes for Embedded Clustering

For the single subject version of DCM, a variational approximation has al-
ready been derived [36, 88]. This solution is part of an open source software
suite called statistical parametric mapping (SPM), which is actively used
in the computational psychiatry community [116]. Similarly, the variational
Bayes approximation for the mixture of Gaussians models has been derived
in [33] and is considered to be a very well-studied application of the varia-
tional Bayes scheme [17, 37].

Embedded clustering for DCM is a combination of these two models, DCM
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and mixture of Gaussians, into a single unified model. However, due to the
interaction between the DCM part and Gaussian mixture part, we cannot
simply reuse the variational update equations given in [33] and [36] for the
embedded clustering model. Thus, our task in this section is to derive new
update equations for the variational Bayes approximation to the embedded
clustering model for DCM with fMRI observation. In the course of this
derivation, we will notice that some of the update equations are similar to
those of the variational approximation to the mixture of Gaussians model.
Indeed, many of the techniques used for the derivation of the approximation
for Gaussian mixtures work analogously for the embedded clustering model.

4.5.1 Factorization of the Variational Distribution

A detailed introduction to the variational Bayes approximation methods
has been provided in section 2.4.2. The first steps in the approximation
scheme are always to distinguish between the observed variables and the
latent variables, as well as to divide the set of latent variables into subgroups,
which defines a factorization over the variational distribution.

In the case of the embedded clustering model for DCM with fMRI observa-
tion, the data consists of the measured fMRI BOLD response yn of each of
the N subjects. On the other hand, the set of unobserved variables consists
of all variables which are represented in figure 4.8 with unshaded nodes.
This includes one cluster label dn for each subject, as well as the cluster
probabilities or weights π from which the labels are drawn. Furthermore,
this also includes the parameters of the Gaussian mixture components µk

and Σk, as well as the parameters of the DCM model θn and Λn. Note
that since we have one DCM model for each subject, we also have one set
of DCM parameters per subject.

The second step in the variational Bayes scheme is to divide the latent
variables into subgroups. The variables in each subgroup are approximated
with a variational distribution, which is independent from the distribution
over the other subgroups. This causes the variational distribution over all
latent variables to factor across several terms, one for each subgroup. For
the embedded clustering model, it is a natural choice to factor between the
variables of the DCM part and the variables pertaining to the mixture model.
In addition, we also have to define factorizations within these subgroups. For
the DCM part, we factor between the measurement noise precision Λn and
the DCM parameters θn. For the part of the mixture model, we apply the
factorization between the cluster labels dn and the model parameters π, µk

and Σk, which was already used for the regular mixture of Gaussians model.
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Thus, the variational distribution factors as follows:

q({θn,Λn, dn}, {µk,Σk},π) = q({θn})q({Λn})q({dn})q({µk,Σk})q(π)
(4.34)

In addition to defining a factorization over the variational distribution q,
one can also restrict the factors of q on the right hand side of the equation
above to have certain functional forms. This is discussed in more detail in
the next section.

4.5.2 Functional Form of the Variational Factors

In the following, we discuss the functional form of the factors in the varia-
tional distribution given in equation (4.34). For convenience, the discussion
will be split into two parts. We first discuss the factors for the mixture
model part and then turn towards the factors concerning the DCM part of
the embedded clustering model.

In the mixture of Gaussians example from section 4.3.1, restricting the func-
tional form of the factors in the variational distribution was not necessary,
since the functional form of the likelihood and the conjugacy of the prior
distributions already suggested a convenient form for the factors of q. This
argument extends to the Gaussian mixtures part of the embedded clustering
model as well, which means that the factors q(π), q({dn}) and q({µk,Σk})
are determined in their functional form by the likelihood and the choice of
the priors. And as the priors are conjugate, the factors of q have the same
functional form as their respective prior distributions.

For the Gaussian mixture part of the model, this means that q(π) is a
Dirichlet distribution governed by a variational parameter α:

q(π) = D(π|α), (4.35)

because the prior on π (eq (4.28)) is given by a Dirichlet distribution.

Analogously, q({µk,Σk}) is a product of independent distributions for each
cluster k, which are given by normal-inverse Wishart distributions with vari-
ational parameters µ̄k, τk, νk and Σ̄k:

q({µk,Σk}k=1,...,K) =

K
∏

k=1

q(µk,Σk), (4.36)

q(µk,Σk) = N (µk|µ̄k,Σk/τk)W−1(Σk|Σ̄k, νk). (4.37)

This is because the conjugate prior (eq (4.22)) has been defined as a normal-
inverse Wishart distribution; and it follows the same pattern as the regular
mixture of Gaussians model.
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Finally, the variational distribution over the set of cluster labels q({dn})
factors into a product containing one categorical distribution per subject n.
Each of these distributions has variational parameters qnk which have to be
positive and sum to one when summed over k:

q(dn=k) = qnk (4.38)

K
∑

k=1

qnk = 1. (4.39)

In contrast to mixture modelling, where a restriction of the functional form
of the variational distribution is unnecessary, the variational approximation
to the single subject DCM model contains what is called the Laplace approx-
imation in [36]. This means that all factors of the variational distribution
q for the DCM model are restricted to be Gaussian. Variables which have
to be positive are transformed to the log domain first, which corresponds to
placing a log-normal distribution over the original variable. In [36], this step
is what makes the variational approximation to the DCM model tractable.
However, we would like to point out that throughout the machine learning
community, the term Laplace approximation is used in a slightly different
way than in [36].

For the embedded clustering model, we have decided to deviate slightly from
this approach, by only restricting the variational distribution over the DCM
parameters to be Gaussian. As will be shown later, this distribution will
factor across subjects:

q({θn}) =
N
∏

n=1

q(θn) (4.40)

q(θn) = N (θn|µθ,Σθ). (4.41)

The distribution over the diagonal elements λr,n of the noise precision Λn

will be a gamma distribution q(λr,n) = Gam(λr,n|ar,n, br,n) instead of a
log-normal distribution. This is not due to any assumptions, but a direct
consequence of choosing the gamma distribution as a conjugate prior for the
elements of Λn. We will see later that this leads to a very simple form for
the update equations for the variational parameters ar,n and br,n.

The next step in the approximation scheme is to derive an expression for the
free energy and a solution for the parameters of the variational distributions
q which maximizes the free energy.
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4.5.3 The Variational Update Equations

Above, we have decided on a factorization of the variational distribution
q (eq (4.34)), as well as the functional form of some of its factors. As
mentioned in section 2.4.2, the aim of these assumptions is to make the
integral in the expression for the free energy (eq (2.28)) tractable. In order
to complete the variational approximation, two steps remain. One of them
is to plug in the factors of the variational distribution q derived above into
equation (2.30) and evaluate the integrals in order to derive the expression
for the free energy of the embedded clustering model.

On the other hand, the factors of the variational distribution q depend
on parameters, which we called variational parameters and which, for the
embedded clustering model, were identified above as α, qnk, µ̄k, τk, νk, Σ̄k,
µθ, Σθ, ar,n and br,n. Thus, the other step is to obtain a good approximation
by maximizing the free energy with respect to these variational parameters.

As already mentioned, this can be done with any optimization method.
One possible way, which was proposed in [36], would be to first derive the
expression for the free energy and take the derivative of the free energy
with respect to the variational parameters. The maximization of the free
energy can then be done using a gradient based optimizer. However, for the
embedded clustering model, we will use the alternative optimization strategy
introduced in section 2.4.2.

This optimization method, which is based on minimizing a Kullback-Leibler
divergence [17], can be viewed as an extension of the EM algorithm and has
been applied to the mixture of Gaussians model with good success [17, 37].
The advantage of using this scheme is that we can reuse some of the results
from the variational approximation to the Gaussian mixture model. Due
to the similarity between the mixture of Gaussians model and the mixture
modelling part in the embedded clustering model, some of the update equa-
tions for the embedded clustering model will have a similar functional form
as their respective counterparts from the mixture of Gaussians.

The key component of the EM-style free energy optimization introduced in
section 2.4.2 is the general formula for the optimum expression for one factor
of the variational distribution q(Zj), under the assumption that the other
factors q(Zi 6=j) are kept constant. This formula is given by equation (2.35)
and involves averaging over the logarithm of the joint distribution with re-
spect to the other factors of q. Equation (2.35) tells us how to update the
parameters of q(Zj) in order to increase the free energy, while keeping the
parameters of the other factors q(Zi 6=j) constant. Applying this equation to
each of the factors in turn over several iterations will allow us to converge
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to a local maximum of the free energy, while restarting the whole process
with different initial conditions will increase the chance of finding the global
maximum.

In the case of the embedded clustering model, the factors q(Zj) of the vari-
ational distribution correspond to the terms on the right hand side of equa-
tion (4.34). Thus, our task in the next step is to evaluate equation (2.35)
for each of these factors. We will begin with a more detailed discussion of
the derivation for the factor q(π) and then move on to the other factors.
Since the derivation always follows a similar scheme, we will limit the dis-
cussion to the initial steps and the result, while the details are provided in
the appendix.

Cluster Weights: q(π)
As mentioned above, the functional form of the variational distribution over
the cluster weights is given by a Dirichlet distribution q(π) = D(π|α),
which depends on the variational parameter α. This functional form is a
consequence of the structure of the model and the conjugacy of the prior
distribution.

