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1 A brief history of x-ray and neutron scattering 
  “If I have seen further it is by standing on the shoulders of giants. 
  (Sir Isaac Newton, 1643 - 1727)”.  
 
A discovery made exactly 100 years ago revolutionized mankinds’ understanding of 
condensed matter: the observation of interference patterns obtained with x-rays scattered by a 
single crystal [1]. In 1914 Max von Laue received the Nobel prize in physics for the 
interpretation of these observations (figure 1).  
 

 
 
Fig. 1: Max von Laue and a Laue diffraction pattern on a stamp from the former German 

Democratic Republic DDR.  
 
One cannot overestimate the impact of this discovery: it was the first proof that atoms as the 
elementary building blocks of condensed matter are arranged in a periodic manner within a 
crystal; at the same time the experiment proved the wave nature of x-rays. The importance of 
x-ray diffraction for condensed matter research was immediately recognized at the beginning 
of the 20th century as evidenced by the award of two successive Nobel prizes in physics, one 
1914 to Max von Laue “for his discovery of the diffraction of x-rays by crystals” and a second 
one 1915 to William and Lawrence Bragg “for their services in the analysis of crystal 
structure by means of x-rays” [2]. Both, Laue and the Bragg’s, could build on earlier 
experiments by Geiger and Marsden [3, 4] and interpretated by Ernest Rutherford [5] which 
proved - again by scattering, this time with alpha particles, - that the atom was composed of a 
nucleus with a diameter in the femtometer (10-15 m) range, while the surrounding electron 
cloud has a typical extension of 1 Å = 0.1 nm = 10-10 m. While this seems trivial to us 
nowadays, this was a breakthrough discovery at the time since alternate models for the atomic 
structure with a more continuous distribution of positive and negative charges had been 
discussed and only scattering methods could provide the final proof of the now well accepted 
structure of the atom consisting of a tiny nucleus and an extended electron cloud. Since these 
early experiments, a lot of scattering investigations on condensed matter systems have been 
done. The overwhelming part of our present-day knowledge of the atomic structure of 
condensed matter is based on x-ray structure investigations, complemented by electron and 
neutron diffraction. Electrons due to the strong Coulomb interaction with the atoms suffer 
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multiple scattering events, which make a quantitative evaluation to obtain atomic positions 
much more difficult. As a probe in condensed matter, electrons made their impact mainly with 
microscopy techniques (see lecture F 1 by Rafal Dunin-Borkowski). Ernst Ruska was 
awarded the Nobel prize in physics in 1986 “for the design of the first electron microscope”.  
 
Entirely new possibilities became apparent with the discovery of the neutrons by James 
Chadwick [6, 7]. He received the Nobel prize in physics in 1935. However, for neutrons to 
become a valuable probe in condensed matter research, they had to be available in large 
quantities as free particles. This was only possible with the advent of nuclear reactors, where 
nuclear fission is sustained as a chain reaction. The first man-made nuclear reactor, Chicago 
Pile-1, was built beneath the west stands of Stagg Field, a former squash rackets court of the 
campus of the University of Chicago. The reactor went critical on December 2, 1942. The 
experiment was lead by Enrico Fermi, an Italian physicist, who was awarded the Nobel prize 
in physics in 1938 for this work on transuranium elements. The reactor was a rather crude 
construction based on a cubical lattice of graphite and uranium oxide blocks. It had no 
provision for cooling, but two rudimentary manual emergency shutdown systems: one man to 
cut with an axe a rope, on which a neutron absorbing cadmium rod was suspended, which 
would drop into the reactor and stop the chain reaction; and a team of three guys standing 
above the pile ready to flood it with a cadmium salt solution. Considering what was known 
about nuclear fission at the time it is no wonder that the standing joke among the scientists 
working there was: if people could see what we are doing with a million and a half of their 
dollars, they would think we are crazy. If they knew, why we are doing it, they would know we 
are [8]. Out of this very crude first experiment, which was only possible within the World 
War II Manhattan Project, the modern sophisticated research reactors with their extremely 
high safety standards developed. In contrast to their big brothers, the nuclear power plants, 
these reactors are mainly used for isotope production and neutron scattering experiments. The 
two pioneers of neutron diffraction and inelastic neutron scattering, Clifford G. Shull and 
Bertram M. Brockhouse, respectively, received the Nobel prize in physics in 1994, many 
years after the first neutron diffraction experiments, which were performed at Oak Ridge 
National Lab in 1946. The work of Clifford Shull clearly demonstrated the different contrast 
mechanisms of neutron scattering compared to x-ray scattering, which in particular allows 
one to make light elements like hydrogen visible and to distinguish different isotopes like 
hydrogen and deuterium [9]. But Shull also demonstrated that neutrons, due to their nuclear 
magnetic moment, could not only be used to determine the arrangement of atoms in solids but 
they could also be used to determine the magnetic structure e.g. of antiferromagnetic materials 
[10]. While Shull studied “where the atoms are located” and eventually how the magnetic 
moments are arranged in the solid, Brockhouse observed for the first time “how the atoms are 
moving” in the solid. He developed the so-called triple-axis spectroscopy, which enables the 
determination of the dispersion relations of lattice vibrations and spin waves [11].  
 
