001     203911
005     20210129220413.0
024 7 _ |a 10.1016/j.phpro.2015.07.109
|2 doi
024 7 _ |a 2128/9348
|2 Handle
024 7 _ |a WOS:000380514400010
|2 WOS
037 _ _ |a FZJ-2015-05452
041 _ _ |a English
082 _ _ |a 530
100 1 _ |a Hall, J. S.
|0 P:(DE-Juel1)164132
|b 0
245 _ _ |a A Study of Spanning Trees on a D-Wave Quantum Computer
260 _ _ |a Amsterdam [u.a.]
|c 2015
|b Elsevier
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1445493329_1449
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a The performance of a 496 qubit D-Wave Two quantum computer was investigated for spanning tree problems. The chip has a Chimera interaction graph G, an 8x8 lattice of clusters of eight qubits. Problem input consists of values for the fields hj and for the two-qubit interactions Ji,j of an Ising spin-glass problem formulated on G. Output is returned in terms of a spin configuration {sj}, with sj = ±1. A tree is a connected, undirected subgraph of G that contains no cycles, and a spanning tree is a tree which includes all of the vertices of G. We generated random spanning trees (RSTs), uniformly distributed over all spanning trees of G. One hundred RSTs with random Ji,j = {-1,1} and hj = 0 were generated on the full 8x8 graph G of the chip. Each RST problem was solved up to one hundred times and the number of times the ground state energy was found was recorded. This procedure was repeated for square subgraphs G′, thereby providing results for portions of the chip with dimensions ranging from 2x2 to 8x8.
536 _ _ |a 511 - Computational Science and Mathematical Methods (POF3-511)
|0 G:(DE-HGF)POF3-511
|c POF3-511
|f POF III
|x 0
588 _ _ |a Dataset connected to CrossRef
700 1 _ |a Novotny, M. A.
|0 P:(DE-HGF)0
|b 1
|e Corresponding author
700 1 _ |a Neuhaus, T.
|0 P:(DE-Juel1)132210
|b 2
700 1 _ |a Michielsen, Kristel
|0 P:(DE-Juel1)138295
|b 3
773 _ _ |a 10.1016/j.phpro.2015.07.109
|g Vol. 68, p. 56 - 60
|0 PERI:(DE-600)2455598-8
|p 56 - 60
|t Physics procedia
|v 68
|y 2015
|x 1875-3892
856 4 _ |u https://juser.fz-juelich.de/record/203911/files/1-s2.0-S1875389215007191-main.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203911/files/1-s2.0-S1875389215007191-main.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203911/files/1-s2.0-S1875389215007191-main.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203911/files/1-s2.0-S1875389215007191-main.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203911/files/1-s2.0-S1875389215007191-main.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/203911/files/1-s2.0-S1875389215007191-main.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:203911
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 2
|6 P:(DE-Juel1)132210
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 3
|6 P:(DE-Juel1)138295
913 1 _ |a DE-HGF
|b Key Technologies
|1 G:(DE-HGF)POF3-510
|0 G:(DE-HGF)POF3-511
|2 G:(DE-HGF)POF3-500
|v Computational Science and Mathematical Methods
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|l Supercomputing & Big Data
914 1 _ |y 2015
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|k JSC
|l Jülich Supercomputing Center
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED
980 1 _ |a FullTexts


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21