000002040 001__ 2040 000002040 005__ 20240610115419.0 000002040 0247_ $$2DOI$$a10.1209/0295-5075/85/38002 000002040 0247_ $$2WOS$$aWOS:000263693200025 000002040 0247_ $$2ISSN$$a0295-5075 000002040 0247_ $$2Handle$$a2128/22825 000002040 037__ $$aPreJuSER-2040 000002040 041__ $$aeng 000002040 082__ $$a530 000002040 084__ $$2WoS$$aPhysics, Multidisciplinary 000002040 1001_ $$0P:(DE-Juel1)130629$$aElgeti, J.$$b0$$uFZJ 000002040 245__ $$aSelf-Propelled Rods near Surfaces 000002040 260__ $$aLes Ulis$$bEDP Sciences$$c2009 000002040 300__ $$a38002 000002040 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000002040 3367_ $$2DataCite$$aOutput Types/Journal article 000002040 3367_ $$00$$2EndNote$$aJournal Article 000002040 3367_ $$2BibTeX$$aARTICLE 000002040 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000002040 3367_ $$2DRIVER$$aarticle 000002040 440_0 $$01996$$aEurophysics Letters$$v85$$x0295-5075 000002040 500__ $$aRecord converted from VDB: 12.11.2012 000002040 520__ $$aWe study the behavior of self-propelled nano-and micro-rods in three dimensions, confined between two parallel walls, by simulations and scaling arguments. Our simulations include thermal fluctuations and hydrodynamic interactions, which are both relevant for the dynamical behavior at nano-to micro-meter length scales. In order to investigate the importance of hydrodynamic interactions, we also perform Brownian-dynamics-like simulations. In both cases, we find that self-propelled rods display a strong surface excess in confined geometries. An analogy with semi-flexible polymers is employed to derive scaling laws for the dependence on the wall distance, the rod length, and the propulsive force. The simulation data confirm the scaling predictions. Copyright (C) EPLA, 2009 000002040 536__ $$0G:(DE-Juel1)FUEK414$$2G:(DE-HGF)$$aKondensierte Materie$$cP54$$x0 000002040 588__ $$aDataset connected to Web of Science 000002040 650_7 $$2WoSType$$aJ 000002040 7001_ $$0P:(DE-Juel1)130665$$aGompper, G.$$b1$$uFZJ 000002040 773__ $$0PERI:(DE-600)1465366-7$$a10.1209/0295-5075/85/38002$$gVol. 85, p. 38002$$p38002$$q85<38002$$tepl$$v85$$x0295-5075$$y2009 000002040 8567_ $$uhttp://dx.doi.org/10.1209/0295-5075/85/38002 000002040 8564_ $$uhttps://juser.fz-juelich.de/record/2040/files/0901.2041.pdf$$yOpenAccess 000002040 8564_ $$uhttps://juser.fz-juelich.de/record/2040/files/0901.2041.pdf?subformat=pdfa$$xpdfa$$yOpenAccess 000002040 909CO $$ooai:juser.fz-juelich.de:2040$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire 000002040 9131_ $$0G:(DE-Juel1)FUEK414$$bMaterie$$kP54$$lKondensierte Materie$$vKondensierte Materie$$x0$$zentfällt bis 2009 000002040 9141_ $$y2009 000002040 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000002040 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000002040 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000002040 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000002040 915__ $$0StatID:(DE-HGF)0020$$2StatID$$aNo Peer review 000002040 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000002040 9201_ $$0I:(DE-Juel1)VDB782$$d31.12.2010$$gIFF$$kIFF-2$$lTheorie der Weichen Materie und Biophysik$$x0 000002040 9201_ $$0I:(DE-82)080012_20140620$$gJARA$$kJARA-HPC$$lJülich Aachen Research Alliance - High-Performance Computing$$x1 000002040 970__ $$aVDB:(DE-Juel1)104431 000002040 9801_ $$aFullTexts 000002040 980__ $$aVDB 000002040 980__ $$aConvertedRecord 000002040 980__ $$ajournal 000002040 980__ $$aI:(DE-Juel1)ICS-2-20110106 000002040 980__ $$aI:(DE-82)080012_20140620 000002040 980__ $$aUNRESTRICTED 000002040 981__ $$aI:(DE-Juel1)IBI-5-20200312 000002040 981__ $$aI:(DE-Juel1)IAS-2-20090406 000002040 981__ $$aI:(DE-Juel1)ICS-2-20110106 000002040 981__ $$aI:(DE-Juel1)VDB1346