When manipulating the update equation, it is more convenient to use the
logarithmic form given in equation (2.36), which for the cluster weights
reads:

log q(π) =
∑

{dn}

∫

q({θn})q({Λn})q({dn})q({µk,Σk}) ×

log p({yn, dn,θn,Λn},π, {µk,Σk}) ×
d{θn}d{Λn}d{µk,Σk}+ const, (4.42)

where
∑

{dn}
means summing over all possible configurations of the set of

cluster labels {dn}n=1,...,N . The const term contains terms which do not de-
pend on π, such as the logarithm of the normalization factor, which ensures
that the distribution integrates to one. The probability distribution p inside
the logarithm under the integral is the joint distribution of the embedded
clustering model. When plugging in the expression for this distribution,
which is given in equation (4.27), the integral splits up into several parts:

log q(π) = log p(π|α0) +
∑

{dn}

q({dn})
N
∑

n=1

log p(dn|π)

+
∑

{dn}

∫

q({θn})q({Λn})q({dn})q({µk,Σk}) ×
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( K
∑

k=1

(

log p(µk,Σk|µ0, τ0, ν0,Σ0)
)

+

N
∑

n=1

(

log p(yn|θn,Λn) + log p(θc,n|dn, {µk,Σk})

+ log p(θh,n|µh,Σh) + log p(Λn|a0, b0)
)

)

×

d{θn}d{Λn}d{µk,Σk}+ const (4.43)

However, in the equation above, all terms below the first line do not depend
on π, which means that they can be absorbed into the const term. This
reduces the equation to:

log q(π) = log p(π|α0) +
∑

{dn}

q({dn})
N
∑

n=1

log p(dn|π) + const

= log p(π|α0) +

K
∑

k=1

N
∑

n=1

qnk log πk + const

=
K
∑

k=1

(

(α0,k − 1) log πk +
N
∑

n=1

qnk log πk

)

+ const. (4.44)

Above, we have plugged in the definition for the variational distribution of
the cluster labels q(dn = k) = qnk in the second line and the definition of the
prior p(π|α0) in the third line. α0,k denotes the k-th element of the vectors
α0.

Comparing the above equation to the general form of a Dirichlet distribution,
which is given in the appendix A.3, it becomes clear that q(π) is described
by a Dirichlet distribution with parameters α = (α1, . . . , αK)T given by:

αk = α0,k +
N
∑

n=1

qnk. (4.45)

This is the update equation for the parameter of the variational distribution
over the cluster weights π. Notice how the αk depend on qnk, which are
the parameters of the variational distribution over the cluster labels dn.
This definition is circular, since we will see in a moment that the update
equations for qnk also depend on αk. Therefore, the update equations have
to be evaluated iteratively in order to converge to a stable solution.

In addition, one should note that qnk can be interpreted as approximation to
the posterior probability that θc,n was generated by cluster k. This variable
is also called the responsibility of cluster k for generating observation n [17].
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Thus, the sum in equation (4.45) over all responsibilities of cluster k can be
interpreted as the effective number of observations associated with cluster
k. The variational parameter αk is the sum of this effective number of
observations and the parameter of the prior distribution α0. This in turn,
means that α0,k can be interpreted as the number of pseudo observations,
which are assigned to cluster number k before data collection begins.

In this observation lies the answer to the question raised in sections 2.2
and 4.3.1 on how to choose a weak or strong prior. The prior for the cluster
weights p(π|α0) is weak if the value for α0,k is small compared to the overall
number of subjects N . This interpretation of the prior distribution param-
eters as pseudo observations is very common in Bayesian statistics and can
be applied to many models [17].

Cluster Mean and Covariance: q({µk,Σk})
We start again with equation (2.36), which for the cluster parameters is
given by:

log q({µk,Σk}) =
∑

{dn}

∫

q({θn})q({Λn})q({dn})q(π) ×

log p({yn, dn,θn,Λn},π, {µk,Σk}) ×
d{θn}d{Λn}dπ + const, (4.46)

The difference to equation (4.42) is that we now integrate over π instead
of {µk,Σk}. After plugging in the logarithm of the joint distribution, we
arrive at:

log q({µk,Σk}) =
K
∑

k=1

N
∑

n=1

qnk

∫

θc,n

q(θc,n) log p(θc,n|dn = k,µk,Σk)dθc,n

+
K
∑

k=1

log p(µk,Σk) + const, (4.47)

where the const-term contains all terms that do not depend on the set of
cluster parameters {µk,Σk}. Equation (4.47) consists of a sum over the
clusters, which is the reason why the variational distribution over the set
of cluster parameters q({µk,Σk}) factors across clusters (eq (4.37)). This is
possible due to the structure of the likelihood, but also because we defined
the prior distribution over the set of cluster parameters as a product over
the clusters (eq (4.21)). Thus, the logarithm of the factors in q({µk,Σk})
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equal the summands in the above equation, up to a constant term:

log q(µk,Σk) =

N
∑

n=1

qnk

∫

θc,n

q(θc,n) log p(θc,n|dn = k,µk,Σk)dθc,n

+ log p(µk,Σk) + const. (4.48)

After plugging in the logarithm of the prior log p(µk,Σk), as well as the
solution to the integral, which is derived in appendix C.1, the variational
distribution over the parameters of each cluster is given by a normal-inverse
Wishart distribution:

log q(µk,Σk) = N (µk|µ̄k,Σk/τk)W−1(Σk|Σ̄k, νk), (4.49)

with parameters given by:

µ̄k =
qkµck + τ0µ̄0

qk + τ0
, (4.50)

τk = qk + τ0, (4.51)

νk = qk + ν0 and (4.52)

Σ̄k = Σck +
N
∑

n=1

qnk(µc,n − µck

)

(µc,n − µck)
T+

qkτ0
qk + τ0

(µck − µ̄0)(µck − µ̄0)
T + Σ̄0. (4.53)

In order to simplify the notation for these update equations, we have defined
the following shortcuts:

qk =

N
∑

n=1

qnk, (4.54)

µck =
1

qk

N
∑

n=1

qnkµc,n, (4.55)

Σck =

N
∑

n=1

qnkΣc,n, (4.56)

where µc,n is the mean of the variational distribution over the DCM con-
nectivity parameters q(θc,n) of subject number n and Σc,n is the covariance
matrix of q(θc,n), derived below. Thus, we see that also the update equa-
tions for the variational distribution over the cluster parameters depend on
qnk.
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Cluster Labels: q({dn})
Starting from equation (2.36), we have the following ansatz for the varia-
tional distribution over the cluster labels:

log q({dn}) =
∫

q({θn})q({Λn})q(π)q({µk,Σk}) ×

log p({yn, dn,θn,Λn},π, {µk,Σk}) ×
d{θn}d{Λn}dπd{µk,Σk}+ const

(4.57)

=
N
∑

n=1

(

∫

q(π) log p(dn|π)dπ +

∫

q(θc,n)q({µk,Σk}) ×

log p(θc,n|dn, {µk,Σk})dθc,nd{µk,Σk}
)

+ const,

(4.58)

which consists of a sum over n. This means that q({dn}) separates into
independent distributions across subjects. Thus, for the probability of a
single label q(dn=k) = qnk, we have the following relationship:

log qnk =

∫

q(π) log πkdπ +

∫

q(θc,n)q(µk,Σk) ×

log p(θc,n|dn=k,µk,Σk)dθc,ndµkdΣk + const (4.59)

= −1

2
log |Σ̄k|+

1

2
Ψpc(νk)−

pc
2τk
− νk

2
tr(Σ̄−1

k Σc,n)

− νk
2
(µc,n − µ̄k)

T Σ̄−1
k (µc;n − µ̄k) + Ψ(αk) + const. (4.60)

Here, we have used p(dn = k|π) = πk. The symbol Ψpc denotes a sum of
digamma functions defined in equation (A.18) and tr(·) denotes the trace
operator, which sums the diagonal elements of a matrix. In addition, we
have defined pc as the dimensionality of the vector of DCM connectivity
parameters θc.

The solution of the integrals in the above equation are derived in appendix C.1
and the value of the const-term can be obtained via the normalization con-
straint

∑K
k=1 qnk = 1.

DCM Parameters: q(θn)
The version of equation (2.36) for the DCM parameters

log q({θn}) =
∑

{dn}

∫

q(π)q({Λn})q({dn})q({µk,Σk}) ×

log p({yn, dn,θn,Λn},π, {µk,Σk}) ×
dπd{Λn}d{µk,Σk}+ const, (4.61)
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=

N
∑

n=1

(

∫

q(Λn) log p(yn|θn,Λn)dΛn

+

K
∑

k=1

qnk

∫

q(µk,Σk) log p(θc,n|dn=k,µk,Σk)dµkdΣk

+ log p(θh,n|µh,Σh)
)

+ const (4.62)

also separates across subjects. Again, we have absorbed all terms which do
not depend on θn into the constant. Thus, we have for each subject:

log q(θn) =

∫

q(Λn) log p(yn|θn,Λn)dΛn

+

K
∑

k=1

qnk

∫

q(µk,Σk) log p(θc,n|dn=k,µk,Σk)dµkdΣk

+ log p(θh,n|µh,Σh) + const (4.63)

= −1

2

∫

q(Λn)
(

yn − g(θn)
)T

Λn

(

yn − g(θn)
)

dΛn

+
K
∑

k=1

qnk

∫

q(µk,Σk) log p(θc,n|dn=k,µk,Σk)dµkdΣk

+ log p(θh,n|µh,Σh) + const, (4.64)

where we have plugged in the definition for log p(yn|θn,Λn) in the second
line. The function g is the DCM system equation introduced in equa-
tion (4.8) in the beginning of this chapter. Here, we have dropped the
input u from the function arguments to simplify the notation.