Since the early work in x-ray and neutron scattering sketched above, many years have passed, 
new radiation sources such as synchrotron radiation sources or neutron spallation sources 
have been developed, experimental methods and techniques have been refined and the 
corresponding theoretical concepts developed. For the further development of modern 
condensed matter research, the availability of these probes to study the structure and 
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dynamics on a microscopic level is absolutely essential. It comes as no surprise therefore that 
scattering methods have been employed in ground-breaking work which lead to recent Nobel 
prizes. The most recent example is the Nobel prize in chemistry 2011, which was awarded to 
Dan Shechtman “for the discovery of quasi-crystals”. By means of electron diffraction, 
Shechtman discovered icosahedral symmetry in aluminum manganese alloys. The observed 
tenfold symmetry is not compatible with translational symmetry in three dimensions. While 
the icosahedral symmetry was discovered with electron diffraction, the question where the 
atoms are located requires the collection of many weak quasicrystal reflections and the 
analysis of their intensities, which is only possible with x-ray and neutron diffraction. A 
higher dimensional reciprocal space approach had to be developed to explain the diffraction 
pattern of such quasicrystals. Another outstanding piece of work in x-ray diffraction is the 
Nobel prize in chemistry 2009, which was awarded jointly to Venkatraman Ramakrishnan, 
Thomas A. Steitz and Ada E. Yonath “for studies of the structure and function of the 
ribosome”. Ribosomes translate DNA information into life by producing proteins, which in 
turn control the chemistry in all living organisms. By means of x-ray crystallography the 
Nobel awardees were able to map the position for each and everyone of the hundreds of 
thousands of atoms that make up the ribosome. 3D models that show how different antibiotics 
bind to the ribosome are now used by scientists in order to develop new drugs.  
 
On occasion of the 100 years anniversary of the discovery of x-ray diffraction from single 
crystals, we have given a brief and absolutely incomplete historical summary of the 
development of scattering methods. This Spring School is devoted to modern applications of 
this powerful tool. In this introductory overview, we will now give a short summary of which 
information we can obtain from scattering experiments, compare the two probes x-rays and 
neutrons briefly, discuss techniques and applications, giving an outlook into the bright future 
of the field which the two new European facilities promise: the European X-Ray Free 
Electron Laser X-FEL (www.xfel.eu) and the European Spallation Source ESS (www.ess-
scandinavia.eu) and finally explain how large-scale facilities for this type of research are 
organized.  
 

2 Introduction to scattering 
 
2.1 Scattering - a critical tool for science 
Scattering is the physical process in which radiation or moving particles are being deflected 
by an object from straight propagation. If the energy or wavelength of the scattered particles 
or waves, respectively, is the same as before the scattering process, one speaks of elastic 
scattering or diffraction, otherwise of inelastic scattering. The analysis of the energy of the 
scattered radiation with respect to the energy of the incident radiation is called spectroscopy.  
 
Nearly all information which we humans as individuals collect on a day-to-day basis about 
the world in which we live, comes from light scattering and imaging through our eyes. It is 
only natural that scientists mimic this process of obtaining information in well controlled 
scattering experiments: they build a source of radiation, direct a beam of towards a sample, 
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detect the radiation scattered from a sample, i. e. convert the signal into an electronic signal, 
which they can then treat with computers. In most cases one wants an undisturbed image of 
the object under investigation and therefore chooses the radiation, so that it does not influence 
or modify the sample. Scattering is therefore a non-destructive and very gentle method, if the 
appropriate type of radiation is chosen for the experiment. 
 
What other requirements must the radiation fulfill to be useful for scattering experiments? In 
condensed matter science we want to go beyond our daily experience and understand the 
microscopic atomic structure of matter, i. e. we want to find out where the atoms are located 
inside our samples and also how they move. This cannot be done by light scattering. Why? 
Well, in general light is scattered from the surface and does not penetrate enough into many 
materials, such as metals for example. On the other hand, if it penetrates like in the case of 
glass it is normally just being transmitted except if we have a very bad glass with lots of 
inhomogeneities. But the main reason is actually that light has a too long wavelength. It is 
quite intuitive to understand that if we want to measure the distance between the atoms, we 
need a “ruler” of comparable lengths. The distance between atoms is in the order of 0.1 nm = 
10-10 m = 0.0000000001 m. Since the distance between atoms is such an important length 
scale in condensed matter science, it has been given its own unit: 0.1 nm = 1 Ångstrøm = 1 Å. 
If we compare the wavelength of light with this characteristic length scale, it is 4000 to 7000 
times longer and therefore not appropriate to measure distances between atoms. In the 
electromagnetic spectrum, x-rays have a well adapted wavelength of about 1 Å for studies on 
such a microscopic scale. They also have a large penetration power as everybody knows from 
the medical x-ray images. 
 
It should be pointed out that scattering is a much more general method in science, which is 
not only used by condensed matter scientists. Examples include:  
 

• in the geosciences, seismological studies of the propagation and deflection of elastic 
waves through the earth are the primary tool for underground exploration (e.g. to 
detect petroleum bearing formations) and the mapping of the earth’s interior.  

• the scattering of radar waves is being used e.g. for air traffic control or the detection of 
weather formations.  

• nuclear- and particle physics uses the scattering of high energy elementary particles 
(electrons, protons etc.) from accelerators to investigate the structure of the nuclei or 
nucleons etc.  

 
2.2 Scattering cross section 
Lets look at a scattering experiment in condensed matter science in the so-called Fraunhofer- 
or far-field-approximation, where we assume that the incident and scattered waves can be 
described as plane waves with wavelengths λ and λ’ (strictly monochromatic) and 
propagation direction �k  and � 'k , respectively1. Let us define the so-called scattering vector 
 
                                                 
1 Vector quantities are labeled by underlining. Unit vectors are marked by a circumflex ^.  
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 (1)  'Q k k= −

where k  and 'k  are the wave vectors of the incident and scattered radiation, respectively:  
 

(2)  

ħQ represents the momentum transfer during scattering, since according to de Broglie, the 
momentum of the particle corresponding to the wave with wave vector k is given by p=ħk. 
The magnitude of the scattering vector can be calculated from wavelength λ and scattering 
angle 2θ (between k’ and k) as follows 

� �2 2; ' '
'

k k k kπ π
λ λ

= ⋅ = ⋅

 
(3)  2 2 4' 2 'cos 2 sinQ Q k k kk Q πθ

A scattering experiment comprises the measurement of the intensity distribution as a function 
of the scattering vector. The scattered intensity is proportional to the so-called cross section, 
where the proportionality factors arise from the detailed geometry of the experiment. For a 
definition of the scattering cross section, we refer to Figure 2. 

