000020390 001__ 20390
000020390 005__ 20210129210747.0
000020390 0247_ $$2pmid$$apmid:22404658
000020390 0247_ $$2pmc$$apmc:PMC3406228
000020390 0247_ $$2DOI$$a10.3109/15622975.2012.662282
000020390 0247_ $$2WOS$$aWOS:000332798400004
000020390 0247_ $$2altmetric$$aaltmetric:642525
000020390 037__ $$aPreJuSER-20390
000020390 041__ $$aENG
000020390 082__ $$a610
000020390 1001_ $$0P:(DE-HGF)0$$aSchulze, T.G.$$b0
000020390 245__ $$aMolecular genetic overlap in bipolar disorder, schizophrenia, and major depressive disorder
000020390 260__ $$aLondon [u.a.]$$bInforma Healthcare$$c2014
000020390 300__ $$a00
000020390 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020390 3367_ $$2DataCite$$aOutput Types/Journal article
000020390 3367_ $$00$$2EndNote$$aJournal Article
000020390 3367_ $$2BibTeX$$aARTICLE
000020390 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020390 3367_ $$2DRIVER$$aarticle
000020390 440_0 $$024041$$aWorld Journal of Biological Psychiatry$$v00$$x1562-2975$$y00
000020390 500__ $$aRecord converted from VDB: 12.11.2012
000020390 520__ $$aObjectives. Genome-wide association studies (GWAS) in complex phenotypes, including psychiatric disorders, have yielded many replicated findings, yet individual markers account for only a small fraction of the inherited differences in risk. We tested the performance of polygenic models in discriminating between cases and healthy controls and among cases with distinct psychiatric diagnoses. Methods. GWAS results in bipolar disorder (BD), major depressive disorder (MDD), schizophrenia (SZ), and Parkinson's disease (PD) were used to assign weights to individual alleles, based on odds ratios. These weights were used to calculate allele scores for individual cases and controls in independent samples, summing across many single nucleotide polymorphisms (SNPs). How well allele scores discriminated between cases and controls and between cases with different disorders was tested by logistic regression. Results. Large sets of SNPs were needed to achieve even modest discrimination between cases and controls. The most informative SNPs were overlapping in BD, SZ, and MDD, with correlated effect sizes. Little or no overlap was seen between allele scores for psychiatric disorders and those for PD. Conclusions. BD, SZ, and MDD all share a similar polygenic component, but the polygenic models tested lack discriminative accuracy and are unlikely to be useful for clinical diagnosis.
000020390 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000020390 536__ $$0G:(DE-HGF)POF2-89571$$a89571 - Connectivity and Activity (POF2-89571)$$cPOF2-89571$$fPOF II T$$x1
000020390 588__ $$aDataset connected to Pubmed
000020390 7001_ $$0P:(DE-HGF)0$$aAkula, N.$$b1
000020390 7001_ $$0P:(DE-HGF)0$$aBreuer, R.$$b2
000020390 7001_ $$0P:(DE-HGF)0$$aSteele, J.$$b3
000020390 7001_ $$0P:(DE-HGF)0$$aNalls, M.A.$$b4
000020390 7001_ $$0P:(DE-HGF)0$$aSingleton, A.B.$$b5
000020390 7001_ $$0P:(DE-HGF)0$$aDegenhardt, F.A.$$b6
000020390 7001_ $$0P:(DE-HGF)0$$aNöthen, M.M.$$b7
000020390 7001_ $$0P:(DE-Juel1)VDB92668$$aCichon, S.$$b8$$uFZJ
000020390 7001_ $$0P:(DE-HGF)0$$aRietschel, M.$$b9
000020390 7001_ $$0P:(DE-HGF)0$$aMcMahon, F.J.$$b10
000020390 773__ $$0PERI:(DE-600)2170223-8$$a10.3109/15622975.2012.662282$$gp. 00$$n3$$p200-208$$tThe @world journal of biological psychiatry$$v15$$x1562-2975$$y2014
000020390 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3406228
000020390 909CO $$ooai:juser.fz-juelich.de:20390$$pVDB
000020390 9141_ $$aPosted online on March 9, 2012.$$y2012
000020390 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020390 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review
000020390 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020390 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020390 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020390 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020390 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020390 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020390 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000020390 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020390 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000020390 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000020390 9132_ $$0G:(DE-HGF)POF3-571$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vConnectivity and Activity$$x0
000020390 9131_ $$0G:(DE-HGF)POF2-89571$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vConnectivity and Activity$$x1
000020390 9201_ $$0I:(DE-Juel1)INM-1-20090406$$gINM$$kINM-1$$lStrukturelle und funktionelle Organisation des Gehirns$$x0
000020390 970__ $$aVDB:(DE-Juel1)135882
000020390 980__ $$aVDB
000020390 980__ $$aConvertedRecord
000020390 980__ $$ajournal
000020390 980__ $$aI:(DE-Juel1)INM-1-20090406
000020390 980__ $$aUNRESTRICTED