The problem with this equation is that the integral over Λn is not tractable,
since we cannot write down the function g in closed form. However, we can
evaluate g for any given argument, which allows us to solve the problem by
applying a first order Taylor approximation to g around a suitable chosen
expansion point mn. The first order derivative, which in the case of g is
given by its Jacobian matrix G, can be obtained using numerical methods.

Applying the Taylor approximation and solving the integrals leads to a func-
tional form for log q(θn) which consists of a quadratic form in θn. This
corresponds, up to a constant, to the logarithm of a Gaussian distribution
and shows that applying the first order Taylor approximation is equivalent
to restricting the variational distribution q(θn) to be Gaussian, mentioned
at the end of the previous section.

The detailed derivation is given in appendix C.1. Here, we only provide the
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result for the update equations for the mean µn and covariance Σn of q(θn):

Σ−1
n = GT

n Λ̄nGn + Λ′
n (4.65)

µn = Σn

(

GT
n Λ̄n(εn +Gnmn) + µ′

n

)

. (4.66)

The variable εn is the residual, i.e. the difference between the observation
yn and the function value of g(mn) at the expansion point:

εn = yn − g(mn), (4.67)

while Gn is the Jacobian matrix of g at the expansion point:

Gn =
∂g(θ,u)

∂θ

∣

∣

∣

∣

θ=mn

. (4.68)

Additionally, we have defined the following shortcuts:

Λ′
n =

(

∑K
k=1 qnkνkΣ̄

−1
k 0

0 Σ−1
h

)

, (4.69)

µ′
n =

(

K
∑

k=1

qnkνkΣ̄
−1
k µ̄k, Σ

−1
h µh

)

. (4.70)

The zeros in the first line denote matrices of appropriate size and with all
zero entries, while Λ̄n in equation (4.65) denotes the mean noise precision
matrix defined in equation (4.81) in the next paragraph.

Noise Precision: q(Λn)
The precision matrix of the measurement noise Λn is a diagonal matrix
parameterized by a set of real positive entries {λr,n}r=1,...,R, which denote
the noise precisions for the fMRI BOLD time series from each of the brain
regions. For the variational distribution over {λr,n}r=1,...,R, n=1,...,N , equa-
tion (2.36) is given by:

log q({λr,n}) =
∑

{dn}

∫

q(π)q({θn})q({dn})q({µk,Σk}) ×

log p({yn, dn,θn,Λn},π, {µk,Σk}) ×
dπd{θn}d{µk,Σk}+ const. (4.71)

After plugging in the expression for the log-joint distribution, as well as the
definition of Λn (eq (4.10)), the equation reduces to a double sum:

log q({λr,n}) =
N
∑

n=1

R
∑

r=1

(

− λr,n

2

∫

θn

q(θn)
(

yn− g(θn)
)T

Qr

(

yn− g(θn)
)

dθn

+
qr
2
log λr,n + log p(λr,n|ar,0, br,0)

)

+ const. (4.72)
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This means that the distribution over the precision matrices will factor into
a product of independent distributions over single subjects and regions:

q({Λn}) =
∏

r,n

q(λr,n), (4.73)

in the same way as the prior distribution introduced in equation (4.33). The
logarithm of each factor in the product is then given by:

log q(λr,n) = −
λr,n

2

∫

θn

q(θn)
(

yn − g(θn)
)T

Qr

(

yn − g(θn)
)

dθn

+
qr
2
log λr,n + log p(λr,n|ar,0, br,0) + const. (4.74)

Solving the integral in the equation above requires applying the same Taylor
approximation to g as in the previous paragraph. And due to the conju-
gacy of the prior distribution, q(λr,n) is also given by a gamma distribution
q(λr,n) = Gam(λr,n|ar,n, br,n) with parameters ar,n and br,n. Here, we omit
the details, which are provided in appendix C.1, and only present the update
equations:

ar,n = ar,0 +
qr
2

(4.75)

br,n = br,0 +
b′r,n
2

, (4.76)

with b′r,n given by:

b′r,n = εTnQrεn + tr
(

GT
nQrGnΣn

)

. (4.77)

εn and Gn are defined just like in the previous paragraph and Qr has been
introduced in equation (4.10), as a matrix with the same structure as Λ, but
with ones on the positions of λr and zeros elsewhere. With the expression
for the mean of the gamma distribution (eq (A.25)), we can calculate the
mean value of λr,n as:

〈λr,n〉 =
ar,n
br,n

(4.78)

=
ar,0 + qr/2

br,0 + b′r,n/2
(4.79)

=: λ̄r,n. (4.80)

With this, we can define the mean precision matrix from the previous para-
graph as:

Λ̄n =
R
∑

r=1

λ̄r,nQr. (4.81)
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It is worth taking a moment to inspect equation (4.79) in more detail. For
a weak prior distribution, i.e. for values of ar,0 and br,0 which are negligible
compared to qr and b′r,n, equation (4.79) can be approximated by:

λ̄r,n ≈
qr
b′r,n

. (4.82)

The term εTnQrεn in b′nr is the sum of squares of the residual and can
be interpreted as a sum of squared (prediction) error terms. The second
term in b′nr can be interpreted as a correction term taking into account the
uncertainty about µn. On the other hand, qr is the number of samples in
the fMRI time series of region r, which also corresponds to the number of
ones in Qr. This expression is very similar to the unbiased estimate of the
variance of a Gaussian from N iid. observations, which is also given by a
sum of squared error term divided by the effective number of samples:

σ2 =
1

N − 1

N
∑

n=1

(xn − µ)2.

Note that the above considerations would apply equally to the single subject
DCM without clustering if the authors of [36] had chosen a gamma prior on
the noise precision. With this interpretation, we can also see that the prior
parameter ar,0 corresponds to the number of pseudo observations, while br,0
corresponds to the sum of squared error induced by the pseudo observations.

Free Energy: F
In section 2.4.2, we have shown that generally, the variational free energy
can be expressed as a sum of the expectation of the log-joint distribution
and the entropy of the variational distribution (eq (2.39)). Plugging in the
joint and variational distributions for the embedded clustering model, the
free energy splits into a sum of several expressions, due to the variational
distribution being a product of independent factors:

F =
〈

log p
(

{yn, dn,θn,Λn},π, {µk,Σk}
)

〉

q

+H
(

q(π)q({θn})q({Λn})q({dn})q({µk,Σk})
)

(4.83)

=
〈

log p(π|α0)
〉

q
+

K
∑

k=1

〈

log p(µk,Σk|µ0, τ0, ν0,Σ0)
〉

q

+
N
∑

n=1

〈

log p(yn|θn,Λn)
〉

q
+

N
∑

n=1

〈

log p(θc,n|dn, {µk,Σk})
〉

q

+
N
∑

n=1

〈

log p(dn|π)
〉

q
+

N
∑

n=1

〈

log p(θh,n|µh,Σh)
〉

q
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+

N
∑

n=1

〈

log p(Λn|a0, b0)
〉

q
+H

(

q(π)
)

+H
(

q({θn})
)

+H
(

q({Λn})
)

+H
(

q({dn})
)

+H
(

q({µk,Σk})
)

, (4.84)

However, most of the integrals contained in these terms have already been
solved during the derivation of the update equations. Since the final expres-
sion for the free energy is rather cumbersome and does not contribute to the
understanding of the topic, we will omit it here. Instead, we will close this
section with a summary of the variational update scheme.

Summary:

In this section, we have derived update equations for the parameters of the
variational distribution q and the free energy of the embedded clustering
model, with the aim to obtain an approximation to the model evidence.
The model evidence, which is the denominator in Bayes law (eq (2.10)),
plays an important role for model comparison; and the free energy as de-
fined in equation (2.28) is a lower bound of the model evidence. Thus, by
maximizing the free energy with respect to the variational parameters, we
reduce the difference between this lower bound and the evidence and obtain
an approximation to the evidence upon convergence. The list of variational
parameters include: qnk, α, µn, Σn, µ̄k, τk, νk, Σ̄k, ar,n and br,n. And
as stated in section 2.4.2, the variational distribution q will be an approx-
imation to the posterior distribution when the free energy is maximized.

For the purpose of maximizing the free energy, we need to evaluate the
update equations given above in turn. Each of these equations updates one
of the factors of the variational distribution q in such a way that the free
energy will always increase. However, since the update equations for the
different factors of q depend on each other, we have to iterate this process
to reach a fix point. A nice property of this scheme is that the update
equations derived from equation (2.35) are guaranteed to converge, albeit
not necessarily to the global optimum [17]. In order to increase the chance
of finding the global maximum, it is generally recommended to restart the
iteration from a set of randomized initial conditions. The whole update
process is summarized as pseudo-code listing in algorithm 2 and illustrated
graphically as a flow chart in figure 4.9.