θ
λ

= = + − ⇒ =

 

k’ 

k 

 
Fig. 2: Geometry used for the definition of the scattering cross section.  
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If n' particles are scattered per second into the solid angle dΩ seen by the detector under the 
scattering angle 2θ and into the energy interval between E' and E' + dE', then we can define 
the so-called double differential cross section by: 
 

(4)  
2 '

' '
d n

d dE jd dE
σ

=
Ω Ω

Here j refers to the incident beam flux in terms of particles per area and time. If we are not 
interested in the change of the energy of the radiation during the scattering process, or if our 
detector is not able to resolve this energy change, then we will describe the angular 
dependence by the so-called differential cross section: 
 

(5)  
2

0

'
'

d d dE
d d dE
σ σ∞

=
Ω Ω∫

Finally the so-called total scattering cross section gives us a measure for the total scattering 
probability independent of changes in energy and scattering angle: 
 

(6)  
4

0

d d
d

π σσ = Ω
Ω∫

For a diffraction experiment, our task is to determine the arrangement of the atoms in the 
sample from the knowledge of the scattering cross section /d dσ Ω . The relationship between 
scattered intensity and the structure of the sample is particularly simple in the so-called Born 
approximation, which is often also referred to as kinematic scattering approximation (see 
lecture A2). In this case, refraction of the beam entering and leaving the sample, multiple 
scattering events and the extinction of the primary beam due to scattering within the sample 
are being neglected (these effects will be dealt with in lecture A3). Following Figure 3, the 
phase difference between a wave scattered at the origin of the coordinate system and at posi-
tion r is given by 
 

(7)  ( )

 

2 '
AB CD

k r k r Q rπ
λ

−
ΔΦ = ⋅ = ⋅ − ⋅ = ⋅
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Fig. 3: A sketch illustrating the phase difference between a beam scattered at the origin of 

the coordinate system and a beam scattered at the position r. The yellow body 
represents the sample from which we scatter.  

 
The probability for a scattering event to occur at position r is proportional to the local 
interaction potential V(r) between radiation and sample. For a coherent scattering event 
(interference of scattered waves), the total scattering amplitude is given by a linear 
superposition of the waves scattered from all points within the sample volume Vs, i.e. by the 
integral 
 
 

(8)  
3( ) ~ ( ) Q ri

V s

A Q V r e d r⋅⋅∫
 
This equation demonstrates that the scattered amplitude is directly connected to the 
interaction potential by a simple Fourier transform: scattering is a probe in reciprocal space, 
not in direct space and gives direct access to thermodynamic ensemble averages!  
 
A knowledge of the scattering amplitude for all scattering vectors Q allows us to determine 
via a Fourier transform the interaction potential uniquely. This is the complete information on 
the sample, which can be obtained by the scattering experiment. Unfortunately nature is not 
so simple. On one hand, there is the more technical problem that one is unable to determine 
the scattering cross section for all values of momentum transfer ħQ. The more fundamental 
problem, however, is given by the fact that normally the amplitude of the scattered wave is 
not measurable. Instead only the scattered intensity 
 
 (9)  2( ) ~ ( )I Q A Q
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can be determined. Therefore the phase information is lost and the simple reconstruction of 
the scattering potential via a Fourier transform is no longer possible. This is the so-called 
phase problem of scattering. There are ways to overcome the phase problem, i.e. by the use of 
reference waves. Then the potential V(r) becomes directly accessible. The question, which 
information we can obtain from a scattering experiment despite the phase problem, will be 
addressed below and in subsequent lectures.  
 
Which wavelength do we have to choose to obtain the required real space resolution? For in-
formation on a length scale L, a phase difference of about Q⋅L ≈ 2 π leads from the primary 
beam (Q = 0) to the interference maximum. According to (3) Q ≈ 2π/λ for practical scattering 
angles (2θ ~ 60°). Combining these two estimates, we end up with the requirement that the 
wavelength λ has to be in the order of the real space length scale L under investigation. To 
give an example: with the wavelength in the order of 0.1 nm, atomic resolution can be 
achieved in a scattering experiment. 
 
2.3 Coherence 
In the above derivation, we assumed plane waves as initial and final states. For a real 
scattering experiment, this is an unphysical assumption. In the incident beam, a wave packet 
is produced by collimation (defining the direction of the beam) and monochromatization 
(defining the wavelength of the incident beam). Neither the direction k̂ , nor the wavelength λ 
have sharp values but rather have a distribution of finite width about their respective mean 
values. This wave packet can be described as a superposition of plane waves. As a 
consequence, the diffraction pattern will be a superposition of patterns for different incident 
wave vectors k and the question arises, which information is lost due to these non-ideal 
conditions. This instrumental resolution is intimately connected with the coherence of the 
beam. Coherence is needed, so that the interference pattern is not significantly destroyed. 
Coherence requires a phase relationship between the different components of the beam. Two 
types of coherence can be distinguished. 
 
• Temporal or longitudinal coherence due to a wavelength spread. 
A measure for the longitudinal coherence is given by the length, on which two components of 
the beam with largest wavelength difference (λ and λ+Δλ) become fully out of phase. 

