001     2040
005     20240610115419.0
024 7 _ |a 10.1209/0295-5075/85/38002
|2 DOI
024 7 _ |a WOS:000263693200025
|2 WOS
024 7 _ |a 0295-5075
|2 ISSN
024 7 _ |a 2128/22825
|2 Handle
037 _ _ |a PreJuSER-2040
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Elgeti, J.
|b 0
|u FZJ
|0 P:(DE-Juel1)130629
245 _ _ |a Self-Propelled Rods near Surfaces
260 _ _ |c 2009
|a Les Ulis
|b EDP Sciences
300 _ _ |a 38002
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Europhysics Letters
|x 0295-5075
|0 1996
|v 85
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a We study the behavior of self-propelled nano-and micro-rods in three dimensions, confined between two parallel walls, by simulations and scaling arguments. Our simulations include thermal fluctuations and hydrodynamic interactions, which are both relevant for the dynamical behavior at nano-to micro-meter length scales. In order to investigate the importance of hydrodynamic interactions, we also perform Brownian-dynamics-like simulations. In both cases, we find that self-propelled rods display a strong surface excess in confined geometries. An analogy with semi-flexible polymers is employed to derive scaling laws for the dependence on the wall distance, the rod length, and the propulsive force. The simulation data confirm the scaling predictions. Copyright (C) EPLA, 2009
536 _ _ |a Kondensierte Materie
|c P54
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK414
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Gompper, G.
|b 1
|u FZJ
|0 P:(DE-Juel1)130665
773 _ _ |a 10.1209/0295-5075/85/38002
|g Vol. 85, p. 38002
|0 PERI:(DE-600)1465366-7
|q 85<38002
|p 38002
|t epl
|v 85
|y 2009
|x 0295-5075
856 7 _ |u http://dx.doi.org/10.1209/0295-5075/85/38002
856 4 _ |u https://juser.fz-juelich.de/record/2040/files/0901.2041.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/2040/files/0901.2041.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:2040
|p openaire
|p open_access
|p VDB
|p driver
|p dnbdelivery
913 1 _ |k P54
|v Kondensierte Materie
|l Kondensierte Materie
|b Materie
|z entfällt bis 2009
|0 G:(DE-Juel1)FUEK414
|x 0
914 1 _ |y 2009
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a No Peer review
|0 StatID:(DE-HGF)0020
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
920 1 _ |d 31.12.2010
|g IFF
|k IFF-2
|l Theorie der Weichen Materie und Biophysik
|0 I:(DE-Juel1)VDB782
|x 0
920 1 _ |0 I:(DE-82)080012_20140620
|k JARA-HPC
|l Jülich Aachen Research Alliance - High-Performance Computing
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)104431
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a I:(DE-82)080012_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406
981 _ _ |a I:(DE-Juel1)ICS-2-20110106
981 _ _ |a I:(DE-Juel1)VDB1346


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21