In the following, we will present a validation of the variational Bayes approx-
imation to the embedded clustering model derived in this section on artificial
datasets. Just like in section 3.5.1, the motivation for using artificial data lies
in the availability of ground truth data, which for the embedded clustering
model has to include both the cluster labels and the DCM parameters.
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Algorithm 2 Variational Update Scheme for the Embedded Clustering
Model

1: function vbec(y, noIterations, noRestarts,∆F)
2: for idxRestart← 1, . . . , noRestarts do

3: π, qnk, . . . , ar,n, br,n ← randInit() ⊲ randomize initial conditions

4: for idxIteration← 1, . . . , noIterations do

5: qnk ← update(α,µn,Σn, µ̄k, τk, νk, Σ̄k, ar,n, br,n)

6: α← update(qnk,µn,Σn, µ̄k, τk, νk, Σ̄k, ar,n, br,n)

7: µn,Σn ← update(qnk,α, µ̄k, τk, νk, Σ̄k, ar,n, br,n)

8: µ̄k, τk, νk, Σ̄k ← update(qnk,α,µn,Σn, ar,n, br,n)

9: ar,n, br,n ← update(qnk,α,µn,Σn, µ̄k, τk, νk, Σ̄k)

10: Fold ← F
11: F ← update(qnk,α,µn,Σn, µ̄k, τk, νk, Σ̄k, ar,n, br,n)
12: if ∆F > F −Fold then

13: break

14: save(F , qnk,α,µn,Σn, µ̄k, τk, νk, Σ̄k, ar,n, br,n)

15: return

4.6 Validation with Artificial Data

In order to test the update scheme introduced in the last section, we have
implemented the variational Bayes scheme for embedded clustering in Mat-
lab. The first step in the validation process is to test the implementation
with artificial data, before moving on to more realistic tests with real data.
Similar to the BCG separation scheme from chapter 3, the motivation is
to have ground truth available, which can be used to compare the results
against. In the case of the embedded clustering model for DCM, the ground
truth has to include the values for the DCM parameters, both connectivity
parameters and hemodynamic parameters, as well as the correct values for
the cluster labels.

For the tests, we used a very simple configuration with 40 simulated sub-
jects in two well distinguishable groups with 20 subjects per group. The
DCM contains two interacting brain regions and two inputs, such that the
corresponding bilinear DCM equations are given by:

f(x,u,θc) = (A+ u1B
(1) + u2B

(2))x+ Cu, (4.85)

with all matrices being 2 × 2. The connection parameter vector θ consists
of the concatenation of the elements of all matrices.
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Input: y.

Chose random initial values for
the variational parameters

Update qnk with equation (4.60)
based on the current value of the

other parameters

Update α with equation (4.45)
based on the current value of the

other parameters

Update µ̄k, τk, νk and Σ̄k with
equations (4.50) to (4.53) based
on the current value of the other

parameters

Update µn and Σn with
equations (4.65) and (4.66) based
on the current value of the other

parameters

Update ar,n and br,n with
equations (4.75) and (4.76) based
on the current value of the other

parameters

Update the free energy F with
equation (4.84) based on the
current value of all parameters

Difference of F to last iteration
below threshold?
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maximum number of iterations

reached?

Output: F and all variational
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Restart with different initial
values.

yes

no

Figure 4.9: Flowchart of the variational update process for the embedded
clustering model. The list of variational parameters include: qnk, α, µn,
Σn, µ̄k, τk, νk, Σ̄k, ar,n and br,n.

Before starting the variational Bayes scheme, we have to first choose values
for the parameters of the prior distributions. As we have shown in the
previous section, the values for α0,k can be interpreted as the number of
pseudo observations. Thus, with 40 subjects, any choice for α0,k below one
should provide a sufficiently weak prior.

A more critical choice is the value for Σ̄0, which, based on our tests, seems
to be the only prior parameter that has a noticeable impact on the con-
vergence of the update scheme. Since Σ̄0/(ν0 − pc − 1) is the mean of the
inverse Wishart distribution [117], with pc being the dimension of the ma-
trix, choosing very large values for the elements of Σ̄0 means that the prior
distribution will favour clusters with large covariance matrices. In extreme
cases, this can lead to the variational scheme converging to a suboptimal
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solution, where all data points are erroneously assigned to one cluster. This
is not surprising, when considering that by combining all data points into
one cluster, one obtains the maximum cluster covariance.

On the other hand, if one chooses very small values for the elements of Σ̄0,
the prior distribution will favour clusters with small covariance matrices and
additionally, it will slow down the convergence of the update process. To
understand this, one can either inspect the update equation for the cluster
labels (eq (4.60)), which shows that qnk depends on Σ̄−1

k . Because Σ̄k is
close to Σ̄0 at the beginning of the iteration process, a small value for Σ̄0

will cause the cluster which is nearest to the data point to dominate equa-
tion (4.60). This means that the cluster assignments qnk for a subject will
be dominated by one cluster and change only very slowly, and since all other
update equations depend on qnk, they will also change very slowly. Alter-
natively, this effect can also be understood intuitively by noting that for
small elements of Σ̄0, the prior distribution will favour clusters with small
covariance matrices. And this in turn means that data points will favour
the nearest cluster and stick to this assignment.

To find a suitable prior, one should note that the parameter ν0 in the in-
verse Wishart distribution can be interpreted as the number of pseudo ob-
servations [117]. Therefore, in the case of the inverse Wishart distribution,
choosing a weak prior corresponds to setting ν0 to a small value.

In our tests with artificial data, we tried out different settings for the prior
distribution and found that a typical successful run of the variational Bayes
scheme takes about 10min on a computer with a 2.5GHz CPU and 8GB of
memory. The entire code was implemented in Matlab with the exception of
the code which evaluates the g-function from the DCM model, which was
implemented using the C-language to increase efficiency. In comparison,
the Monte Carlo version of the embedded clustering model inversion has
a typical running time of about 500min on a cluster of computers [115].
Although, the duration of each individual run will vary, this still shows that
the variational Bayes scheme is significantly faster. In addition, analysis of
the variational Bayes implementation showed that the potential speed-up
gained by parallelizing the code could be as high as 90% of the current
running time.

Thus, the tests on artificial data showed that the computational complexity
of the variational Bayes scheme for embedded clustering compares quite
favourably to its Monte Carlo counterpart, which is not surprising since
speed is one of the advantages of variational approximations. On the other
hand, the advantage of Monte Carlo methods lies in the accuracy of the
results. In this respect, the test have shown a few interesting results for the
variational approximation.
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α α

Figure 4.10: Cluster weights π (top) and assignments qnk (bottom) after
initialization (left column) and at convergence (right column). A grey-scale
is used to encode the value of qnk, which ranges from qnk = 0 (white) to
qnk = 1 (black).

Figure 4.11 illustrates the cluster weights π as bar graphs in the upper row
and the assignments qnk as a matrix of rectangles in the lower row. The
value of the qnk is expressed on a grey-scale, where darker colours mean
that the value of qnk is closer to one and lighter colours mean that the value
is closer to zero. The left column shows the cluster assignment and weights
in their initial condition, which is random and the right column shows the
values at convergence.

As shown in the graph, we have chosen K = 10. However, the variational
scheme correctly identifies that the subjects belong to only two clusters and
effectively switches off the remaining clusters, by assigning them zero weight.
This is a very typical behaviour of variational approximations to clustering
models, which can also be observed for the variational approximation to the
mixture of Gaussians model [17]. And at the same time, if offers an elegant



130 CHAPTER 4. EMBEDDED CLUSTERING

Figure 4.11: Free energy from the variational Bayes scheme for embedded
clustering plotted versus the number of clusters.

solution to the model comparison problem of selecting the correct number
of clusters mentioned in section 4.3.1.

Another way of estimating the optimal number of clusters K, is to repeat
the variational Bayes scheme for different numbers of K and plotting the
free energy F , which is an approximation of the model evidence, against
K. Figure 4.11 shows such a plot, and it can be seen that the free energy
for K = 1 is considerably lower than for higher values of K, since the
correct number of clusters is two. We also see that some of the trials of the
variational scheme get stuck in local optima, which is why we repeat the
variational Bayes scheme several times with random initial conditions for
each value of K.

On the other hand, the embedded clustering model consists not only of
the clustering part, but also includes the DCM part. Figure 4.12 shows
exemplary DCM connectivity parameter estimates µc,n for selected subjects
of both groups, along with the ground truth. DCM parameter estimates of
all subjects are shown in figures C.1 and C.2 in the appendix.

The error bars in figure 4.12 indicate two times the marginal standard devia-
tion, which is obtained by extracting the diagonal elements of Σn and taking
the square root. For each subject, we have subtracted the cluster mean µ̄k

from both the DCM parameter estimate µc,n and the ground truth, which
means that in the panels showing the DCM estimates, the baseline corre-
sponds to the curve shown in the bottom panel of each column. This is
done because, from the point of the DCM connectivity parameter θc,n, the
clustering model acts like a prior, since it is the parent node of θc,n in the
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Figure 4.12: DCM connectivity parameters estimates µc,n (#) and ground
truth (△) for selected subjects from group one (left column) and group two
(right column). Error bars correspond to two standard deviations. Baseline
in the upper panels correspond to the cluster mean µ̄k shown at the bottom
of the respective column. Detailed explanation see text.

graphical model (fig 4.8). And indeed, we can observe that the value of most
DCM parameter estimates is between the true value and the pseudo-prior
given by the baseline, which corresponds to the cluster mean. This is a
well-known behaviour of Bayesian inference techniques [17, 117].

However, the degree to which the estimates of the subjects are influenced by
the cluster mean varies substantially. For some subjects, the estimates are
almost in perfect agreement with the ground truth (e.g. subject number 37),
while for other subjects the estimates are drawn entirely to the cluster mean
(e.g. subject number 25). The reason for this variance is currently unknown
and will be subject to further investigation. On the other hand, the results
show that for most estimates, even those that are strongly influenced by
the cluster mean, the true value lies within two standard deviations of the
estimate.