According to the following figure, this is the case for ( )||
1
2

l n nλ λ λ⎛ ⎞= ⋅ = − + Δ⎜ ⎟
⎝ ⎠

. 
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Fig. 4: A sketch illustrating the longitudinal coherence due to a wavelength spread.  
 
From this, we obtain the longitudinal coherence length  as  ||l
 (10)  

2

|| 2l λ
λ=

Δ
• Transversal coherence due to source extension 
Due to the extension of the source (transverse beam size), the phase relation is destroyed for 
large source size or large divergence. According to the following figure, a first minimum 

occurs for sin
2

d dλ θ θ= ⋅ ≈ ⋅ .  

 

 
 
Fig. 5: A sketch illustrating the transverse coherence due to source extension.  
 
From this, we obtain the transversal coherence length l⊥  as  
 (11)  2l λ

θ⊥ = Δ
Here Δθ is the divergence of the beam. Note that l⊥  can be different along different spatial 
directions: in many instruments, the vertical and horizontal collimations are different.  
 
Together, the longitudinal and the two transversal coherence lengths (in two directions 
perpendicular to the beam propagation) define a coherence volume. This is a measure for a 
volume within the sample, in which the amplitudes of all scattered waves superimpose to 
produce an interference pattern. Normally, the coherence volume is significantly smaller than 
the sample size, typically a few 100 Å for neutron scattering, up to µm for synchrotron 



Scattering  A1.11 

radiation. Scattering between different coherence volumes within the sample is no longer 
coherent, i. e. instead of the amplitudes, the intensities of the waves contributing to the 
scattering pattern have to be added. This limits the real space resolution of a scattering 
experiment to the extension of the coherence volume. 
 
2.4 Pair correlation functions 
After having clarified the conditions under which we can expect a coherent scattering process, 
let us now come back to the question, which information is accessible from the intensity 
distribution of a scattering experiment. From (9) we see that the phase information is lost 
during the measurement of the intensity. For this reason the Fourier transform of the 
scattering potential is not directly accessible in most scattering experiments (note however 
that phase information can be obtained in certain cases).  
 
Substituting (8) into (9) and applying variable substitution R=r’-r, we obtain for the 
magnitude square of the scattering amplitude, a quantity directly accessible in a diffraction 
experiment: 

( ) ( ) ( )

 

(12)  ( )

2 ' '3 3 * 3 3 *

3 3

( ) ~ ~ ' ( ') ( ) ' ( ')
S S S

S

Q r Q r iQ r ri i

V V V

iQ R

V

I Q A Q d r V r e d rV r e d r d r V r V r e

d Rd r V

⋅ ⋅ ⋅ −−

⋅

=∫ ∫ ∫∫

∫∫ * ( )R r V r e= +

This function denotes the so-called Patterson function in crystallography or more general the 
static pair correlation function:  
 

(13)  ( )

P(R) correlates the value of the scattering potential at position r with the value at the position 
r+R, integrated over the entire sample volume Vs. If, averaged over the sample, no correlation 
exists between the values of the scattering potentials at position r and r+R, then the Patterson 
function P(R) vanishes. If, however, a periodic arrangement of a pair of atoms exists in the 
sample with a difference vector R between the positions, then the Patterson function will have 
an extremum for this vector R. Thus in a periodic arrangement the Patterson function 
reproduces all the vectors connecting one atom with another atom.  

3 * ( ) ( )
Vs

P R d rV r V r R= +∫

 
As will be shown in detail in lecture A5, pair correlation functions are being determined quite 
generally in a scattering experiment. In a coherent inelastic scattering experiment, we measure 
a cross section proportional to the scattering law S(Q,ω), which is the Fourier transform with 
respect to space and time of the spatial and temporal pair correlation function: 
 

(14)  

While the proportionality factor between the double differential cross section and the 
scattering law depends on the type of radiation and its specific interaction potential with the 

( )
2

31, ( , )
2

iQ ri t

V

d S Q dt e d re G r t
d d

ωσ ω
ω π

+∞
−

−∞

=
Ω ∫ ∫∼

=
S
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system studied, the spatial and temporal pair correlation function is only a property of the 
system studied and independent of the probe used: 

 
(15)  

Here, the pair correlation function is once expressed as a correlation between the position of N 
point-like particles (expressed by the delta functions) and once by the correlation between the 
densities at different positions in the sample for different times. In a magnetic system, 
radiation is scattered from the atomic magnetic moments, which are vector quantities. 
Therefore, the scattering law becomes a tensor - the Fourier transform of the spin pair 
correlations: 
 

(16)  

α, ß denote the Cartesian coordinates x, y, z; R0 and Rl are the spatial coordinates of a 
reference spin 0 and a spin l in the system. 
 
2.5 Scattering from a periodic lattice in three dimensions 
We now are ready to understand the famous first diffraction experiment by Laue et al. As an 
example for the application of (8) and (9), we will now discuss the scattering from a three 
dimensional lattice of point-like scatterers. As we will see later, this situation corresponds to 
the scattering of thermal neutrons from a single crystal. More precisely, we will restrict 
ourselves to the case of a Bravais lattice with one atom at the origin of the unit cell. To each 
atom we attribute a “scattering length b” (see interaction potential of neutrons below). The 
single crystal is finite with N, M and P periods along the basis vectors a, b and c. The 
scattering potential, which we have to use in (8) is a sum over δ-functions for all scattering 
centers:  
 

(17)  

The scattering amplitude is calculated as a Fourier transform: 
 

(18)  

Summing up the geometrical series, we obtain for the scattered intensity: 
 

(19)  

The dependence on the scattering vector Q is given by the so-called Laue function (19), which 
factorizes according to the three directions in space. One factor along one lattice direction a is 
plotted in Figure 6. 
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Fig. 6: Laue function along the lattice direction a for a lattice with five and ten periods, 

respectively.  
 
The main maxima occur at the positions Q = n ⋅ 2π/a. The maximum intensity scales with the 
square of the number of periods N2, the half width is given approximately by ΔQ = 2π/(N⋅a). 
The more periods contribute to coherent scattering, the sharper and higher are the main peaks. 
Between the main peaks, there are N-2 side maxima. With increasing number of periods N, 
their intensity becomes rapidly negligible compared to the intensity of the main peaks. The 
main peaks are of course the well known Bragg reflections, which we obtain for scattering 
from a crystal lattice. From the position of these Bragg peaks in momentum space, the metric 
of the unit cell can be deduced (lattice constants a, b, c and unit cell angles α, β, γ). The width 
of the Bragg peaks is determined by the size of the coherently scattering volume (parameters 
N, M, and P) - and some other factors for real experiments (resolution, mosaic distribution, 
internal strains, ...). 
 
Via the so-called Ewald construction, it can be shown that the Laue conditions for 
interference maxima to occur Q·a=n·2π etc. are equivalent to the Bragg equation for 
scattering from lattice planes (hkl) with interplanar spacings dhkl:  
 
 (20)  2 sinhkl hkld θ = λ
 

3 X-rays and Neutrons 
 
Since the first scattering experiments, some standard probes for condensed matter research 
have emerged, which optimally fulfill the requirements for a suitable type of radiation.  
 
First of all, electromagnetic radiation governed by the Maxwell equations can be used. 
Depending on the resolution requirements, X-rays with wavelength λ about 0.1 nm are being 
used to achieve atomic resolution, or visible light (λ ~ 350 - 700 nm) is employed to 



A1.14  Th. Brückel 

investigate e. g. colloidal particles in solution. Besides electromagnetic radiation, particle 
waves can be utilized. It turns out that thermal neutrons with a wavelength λ ~ 0.1 nm are 
particularly well adapted to scattering experiments in condensed matter research. Neutrons are 
governed by the Schrödinger equation of quantum mechanics. An alternative is to use 
electrons, which for energies of around 100 keV have wavelengths in the order of 0.005 nm. 
As relativistic particles, they are governed by the Dirac equation. The big drawback of 
electrons is the strong Coulomb interaction with the electrons in the sample. Therefore neither 
absorption, nor multiple scattering effects can be neglected. However the abundance of free 
electrons and the relative ease to produce optical elements makes them very suitable for 
imaging purposes (electron microscopy). Electrons, but likewise atomic beams, are also very 
powerful tools for surface science: due to their strong interaction with matter, both types of 
radiation are very surface sensitive. Low Energy Electron Diffraction LEED and Reflection 
High Energy Electron Diffraction RHEED are both used for in-situ studies of the crystalline 
structure during thin film growth, e.g. with Molecular Beam Epitaxy MBE. In what follows 
we will concentrate on the two probes, which are best suited for bulk studies on an atomic 
scale: x-rays and neutrons. We will touch upon the radiation sources, briefly discuss the main 
interaction processes and finally give a comparison of these probes.  
 
3.1 X-ray Sources 
 
Since the early days of Conrad Röntgen X-rays are being produced in the laboratory in sealed 
vacuum tubes, where electrons from a cathode are accelerated towards the anode. There 
characteristic- and/or bremsstrahlungradiation is produced. Radiation emitted from such x-ray 
tubes has been widely used for structural studies in condensed matter science. However, in 
1947 a new type of radiation was discovered in a General Electric synchrotron accelerator 
[12]. It soon turned out that this so-called synchrotron radiation has superb properties, see 
figure 7.  
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Fig. 7: Sketch of a synchrotron radiation source indicating the properties of synchrotron 

radiation.  
 
Synchrotron radiation is emitted when relativistic charged particles (electrons or positrons) 
are being accelerated perpendicular to their direction of motion by an appropriate magnetic 
field. This happens is so-called bending magnets within circular accelerators and this type of 
radiation has originally been used by solid state physicists in a parasitic mode at particle 
physics facilities (first generation of synchrotron radiation sources). Second generation 
synchrotron radiation sources were dedicated to the production of synchrotron radiation, 
mainly from such bending magnets. However, even more intense radiation can be produced in 
straight sections of the accelerator by so-called insertion devices - wigglers and undulators - 
which consist of arrays of magnets with alternating field direction. Modern synchrotron 
radiation sources of the 3rd generation employ mainly these insertion devices as radiation 
sources, see lecture C2. This continuous improvement of the source parameters led to an 
exponential growth of the brilliance, i.e. the spectral photon flux, normalized to the size and 
divergence of the beam. A further increase of the peak brilliance can be achieved with free 
electron lasers. For the X-ray regime these are based on the SASE principle: Self Amplified 
Spontaneous Emission. In such facilities, an electron beam from a linear accelerator passes 
through an undulator structure, where synchrotron radiation is produced. The electromagnetic 
interaction between this radiation and the electron beam travelling in parallel leads to an 
amplification of the radiation, giving rise to extremely brilliant fully coherent x-ray flashes of 
about 100 fs duration. Close to DESY in Hamburg such a facility, the European XFEL is 
currently under construction [13]. Details will be presented in lecture C8 by the XFEL 
managing director, Massimo Altarelli. The facility will open entirely new perspectives for 
research, see lecture D10 by Henry Chapman.  
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3.2 Neutron Sources 
While neutrons are everywhere - without neutrons we would not exist - they are extremely 
difficult to produce as free particles, not bound in nuclei. Free neutrons are produced by 
nuclear physics reactions, which require rather large and high-tech installations. Two main 
routes to produce free neutrons are being followed today (see figure 8 and lecture C1):  

(1) Fission of the uranium 235 nuclei in a chain reaction; this process happens in research 
reactors.  