Additionally, we have observed that the result of the variational approxima-
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tion to the embedded clustering model is relatively independent between the
two parts of the model. In particular, the clustering part can fail to identify
the two clusters as separate clusters when choosing extremely large values
for the prior parameter Σ̄k, which are more than two magnitudes larger than
the true cluster covariances. However, the DCM parameter estimates µc,n

are almost unaffected.

In addition to the variational distribution q, the variational Bayes scheme
also provides a value for the free energy F , which is a lower bound on
the model evidence, and which can be viewed as an approximation to the
evidence when maximized. Figure 4.13 shows the development of free energy
plotted against the iteration count over the course of a typical run of the
variational Bayes scheme.

A property of the update scheme introduced in section 2.4.2, which we ap-
plied to the embedded clustering model in section 4.5, is that with each
update step, the free energy is guaranteed to increase. And since F is a
lower bound, this is also the reason why the scheme is guaranteed to con-
verge. However, since we had to apply the Taylor approximation to the
g-function in the derivation of the update equations for the DCM parame-
ters (eq (4.65) to (4.66)) and the noise precision matrix (eq (4.75) to (4.76)),
these guarantees are not valid any more. This means that when evaluating
the update equations from section 4.5, the free energy can also decrease,
which we do observe in practice.

One possible reason for the occurrence of a decrease in F is related to the
stability of the bilinear DCM system equations (4.2). As noted in section 4.2,
every plausible configuration of the DCM connectivity parameters θc,n must
ensure that equation (4.2) is stable. However, if the value of θc,n causes
equation (4.2) to become unstable, the brain activity x and subsequently
the output of g will diverge. From a modelling point, the observation pro-
duced by a diverging system should be very implausible and receive a low
probability under the model. Thus, when the maximization algorithm for
F , which is a lower bound on the probability of the data, is working per-
fectly, it will automatically steer away from the unstable regions of θc,n. If
we remember that some of the update equations contain a first order ap-
proximation for g, what could be happening is that in places where g is
very nonlinear, the approximation is so inaccurate that the new values of
the parameters calculated from the update equations lead to an unstable
system with low probability, and consequently with low F .

In practice, we have observed that cases of decreasing free energy occur
more frequently with certain settings of the prior distribution. However,
we do not think that the prior itself is causing the decrease. Rather, we
believe that the prior is causing a preference for regions of parameter space
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Figure 4.13: Free energy versus iteration count. Top panel shows the entire
range of the free energy during the complete optimization process. Bottom
panel shows a close up of the free energy close to convergence.

which are closer to the unstable configurations of the system, such that the
phenomena described above would happen more frequently. Further tests
have to be conducted to confirm these assumptions and to understand how
to avoid the decrease in F during the update scheme.

4.7 Summary

In this chapter, we have discussed the embedded clustering problem along
with its solution via the variational Bayes scheme. Embedded clustering
provides a framework for unifying the estimation of effective brain connec-
tivity from fMRI data and the clustering of brain connectivity estimates for
group studies.

For the estimation of effective brain connectivity from fMRI data, we use
DCM, which has already been established as a reliable method for single
subject analysis [88]. In the embedded clustering framework, DCM based
estimation is combined with the mixture of Gaussians model for joint DCM
inversion and clustering via the variational Bayes approximation.

The main contribution of this chapter is the derivation of the variational
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update equations, which can be used to achieve an approximate inversion
of the embedded clustering model. These equations not only provide an
iterative approximation to the posterior density, but also provide a solution
for the maximization of the free energy of the system, which itself is a lower
bound of the model evidence. Another advantage of the variational Bayes
approximation is that the number of clusters is determined automatically,
which solves the model selection problem introduced in the clustering part
of the embedded clustering framework.

The solution is tested on artificial fMRI data, which provides ground truth
for both the brain connectivity parameters, as well as the cluster labels.
Preliminary analysis indicate that the variational approximation is able to
find the correct solution under most circumstances and that the connectiv-
ity estimates are relatively independent from the solution to the clustering
problem. This means that connectivity estimates can be correct, even when
the clustering fails. Extreme choices for the prior distributions can have an
impact on the convergence of the variational scheme, which can cause the
algorithm to either converge to a local maximum or to not converge at all.
However, in case of successful convergence, the variational Bayes scheme
presented here is several magnitudes faster than the Monte Carlo scheme
proposed for embedded clustering.



Chapter 5

Conclusion

In this thesis, we have discussed aspects of algorithm design, modelling and
the interaction between these two topics, with focus on applications in the
field of biomedical signal processing. We demonstrated these concepts on
two example modalities ballistocardiography (BCG) and functional mag-
netic resonance imaging (fMRI).

BCG is a method for recording mechanical heartbeat signals, which is cur-
rently a promising candidate modality for home monitoring scenarios. The
algorithms and modelling aspects discussed in chapter 3 include separation
of cardiac and respiratory BCG components, as well as deterministic mod-
elling of BCG for verifying the separation algorithm. From the verified result
of the BCG separation, we derived an improved BCG model, which is suit-
able for statistical inference. As an example, we demonstrated model-based
heartbeat detection in BCG via Markov chain Monte Carlo.

In chapter 4, we discussed fMRI applications in the context of embedded
clustering. The most common form of fMRI is the blood-oxygenation-level
dependent (BOLD) contrast, which relies on the dependency of the MR
signal on the concentration of deoxyhaemoglobin. Thus, the fMRI BOLD
signal is indirectly related to neuronal brain activity and is one the most
common non-invasive modality for functional brain studies.

In our discussion, fMRI BOLD provides the data basis for embedded clus-
tering, which unifies two concepts. On the one hand, we have dynamic
causal modelling (DCM), which provides a model for effective brain region
connectivity in the context of a psychological experiment. On the other
hand, we have mixture models, which can be used for unsupervised learning
applications, e.g. clustering a set of data points into clusters containing sim-
ilar data points. These two concepts are unified in the embedded clustering
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framework, where the effective brain region connectivity estimated via DCM
forms the input of a clustering model. The novel aspect is that the inversion
of the embedded clustering model will jointly invert the DCM and perform
the clustering in one step. Our contribution is the solution of the embedded
clustering problem via variational Bayes.

From an application centric viewpoint, we have discussed two different modal-
ities with very different applications in their respective fields of research.
BCG recording devices are mostly developed for an intended application in
home monitoring settings, which are characterized by an extremely noisy
and uncertain environment. This requires simple and robust sensors leading
to system which are very simple to describe but have limited sensing capabil-
ity. On the other hand, fMRI BOLD is a modality used in neuro-scientific or
psychological studies. They consist of highly sophisticated imaging devices
operated in a controlled environment, where the uncertainty originates from
the complex and indirect measurement principle. However, the discussion
in this thesis has shown that in both cases the uncertainty in the system
requires a model-based approach, irrespective of its origin.

When viewed from a modelling perspective many common aspects between
our treatment of the two modalities BCG and fMRI become clear. Both the
nonlinear dynamic BCG model and the DCM are based on system equa-
tions of the same mathematical form, where the latent state variables evolve
according to first order differential equations, while the observable, or its
derivative, is a function of the state variable:

ẋ = f(x,θ) (5.1)

y = g(x). (5.2)

This is one of the most fundamental models, which can be used to describe
any nonlinear dynamic systems [8] with static observation function, and its
versatility is proven through the fact that it can model both the BCG and
the DCM, which are fundamentally different in nature.

A second common methodological topic in the treatment of both modalities
is mixture modelling. We have seen that the mixture of Gaussians model
plays an important role in the embedded clustering framework, where it is
combined with DCM. In this context, the task of the mixture model is to
solve the unsupervised learning problem of clustering. However, mixture
models can also be applied to other problems, including density estimation.
A model developed for this purpose is the mixture of probabilistic principal
component analysers (PPCA).

Interestingly, the discussion in chapter 3 reveals a connection between the
mixture of PPCA and the locally projective noise reduction (LPNR) algo-
rithm used for BCG components separation: LPNR can be viewed as the
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non-parametric and non-probabilistic form of a mixture of PCA model. This
is remarkable, since no explicit modelling was involved in the development
of the LPNR algorithms, which comes from a purely nonlinear dynamics
background, without any machine learning influence.

This observation also serves as an example for one of the aspects mentioned
in the introduction of this thesis, namely that re-examining a method in the
light of a model-based viewpoint sometimes leads to reinterpretations, which
can suggest potential extensions of the method. In the case of LPNR, one
possibility is the extension to a non-parametric and probabilistic method,
indicated in the lower right corner of table 3.1, via the introduction of the
Dirichlet process [119]. At the same time, the Dirichlet process would also
lead to a non-parametric version of the embedded clustering model. Thus,
we see that also on the mixture modelling level, a model-based discussion
leads to an unified view on the two different modalities.

In addition to possible reinterpretations, other aspects of the interaction
between modelling and algorithm design mentioned in the introduction are
the verification of both algorithms and models, as well as the improvement
of models. The cycle from algorithm design to model-based verification to
model improvement was demonstrated for the BCG separation in chapter 3,
where the LPNR-based signal separation was validated using data generated
from the nonlinear dynamic BCG model. Based on the cardiac BCG com-
ponent extracted via LPNR, an improved, probabilistic and non-parametric
BCG model was developed, which was capable of supporting statistical in-
ference on BCG, thus closing the cycle. Figure 5.1 summarizes the relations
between all the methods and algorithms discussed in the context of the two
modalities BCG and fMRI.