(2) Bombarding heavy nuclei with high energetic protons; the nuclei are “heated up” when a 
proton is absorbed and typically 20 - 30 neutrons are being evaporated. This process is 
called spallation and requires a spallation source with a proton accelerator and a heavy 
metal target station. 

 

 
 
Fig. 8: A cartoon of the processes of fission and spallation, respectively, used for the 

production of free neutrons (ess-reports).  
 
Both processes lead to free neutrons of energies in the MeV region. These neutrons are way 
too fast to be useful for condensed matter studies. These so-called epithermal neutrons have to 
be slowed down, which is done most efficiently by collisions with light atoms - e.g. Hydrogen 
H or Deuterium D in light or heavy water moderators, or C in graphite as in the first reactor, 
the Chicago Pile 1. During the moderation process after several collisions, the neutrons 
thermalize and acquire the temperature of the moderator. To adjust the energy spectra to ones 
need, mainly three types of moderators are being employed:  
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Moderator Typical temperature 
[k] 

Neutron energy 
range [meV] 

Neutron wavelength 
range [Å] 

hot source 
(graphite block) 

2500 100 - 1000 0.3 - 0.9 

thermal source 
(H2O / D2O) 

300 5 - 100 0.9 - 4 

cold source 
(liquid D2) 

25 0.05 - 5 4 - 40 

 
Note that room temperature ~ 300 K corresponds an energy of about 26 meV (1 meV �=  11.6 
K), which is just a typical energy of elementary excitations in a solid. Despite the effort made 
in these high-tech facilities, the free neutrons available for scattering studies are still 
extremely rare. In a high flux reactor the neutron flux i. e. the number of neutrons passing 
through a given area in a given time is in the order of 1015 neutrons/cm2·s. If one compares 
this value with particle fluxes in gases, the neutron density in high flux sources corresponds to 
high vacuum conditions of about 10-6 mbar pressure. The neutrons have to be transported 
from the source to the experimental areas, which can either be done by simple flight tubes or 
so called neutron guides. These are evacuated tubes with glass walls (often covered with 
metal layers to increase the performance), where neutrons are transported by total reflection 
from the side, top, and bottom walls in a similar manner like light in glass fibers. The neutron 
flux downstream at the scattering experiments is then even much lower than in the source 
itself and amounts to typically 106 - 108 neutrons/cm2·s. This means that long counting times 
have to be taken into account to achieve reasonable statistics in the neutron detector. Just for 
comparison: the flux of photons of a small Helium-Neon laser with a power of 1 mW (typical 
for a laser pointer) amounts to some 1015 photons/s in a beam area well below 1 mm2. At 
modern synchrotron radiation sources, a flux of some 1013 photon/s in a similar beamspot can 
be achieved.  
 
Just as for synchrotron radiation with the XFEL, there is an European project to build the 
world’s most powerful neutron source: the European Spallation Source ESS. It will 
outperform most existing sources by several orders of magnitude in peak flux and allow 
entirely new experiments to be realized [14]. A presentation of this project will be given by 
the acting CEO, Colin Carlile, as lecture C9.  
 
3.3 Interaction Processes 
 
The principle probes for condensed matter studies, X-rays, electrons and neutrons feature 
different interaction processes with matter, leading to a great complementarity. The principle 
interaction processes are depicted schematically in fig. 9. Details will be given in lecture A4.  
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Fig. 9: Cartoon of the scattering processes of X-rays, neutrons and electrons with atoms in a 

solid in a 2d representation. The most relevant interaction processes which lead to 
scattering events are indicated. Note that electrons are mainly scattered in a surface-
near region. 

 
For X-rays, the most relevant scattering process is pure charge or Thomson scattering with the 
differential cross section for scattering from one electron of:  
 
 

(21)  2
0 ( )d r P

d
σ θ= ⋅
Ω

 

where 0 2
0

2.82er
m c

= = fm is the classical electron radius and P(θ) a factor describing the 

polarization dependence of Hertz’ dipole radiation. The Thomson scattering process is the 
basis for all structural investigations with X-rays since the discovery by Max von Laue one 
hundred years ago. A single electron is a point-like scatterer, leading to a cross section which 
is independent of Q, apart from the polarization dependence, Scattering from the extended 
electron cloud of an atom, on the other hand, leads to a variation of the scattered amplitude 
with scattering angle described by the so-called formfactor - the (normalized) Fourier 
transform of the electron density of a single atom.  
 
Of course, X-rays as electromagnetic radiation also interact with the spin moment of the 
electron. This so-called magnetic x-ray scattering process is a relativistic correction to charge 
scattering and typically six orders of magnitude weaker. At absorption edges of elements, the 
scattering amplitude becomes energy dependent, leading to so-called anomalous scattering. 
Anomalous scattering (see figure 10) enables contrast variation, can also be used to enhance 
small scattering contributions, such as scattering from charge, orbital or magnetic order, see 
lecture D11. For most such studies, polarization handling is required, see lecture C7.  
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Fig. 10: Schematic illustration of the second order perturbation process leading to 

anomalous scattering: core level electros are virtually excited by the incident X-rays 
into empty states above the Fermi level, if the photon energy is close to an 
absorption edge. Besides photoelectric absorption, a resonant scattering process can 
occur, where X-rays of the same wavelength are re-emitted. 

 
For neutron scattering, two main interaction processes are relevant: scattering with the 
nucleus due to the strong interaction (nuclear scattering) and scattering due to magnetic 
dipole-dipole interaction between the neutrons magnetic moment and the spin- or orbital 
moment of unpaired electrons in the solid (magnetic scattering).  
 