In view of the numerous connections between BCG and fMRI which arise
from the model-oriented discussion in this thesis, it becomes clear that this
model-based approach provides a powerful, unifying viewpoint on aspects of
biosignal processing, which are seemingly unrelated. The potential behind
model-based analysis techniques has already been recognized in the field of
computational psychiatry, where it is seen as a new inter-disciplinary ap-
proach, which could potentially lead to new diagnostic tools [18]. However,
the results in this thesis indicate that it might sometimes even be worth to
step across the boundaries between different fields of research, similar to how
contributions from the nonlinear dynamics community demonstrated the ap-
plication of many modelling concepts from physics to important problems
in biology and medicine [8].

Aside from the topics mentioned above, we have also discussed a techni-
cal, but nonetheless important aspect which is approximate inference. Since
model-based signal processing is often aimed at deriving estimates of hid-
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Figure 5.1: Relationship between the models, algorithms and the two modal-
ities BCG and fMRI as discussed in this thesis.

den variables, i.e. variables which cannot be observed directly, from related
observable variables, also called data, it is necessary to invert the model.
For most models, inversion is not tractable, which means that approximate
solutions have to be found.

Within this thesis, we introduced and applied two methods for approximate
inference: Markov chain Monte Carlo and variational Bayes. Both meth-
ods have their root in statistical physics [16], with variational Bayes being
closely related to the mean field approximation [17]. Indeed, many concepts
and notions in statistical inference were initially borrowed from statistical
physics. This includes the concept of entropy in information theory [41], or
the idea of maximizing the variational free energy in the variational Bayes
framework, where the variational free energy as given in equation (2.28)
actually corresponds to the negative free energy in statistical physics [17].

In conclusion, we can state that the main contribution of this work is to
show that the model-based approach to algorithm design provides a powerful
framework for improving and extending methods in biosignal processing and
related fields. The interaction between algorithm design and modelling offers
benefits for both the signal processing community, as well as the modelling
community, by pointing out common aspects of algorithms and models on
many different levels.

On the application level, a model-oriented viewpoint can help to discover
that algorithms for different, seemingly unrelated modalities have a common,
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unifying basis. On a methodological level, we have shown how advances in
algorithm design can lead to new or improved models, while a model-based
view can lead to new insights into existing algorithms. Furthermore, on a
technical level, we see that the exchange of ideas and concepts between the
two unrelated fields of statistical physics and biosignal processing can lead to
solutions of previously intractable inference problems in biosignal analysis.

Looking forward, the contributions from this thesis form the basis for a
systematic, model-based approach to new and existing topics in biosignal
processing. As mentioned several times throughout the thesis, the exten-
sion of the embedded clustering model and the LPNR algorithm to their
respective non-parametric versions via the Dirichlet process is a promising
first step. However, the improvements offered by a consistent model-based
approach to biosignal analysis also opens the door to new applications, which
have not been considered up until now. This, of course, also requires that
powerful inference methods can be brought to bear on the problem.

A good example for such an application is the estimation of cardio-respiratory
synchronization from BCG data. As introduced in chapter 1, cardio-respira-
tory synchronization is a potential indicator for cardio-vascular health and
has been shown to be a very reliable predictor for sleep apnoea in infants [9,
10]. However, the assessment and quantification of cardio-respiratory syn-
chronization requires access to the cardiac and respiratory phase, which
normally necessitates the measurement of both ECG and respiratory effort.
In this context BCG offers a simple alternative, since it contains information
on both the cardiac and respiratory activity. On the other hand, even after
separation of the BCG components, extracting the cardiac and respiratory
phase is not a trivial task.

A potential solution to this problem could lie in a model-oriented approach
based on the nonlinear dynamic BCG model presented in chapter 3, which
contains cardiac and respiratory phase as hidden variables. Just as the em-
bedded clustering model combined DCM with a mixture model, combining
the BCG model with a model of synchronization between dynamic oscil-
lators and applying a powerful inference scheme can provide a way for es-
timating cardio-respiratory synchronization from non-invasive, unobtrusive
BCG recordings.

Although a detailed analysis of the framework described in the previous
paragraph, or similar methods, is outside the scope of this thesis, these
examples still serves as an insight into the potential that lies in the model-
based approach to biosignal analysis, for which the basis has been laid out
in this work.

In addition, the challenges presented by biosignals are also encountered in
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many other areas of research and application. These challenges include
low signal to noise ratio, high uncertainty of system or environment or the
presence of hidden variables. Thus, the methods and models developed in
this thesis are not restricted to biosignals, but can be applied to any field
which has to deal with similar problems.



Appendix A

Mathematical Basics

A.1 Introduction to Lagrange Multiplier

Lagrange multiplier is a method used to solve constraint optimization prob-
lems. This is best explained using a simple example: Given two functions
f(x1, x2) and g(x1, x2), the task is to maximize or minimize f with respect
to the two arguments x1 and x2 under the constraint g(x1, x2) = 0.

It can be shown that for points (x1, x2) which are solutions to the above
problem, there must exist a factor λ such that the following conditions are
satisfied [17]:

∂f(x1, x2)

∂x1
+ λ

∂g(x1, x2)

∂x1
= 0, (A.1)

∂f(x1, x2)

∂x2
+ λ

∂g(x1, x2)

∂x2
= 0 and (A.2)

g(x1, x2) = 0. (A.3)

We now introduce a function called the Lagrangian, which depends on the
eponymous Lagrange multiplier λ:

L(x1, x2, λ) = f(x1, x2) + λg(x1, x2). (A.4)

By setting the gradient of the Lagrangian to zero, we recover the above
conditions:

∂L(x1, x2, λ)
∂x1

=
∂f(x1, x2)

∂x1
+ λ

∂g(x1, x2)

∂x1
, (A.5)

∂L(x1, x2, λ)
∂x2

=
∂f(x1, x2)

∂x2
+ λ

∂g(x1, x2)

∂x2
and (A.6)
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∂L(x1, x2, λ)
∂λ

= g(x1, x2). (A.7)

Thus, we see that by finding the stationary points of the Lagrangian, we have
transformed the constrained optimization problem in two dimensions into
a regular unconstrained optimization problem in three dimensions, which
can be easily solved. In general, the Lagrange multiplier approach trans-
forms a p-dimensional optimization problem with q constrains into a p+ q-
dimensional unconstrained optimization problem [17].

A.1.1 Lagrange Multiplier for LPNR

The derivation of the LPNR algorithm in section 3.2.1 involves the mini-
mization of the average squared perturbation

L =

K
∑

k=1

Q
∑

q=1

(

aq(yk − x0)
)2

(A.8)

with respect to aq, under the constraints:

aq(xk − x0) = 0, (A.9)

‖aq‖ = 1 and (A.10)

aT
p aq = δpq (A.11)

for p, q = 1, . . . , Q and k = 1, . . . ,K. Here, δpq denotes the Kronecker delta
defined as:

δpq =

{

0 if p 6= q
1 if p = q.

(A.12)

The Lagrangian for this problem, with Lagrange multiplier λkq and µpq, is
given by:

L = L+
K
∑

k=1

Q
∑

q=1

λkqaq(xk − x0) +

Q
∑

p=1

Q
∑

q=1

µpq(a
T
p aq − δpq) (A.13)

and setting its gradient to zero leads to the solution that the vectors aq

are the eigenvectors of the matrix C which corresponds to the Q smallest
eigenvalues [57]. C is defined as:

C =
1

K

K
∑

k=1

(yk − x0)(yk − x0)
T , (A.14)

which we can identify as the covariance matrix of the delay vectors yk.
Note that the notation used here differs slightly from the notation in [57].
However, the two formulations are mathematically equivalent.
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A.2 The Gamma and Digamma Functions

Throughout the thesis, we have made use of the gamma function Γ(x) de-
fined by:

Γ(x) =

∞
∫

0

ux−1 exp(−u)du. (A.15)

The gamma function can be viewed as an extension of the factorial function
to real valued arguments and for integer n, we have Γ(n) = (n − 1)!. In
addition, it possesses the following property Γ(x+ 1) = xΓ(x) [16].

The digamma function Ψ(x) is defined as the derivative of the natural log-
arithm of the gamma function [73]:

Ψ(x) =
d

dx
log Γ(x). (A.16)

Since the variational Bayes scheme for embedded clustering requires us to
work a lot with the inverse Wishart distribution, we will introduce a shortcut
from [37] for the product of gamma functions in the normalization constant
of the inverse Wishart distribution. This will help to significantly improve
readability of some formulas.

Γp(ν) = πp(p−1)/4
p
∏

i=1

Γ
(ν + 1− i

2

)

. (A.17)

Furthermore, we will define a shortcut for the sum of digamma functions:

Ψp(ν) =

p
∑

i=1

Ψ
(ν + 1− i

2

)

. (A.18)

A.3 Important Probability Distributions

In this section, we will introduce important probability distributions, which
are used throughout this thesis. Each description consists of a short com-
ment on the distribution, as well as a mathematical description of the func-
tional form and formulas for the first and second moments.

The Categorical Distribution

The categorical distribution is a discrete distribution over a fixed number
of cases. It is often used to describe the class or category label in finite
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mixture models, where a data point belongs to one of K possible classes or
categories. This distribution is parameterized by a single vector π of length
K containing real positive entries, which must sum to one. Its functional
form is given by [117]:

p(d=k|π) = πk, k = 1, . . . ,K (A.19)

π = (π1, . . . , πK)T . (A.20)

The Dirichlet Distribution

The Dirichlet distribution D(π|α) is a distribution over vectors of a fixed
dimension K which contain elements that are constrained to be positive and
sum to one. In other words, the Dirichlet distribution is a distribution over
the kind of probability vectors which are used as parameters for categorical
distributions. As such, Dirichlet distributions are often used as prior distri-
butions for the parameters of categorical distributions. The parameter of the
Dirichlet distribution is a vector α of the same dimension as its argument
π that contains positive, but not necessarily normalized elements αk, which
can be interpreted as number of pseudo observations for each category [117].

D(π|α) =
Γ(
∑K

k=1 αk))
∏K

k=1 Γ(αk)

K
∏

k=1

παk−1
k , for πk ≥ 0 and

K
∑

k=1

πk = 1. (A.21)

First moment:
〈π〉 = α

∑K
k=1 αk

. (A.22)

Other moments [17]:

〈log πk〉 = Ψ
(

αk

)

−Ψ
(

K
∑

k=1

αk

)

. (A.23)

The Gamma Distribution

The gamma distribution Gam(x|a, b) is the equivalent of the normal distribu-
tion for positive real numbers x > 0. It is the conjugate prior of the precision
parameter of a one-dimensional Gaussian distribution. The gamma distri-
bution is parameterized by two positive real numbers: the shape parameter
a and the inverse scale parameter b [117].

Gam(x|a, b, ) = ba

Γ(a)
xa−1 exp(−bx). (A.24)

First moment:
〈x〉 = a

b
. (A.25)
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The Gaussian Distribution

The Gaussian distribution N (x|µ,Σ), also known as the normal distribu-
tion, is possibly the most well-known probability distribution, aside from the
uniform distribution. It is defined over real vectors x (multivariate case) of
fixed dimension D, and is parameterized by a mean vector µ and a positive
definite covariance matrix Σ. Among many other properties, the Gaussian
distribution is fully described by its first two moments [117].

N (x|µ,Σ) = 1
√

|2πΣ|
exp

(

− 1

2
(x− µ)TΣ−1(x− µ)

)

. (A.26)

First moment:

〈x〉 = µ. (A.27)

Second moment:
〈

(x− µ)(x− µ)T
〉

= Σ. (A.28)

The inverse Gaussian Distribution

The inverse Gaussian (IG) distribution IG(t|µ, λ) is a probability distribu-
tion with support over the non-negative real numbers, similar to the gamma
distribution. It is the distribution of the first crossing time of a Gaussian
random walk with drift [94] and has been used primarily as a model for fail-
ure time, but also as a model for heartbeat intervals [95]. The probability
density function of the IG distribution, which has two parameters: mean µ
and scale λ, is given by [73]:

IG(x|µ, λ) =
√

λ

2πx3
exp

(

− λ

2µ2x
(x− µ)2

)

, (A.29)

and the cumulative distribution function is given by [73]:

IG′(x|µ, λ) = 1

2

(

1+erf
(

√

λ

2x

(x

µ
−1
)

)

)

+
exp

(

2λ
µ

)

2

(

1−erf
(

√

λ

2x

(x

µ
+1
)

)

)

.

(A.30)
Here, erf(·) denotes the error function obtained by integrating the scalar
normal distribution:

erf(x) =
2√
π

x
∫

0

exp(−t2)dt. (A.31)
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The Inverse Wishart Distribution

The inverse Wishart distributionW−1(X|S, ν) is a distribution over positive
definite p × p matrices, which is often used as a conjugate prior on the
covariance of a normal distribution. The two parameters are the scale matrix
S of size p × p and the degrees of freedom ν, which can be interpreted as
the number of pseudo observations contributed by the prior [117].

W−1(X|S, ν) = |S|ν/2
2νk/2Γp(ν)

exp
(

− 1
2 tr(SX

−1)
)

|X|(ν+p+1)/2
, (A.32)

where the definition of the shortcut Γp(ν) is given above in equation (A.17).
First moment [117]:

〈X〉 = S

ν − p− 1
. (A.33)

Other moments [37]:

〈X−1〉 = νS−1 (A.34)

〈log |X|〉 = log |S/2| −Ψp(ν), (A.35)

with Ψp(ν) being defined in equation (A.18).

The Normal-Inverse Wishart Distribution

The normal-inverse Wishart distribution is a combination of a multivariate
Gaussian distribution with an inverse Wishart distribution of matching di-
mension, which defines a joint distribution over the mean and covariance
of a Gaussian distribution. It is often used as a conjugate prior over the
parameters of a normal distribution [16]. The functional form of the dis-
tribution is governed by four parameters: a p-dimensional vector m, two
scalars τ and ν and the p× p-matrix S.

p(µ,Σ|m, τ, ν, S) = N (µ|m,Σ/τ)W−1(Σ|S, ν). (A.36)

First and higher order moments [37, 117]:

〈µ〉 = m (A.37)

〈X−1µ〉 = νS−1m (A.38)

〈µTX−1µ〉 = p

τ
+ νmTS−1m. (A.39)



Appendix B

Details of the MCMC Based

BCG Beat Detection

In this chapter, we describe the MCMC scheme used in section 3.5.2 to infer
the heartbeat times from BCG recordings and derive the acceptance ratios
which are needed for satisfying the detailed balance condition. The version
of the algorithm, which we proposed in [86], uses the GPML toolbox for
Matlab [121] for the Gaussian process related calculations and custom code,
also written in Matlab, for the MCMC related operations.

The basics of MCMC are provided in section 2.4.1. The method works by
proposing new samples, which depend on the old sample, based on a proposal
density q(s′; s). The proposal are either accepted or declined according to
the acceptance probability given in equation (2.19).

The challenge in our method lies in the structure of the samples, which
are vectors of heartbeat times. The number of heartbeats can vary, which
means that we need to design a proposal scheme which explores samples of
different sizes. In our solution, we mix proposals of three different types,
with different proposal densities, which are derived in the following.

In case of the BCG model, the current sample s = (t1, . . . , tb, . . . , tB) and the
proposal s′ = (t′1, . . . , t

′
b, . . . , t

′
B′) consist of a vectors of B and B′ heartbeats,

respectively. Beat intervals in state and proposal are defined as ∆tb =
tb+1 − tb and ∆t′b = t′b+1 − t′b. For the purpose of difference calculation,
let t0 = tmin and tB+1 = tmax correspond to the beginning and end of the
observation interval. To calculate the acceptance probability, we need the
joint distribution p(y, s) over observed BCG y and the sample s or s′, which
is given in logarithmic form by equation (3.45).
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First type: shift
Given the old sample s, chose a beat tb and perturb its position without
changing the overall order of beats in s. For this purpose we define

T = tb+1 − tb−1 and (B.1)

τ =
1

T
(∆tb−1,∆tb)

T . (B.2)

We then draw a random vector from a mixture of Dirichlet distributions:

τ ′ ∼ π1D(τ ′|α1τ ) + π2D(τ ′|α2τ ), (B.3)

where π1 and π2 = 1 − π1 are the mixture coefficients, and α1 and α2 are
parameters controlling the inverse step size. Finally, the new beat intervals
are given by scaling τ ′:

(∆t′b−1,∆t′b)
T = τ ′T, (B.4)

and the proposal s′ is given by t′i = ti for i= 1, . . . , B, i 6=b and t′b = tb−1 +
∆t′b−1. The proposal density is:

q(s′; s) =
1

T
(π1D(τ ′|α1τ ) + π2D(τ ′|α2τ )), (B.5)

which needs to be plugged into equation (2.19) for the acceptance ratio:

a = min
(

1,
p(y, s′)

p(y, s)

π1D(τ |α1τ
′) + π2D(τ |α2τ

′)

π1D(τ ′|α1τ ) + π2D(τ ′|α2τ )

)

. (B.6)

Second type: split
Given the old sample, choose a beat tb and split it into two consecutive
beats. T is defined as above. In addition, we define αs = (αs, αs, αs)

T /3,
where αs is an inverse step size parameter. We draw τ ′, which is now a
three-dimensional random vector, from a Dirichlet distribution

τ ′ ∼ D(τ ′|αs), (B.7)

and obtain the new beat intervals via scaling:

(∆t′b−1,∆t′b,∆t′b+1)
T = τ ′T. (B.8)
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The proposal s′ = (t′1, . . . , t
′
B+1) now contains an additional beat:

t′1 = t1
...

t′b−1 = tb−1

t′b = tb−1 +∆tb−1

t′b+1 = tb +∆tb

t′b+2 = tb+1

...

t′B+1 = tB.

The proposal density is given:

q(s′; s) =
fsplit
T
D(τ ′|αs), (B.9)

where fsplit is the frequency of occurrence of split type proposals relative
to the other proposals types. Due to mixing different proposal types, the
acceptance probability for split proposals

a = min
(

1,
p(y, s′)

p(y, s)

fmergeD(τ |αm)

fsplitD(τ ′|αs)

)

(B.10)

depends on the proposal density of merge proposals described below. fmerge

is the frequency of occurrence of merge type proposals. And to simplify the
algorithm, fmerge can be chosen equal to fsplit.