Since the nucleus is a point-like object compared to the wavelength of thermal neutrons, the 
differential cross section for nuclear scattering is independent of scattering angle and given 
by:  
 

(22)  

where b, the scattering length, is a phenomenological parameter as measure of the strength of 
the interaction potential. b depends not only on the atomic number, but also on the isotope and 
the nuclear spin orientation relative to the neutron spin.  

2d b
d
σ

=
Ω

 
Magnetic neutron scattering strongly depends on the polarization state of the neutron (for 
polarization handling, see lecture C6). The differential cross section is given by:  
 

(23)  

The pre-factor 0nrγ  has the value . 12
0 0.539 10 5.39nr cmγ −= ⋅ = fm σ  denotes the spin 

operator, anz d 'zσ σ  the polarization state of the neutron before and after the scattering 
process, respectively. ( )M Q⊥  denotes the component of the Fourier transform of the sample 
magnetization, which is perpendicular to the scattering vector Q:  

( ) 22
0

1 ' ( )
2n z z

B

d r M Q
d µ
σ γ σ σ σ⊥= − ⋅
Ω
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(24)  
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⋅ r
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= ∫
 
This tells us that with neutron scattering we are able to determine the magnetization M(r) in 
microscopic atomic spatial co-ordinates r, which allows one not only to determine magnetic 
structures, but also the magnetization distribution within a single atom.  
 
To obtain an idea of the size of the magnetic scattering contribution relative to nuclear 
scattering, we can replace the matrix element in (2.3) for a spin ½ particle by the value of one 
Bohr magneton 1 µB. This gives an “equivalent” scattering length for a magnetic scattering of 
2.696 fm for a spin ½ particle. This value corresponds quite well to the scattering length of 
cobalt bco = 2.49 fm, which means that magnetic scattering is comparable in magnitude to 
nuclear scattering.  
 
3.4 Comparison of Probes 
 
Figure 11 shows a double logarithmic plot of the dispersion relation "wave length versus 
energy" for the three probes neutrons, electrons and photons. The plot demonstrates, how 
thermal neutrons of energy 25 meV are ideally suited to determine interatomic distances in 
the order of 0.1 nm, while the energy of X-rays or electrons for this wavelength is much 
higher. However, with modern techniques at a synchrotron radiation source, energy 
resolutions in the meV-region become accessible even for photons of around 10 keV 
corresponding to a relative energy resolution ΔE/E≈ 10-7 (compare lectures D4, D8 and D9)! 
The graph also shows that colloids with a typical size of 100 nm are well suited for the 
investigation with light of energy around 2 eV. These length scales can, however, also be 
reached with thermal neutron scattering in the small angle region (compare lecture D1). While 
figure 11 thus demonstrates for which energy-wave-length combination a certain probe is 
particularly useful, modern experimental techniques extend the range of application by 
several orders of magnitude. 
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Fig. 11: Comparison of the three probes - neutrons, electrons and photons - in a double loga-

rithmic energy-wavelength diagram. 
 
It is therefore useful to compare the scattering cross sections as it is done in figure 12 for X-
rays and neutrons. Note that the X-ray scattering cross sections are significantly larger as 
compared to the neutron scattering cross sections. This means that the signal for x-ray 
scattering is stronger for the same incident flux and sample size, but that caution has to be 
applied that the conditions for kinematical scattering are fulfilled. For X-rays, the cross 
section depends on the number of electrons and thus varies in a monotonic fashion throughout 
the periodic table. Clearly it will be difficult to determine hydrogen positions with x-rays in 
the presence of heavy elements such as metal ions. Moreover, there is a very weak contrast 
between neighbouring elements as can be seen from the transition metals Mn, Fe and Ni in 
figure 12. However, this contrast can be enhanced by anomalous scattering, if the photon 
energy is tuned close to the absorption edge of an element (lecture D11). Moreover, 
anomalous scattering is sensitive to the anisotropy of the local environment of an atom. For 
neutrons the cross sections depend on the details of the nuclear structure and thus vary in a 
non-systematic fashion throughout the periodic table. As an example, there is a very high 
contrast between Mn and Fe. With neutrons, the hydrogen atom is clearly visible even in the 
presence of such heavy elements as uranium. Moreover there is a strong contrast between the 
two hydrogen isotopes H and D. This fact can be exploited for soft condensed matter 
investigations by selectively deuterating certain molecules or functional groups and thus 
varying the contrast within the sample (see lectures E2, E3).  
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Fig. 12: Comparison of the coherent scattering cross-sections for x-rays and neutrons for a 

selection of elements. The area of the coloured circles represent the scattering cross 
section. In the case of X-rays these areas were scaled down by a factor of 10. For 
neutrons, the green and blue coloured circles distinguish the cases where the 
scattering occurs with or without a phase shift of π. 

 

Finally, both neutrons and X-rays allow the investigation of magnetism on an atomic scale. 
Magnetic neutron scattering (lectures D3, D4, C6, …) is comparable in strength to nuclear 
scattering, while non-resonant magnetic X-ray scattering is smaller than charge scattering by 
several orders of magnitude. Despite the small cross sections, non-resonant magnetic x-ray 
Bragg scattering from good quality single crystals yields good intensities with the brilliant 
beams at modern synchrotron radiation sources. While neutrons are scattered from the 
magnetic induction within the sample, X-rays are scattered differently from spin and orbital 
momentum and thus allow one to measure both form factors separately. Inelastic magnetic 
scattering e.g. from magnons or so called quasielastic magnetic scattering from fluctuations in 
disordered magnetic systems is a clear domain of neutron scattering (lecture D4, D6). Finally, 
resonance exchange scattering XRES, a variant of anomalous X-ray scattering for magnetic 
systems, allows one not only to get enhanced intensities, but also to study magnetism with 
element- and band sensitivity (lecture D11).  