Third type: merge
Given the old sample s, choose tb among the first B − 1 beats and merge it
with the following beat tb+1. This time we define T = tb+2− tb−1 and αm =
(αm, αm)T /2. We draw τ ′ from a two-dimensional Dirichlet distribution and
obtain the new beat intervals via scaling:

τ ′ ∼ D(τ ′|αm) (B.11)

(∆t′b−1,∆t′b)
T = τ ′T. (B.12)

The proposal contains one beat less than the old sample:

t′1 = t1
...

t′b−1 = tb−1

t′b = tb−1 +∆tb−1
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t′b+1 = tb+2

...

t′B−1 = tB,

and the proposal density is given by:

q(s′; s) =
fmerge

T
D(τ ′|αm).

Defining τ = (∆tb−1,∆tb,∆tb+1)
T /T , the acceptance probability is:

a = min
(

1,
p(y, s′)

p(y, s)

fsplitD(τ |αs)

fmergeD(τ ′|αm)

)

.

When running the MCMC scheme, we need to cycle through the three pro-
posal types, where the shift proposal is responsible for exploring different
positions of the heartbeats, while split and merge type proposals are respon-
sible for exploring different numbers of beats.
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Embedded Clustering

C.1 Solution of Integrals in the Update Equations

In this section, we will solve the integrals encountered during the deriva-
tion of the variational Bayes update equations for the embedded clustering
framework in section 4.5.

Cluster parameters:

The derivation of the variational distribution over the cluster parameters
q(µk,Σk) in equation (4.48) contains the integral:

∫

θc,n

q(θc,n) log p(θc,n|dn = k,µk,Σk)dθc,n. (C.1)

Plugging in the definition of p(θc,n|dn = k,µk,Σk) from section 4.5, we have:
∫

θc,n

q(θc,n)(θc,n − µk)
TΣ−1

k (θc,n − µk)dθc,n −
1

2
log |Σk|, (C.2)

and after expanding and reordering, the integral splits up into three parts:
∫

θc,n

q(θc,n) tr(Σ
−1
k (θc,n − µc,n)(θc,n − µc,n)

T )dθc,n, (C.3)

−2
∫

θc,n

q(θc,n)(θc,n − µc,n)
TΣ−1

k (µc,n − µk)dθc,n and (C.4)

∫

θc,n

q(θc,n)(µc,n − µk)
TΣ−1

k (µc,n − µk)dθc,n. (C.5)
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Since q(θc,n) is a Gaussian distribution with mean µc,n and covariance Σc,n,
the solution to the three parts are given by:

tr(Σ−1
k Σcn), (C.6)

0 and (C.7)

(µcn − µk)
TΣ−1

k (µcn − µk). (C.8)

Thus, the solution to the integral in equation (C.1) is:

tr(Σ−1
k Σcn) + (µcn − µk)

TΣ−1
k (µcn − µk)−

1

2
log |Σk|. (C.9)

Cluster labels:

The formula for the variational distribution over the cluster labels q(dn =
k) = qnk (eq (4.59)) contains two integrals:

∫

q(π) log πkdπ and (C.10)
∫

q(θc,n)

∫

q(µk,Σk) log p(θc,n|dn=k,µk,Σk)dµkdΣk dθc,n. (C.11)

Since q(π) is a Dirichlet distribution, the first integral is nothing else than
the expectation of log πk with respect to the Dirichlet distribution, which is
given in equation (A.23):

∫

q(π) log πkdπ = Ψ
(

αk

)

−Ψ
(

K
∑

k=1

αk

)

(C.12)

The second integral is a double integral, consisting of an inner and an outer
integral. The inner integral is given by:

∫

q(µk,Σk) log p(θc,n|dn=k,µk,Σk)dµkdΣk (C.13)

=

∫

q(µk,Σk)
(

− pc
2
log 2π − 1

2
log |Σk|

− 1

2
(θc,n − µk)

TΣ−1
k (θc,n − µk)

)

dµkdΣk (C.14)

=− pc
2
log 2π − 1

2

∫

q(µk,Σk) log |Σk|dµkdΣk

− 1

2

∫

q(µk,Σk)(θc,n − µk)
TΣ−1

k (θc,n − µk)dµkdΣk, (C.15)

where we have plugged in the definition of log p(θc,n|dn= k,µk,Σk) on the
second line. Since q(µk,Σk) is given by a normal-inverse Wishart distri-
bution N (µk|µ̄k,Σk/τk)W−1(Σk|Σ̄k, νk), we recognize the last two terms
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in equation (C.15) as moments of the normal-inverse Wishart distribution,
which are given in equations (A.33) to (A.39).

Plugging the solution of equation (C.15) back into the outer integral in
equation (C.11), we have:

∫

θc,n

q(θc,n)
(

− 1

2
log |Σ̄k| −

pc
2
log π +

1

2
Ψpc(νk)

− pc
2τk
− νk

2
(θc,n − µ̄k)

T Σ̄−1
k (θc,n − µ̄k)

)

dθc,n (C.16)

= −1

2
log |Σ̄k| −

pc
2
log π +

1

2
Ψpc(νk)−

pc
2τk

− νk
2

∫

θc,n

q(θc,n)(θc,n − µ̄k)
T Σ̄−1

k (θc,n − µ̄k)dθc,n. (C.17)

The integral in the last line is identical to the one in equation (C.2), which
has already been solved. Thus, the final result for the double integral in
equation (C.11) is:

− 1

2
log |Σ̄k|+

1

2
Ψpc(νk)−

pc
2τk
− νk

2
tr(Σ̄−1

k Σc,n)

− νk
2
(µc,n − µ̄k)

T Σ̄−1
k (µc;n − µ̄k) + const. (C.18)

DCM parameters:

The derivation for the variational distribution over the DCM parameters
q(θn) in equation (4.64) contains the two integrals

∫

q(Λn)
(

yn − g(θn)
)T

Λn

(

yn − g(θn)
)

dΛn and (C.19)
∫

q(µk,Σk) log p(θc,n|dn=k,µk,Σk)dµkdΣk. (C.20)

As mentioned in section 4.5, we will apply a Taylor approximation to the
nonlinear function g:

yn − g(θn) ≈ yn − g(µn) +
∂g(µn)

∂θn
(θn − µn) (C.21)

≈ εn +Gn(θn − µn), (C.22)

where we have chosen the expansion point to be the mean µn of q(θn). Plug-
ging in this approximation and taking advantage of the diagonal structure
of Λn detailed in section 4.2 (eq (4.10)), the integral in equation (C.19) can
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be rewritten as:

R
∑

r=1

∫

λr,n

q(λr,n)λr,n

(

yn − g(θn)
)T

Qr

(

yn − g(θn)
)

dλr,n (C.23)

=
R
∑

r=1

λ̄r,n

(

yn − g(θn)
)T

Qr

(

yn − g(θn)
)

(C.24)

≈
(

εn −Gn(θn − µn)
)T

Λ̄n

(

εn −Gn(θn − µn)
)

(C.25)

≈θT
nG

T
n Λ̄nGnθn + 2θT

nG
T
n Λ̄n(εn +Gnµn) + const, (C.26)

where λ̄r,n and Λ̄n are the mean region noise precision and mean subject
noise precision matrix, defined in equations (4.79) and (4.81), respectively.

Plugging the definition of p(θc,n|dn = k,µk,Σk) from equation (4.30) into
the second integral in equation (C.20), we obtain:

∫

q(µk,Σk)(θc,n − µk)
TΣ−1

k (θc,n − µk)dµkdΣk + const. (C.27)

The solution for this integral is given by [37] as:

θT
c,nνkΣ̄

−1
k θc,n + 2θT

c,nνkΣ̄
−1
k µ̄k + const. (C.28)

The update equations (4.65) to (4.66) are obtained by plugging the solu-
tions (C.26) and (C.28) back into equation (4.64) and comparing the re-
sulting expression with the logarithmic form of the Gaussian distribution
(eq A.26).

Noise precision:

The variational distribution over the noise precision q({λr,n}) in equation (4.71)
requires the solution of:

∫

θn

q(θn)
(

yn − g(θn)
)T

Qr

(

yn − g(θn)
)

dθn. (C.29)

After applying the Taylor approximation from equation (C.22) and rear-
ranging the terms, we obtain:

∫

θn

q(θn)
(

εTnQrεn − 2Gn(θn − µn)
TQrεn

+ tr
(

GT
nQrGn(θn − µn)(θn − µn)

T
)

)

dθn (C.30)
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Considering that q(θn) is given by a Gaussian distribution with mean µn

and covariance Σn, the solution to the integral above is given by:

εTnQrεn + tr
(

GT
nQrGnΣn

)

. (C.31)

C.2 DCM Parameter Estimates

Below, we provide figures showing the estimates of the DCM connectivity
parameters µc,n for all subjects obtained via the variational Bayes approxi-
mation to the embedded clustering framework. A detailed analysis of these
results is provided in section 4.6.



Figure C.1: DCM parameter estimates µc,n (#) and ground truth θc (△) for subjects of group one. Error bars correspond
to two standard deviations. Baseline in all panels correspond to the cluster mean µk shown in the lower right panel. See
page 130 for detailed analysis.



Figure C.2: DCM parameter estimates µc,n (#) and ground truth θc (△) for subjects of group two. Error bars correspond
to two standard deviations. Baseline in all panels correspond to the cluster mean µk shown in the lower right panel. See
page 130 for detailed analysis.
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[19] A. Klümper, R. Raupach, and F. Schönfeld, “Finite temperature
density-matrix-renormalization-group investigation of the spin-peierls
transition in CuGeO3,” Physical Review B, vol. 59, no. 5, pp. 3612–
3616, 1999.



BIBLIOGRAPHY 161
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