With appropriate scattering methods, employing neutrons, X-rays or light, processes in con-
densed matter on very different time and space scales can be investigated. Which scattering 
method is appropriate for which region within the "scattering vector Q - energy E plane" is 
plotted schematically in figure 13. Via the Fourier transform, the magnitude of a scattering 
vector Q corresponds to a certain length scale, an energy to a certain frequency, so that the 
characteristic lengths and times scales for the various methods can be directly determined 
from the figure.  
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Fig. 13: Regions in frequency v and scattering vector Q (ν,Q)- or energy E and length d 

(E,d)-plane, which can be covered by various scattering methods. 
 

4 Techniques and Applications 
 
4.1 Introduction 
Scattering with electromagnetic radiation (light, soft- and hard-X-rays) and neutrons cover a 
huge range of energy and momentum transfers (see figure 13), corresponding to an 
extraordinary range of length- and time scales relevant for research in condensed matter. 
Exemplary, this is depicted for research with neutrons in figure 14.  
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Fig. 14: Length- and time scales covered by research with neutrons giving examples for 

applications and neutron techniques.  
 
The very extremes of length scales - below 10-12 m - are the domain of nuclear and particle 
physics, where e. g. measurements of the charge or the electric dipole moment of the neutron 
provide stringent tests of the standard model of particle physics without the need of huge and 
costly accelerators. On the other extreme, neutrons also provide information on length- and 
time scales relevant for astronomical dimensions, e. g. the decay series of radioactive isotopes 
produced by neutron bombardment give information on the creation of elements in the early 
universe. In this course, however, we are only concerned with neutrons as a probe for con-
densed matter research and therefore restrict ourselves to a discussion of neutron scattering. 
Still, the various scattering techniques cover an area in phase space from picometers pm up to 
meters and femtoseconds fs up to hours, a range, which probably no other probe can cover to 
such an extend.  
 
Different specialized scattering techniques are required to obtain structural information on 
different length scales:  
 

• With wide angle diffractometry, charge (X-rays) or magnetization (neutrons) densities 
can be determined within single atoms on a length scale of ca. 10 pm2. The position of 
atoms can be determined on a similar length scale, while distances between atoms lie 
in the 0.1 nm range (lectures B1, D3, D5, D11, E10).  

• The sizes of large macromolecules, magnetic domains or biological cells lie in the 
range of nm to µm or even mm. For such studies of large scale structures, one applies 

                                                 
2 In this sense, X-rays and neutrons are not only nanometer nm, but even picometer pm probes! 
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reflectometry (lectures D2, E5) or small angle scattering technique (lectures B2, D1, 
E2) or imaging (lectures F1, F2).  

• Most materials relevant for engineering or geo-science occur neither in form of single 
crystals, nor in form of fine powders. Instead they have a grainy structure, often with 
preferred orientation of the grains. This so called texture determines the macroscopic 
strength of the material along different directions. Texture diffractometry as a 
specialized technique allows one to determine this granular structure on length scales 
of up to mm (high energy X-ray diffraction as “3d microscope”).  

• Finally, for even larger structures, one uses imaging techniques, such as neutron 
radiography or tomography (lecture F2), which give a two dimensional projection or 
full 3-dimensional view into the interior of a sample due to the attenuation of the 
beam, the phase shift or other contrast mechanisms. 

 
In a similar way, specialized scattering techniques are required to obtain information on the 
system’s dynamics on different time scales:  
 

• Neutron Compton scattering, where a high energy neutron in the eV energy range 
makes a deep inelastic collision with a nucleus in so-called impulse approximation, 
gives us the momentum distribution of the atoms within the solid. Interaction times are 
in the femtosecond fs time range.  

• With pump-probe techniques at free electron lasers, processes in the fs to ps time 
range can be studied. For this technique one uses the time structure of the radiation 
and delays a “probe” pulse with respect to the “pump” pulse to study e.g. relaxation 
processes after excitation in real time.  

• In magnetic metals, there exist single particle magnetic excitations, so-called Stoner 
excitations, which can be observed with inelastic scattering of high energy neutrons 
using the so-called time-of-flight spectroscopy or the triple axis spectroscopy 
technique (lecture D4). Typically, these processes range from fs to several hundred fs.  

• The electronic structure of solids, including electronic relaxation processes in the fs 
time range, can be determined by X-ray spectroscopy techniques (lecture F3, F4).  

• Lattice vibrations (phonons) or spin waves in magnetic systems (magnons) have 
frequencies corresponding to periods in the picosecond ps time range (lecture B4). 
Again these excitations can be observed with neutron time-of-flight-, neutron triple 
axis spectroscopy or at high energy resolution backscattering synchrotron beamlines 
(lecture D4).  

• Slower processes in condensed matter are the tunneling of atoms, for example in 
molecular crystals or the slow dynamics of macromolecules (lectures B6, E3, E8). 
Characteristic time scales for these processes lie in the nanosecond ns time range. 
They can be observed with specialized techniques such as neutron backscattering 
spectroscopy, neutron spin-echo spectroscopy, light- or X-ray photon correlation 
spectroscopy (lecture D8).  

• Even slower processes occur in condensed matter on an ever increasing range of 
lengths scales. One example is the growth of domains in magnetic systems, where 
domain walls are pinned by impurities. These processes may occur with typical time 
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constants of microseconds µs. Periodic processes on such time scales can be observed 
with stroboscopic scattering techniques.  

• Finally, time resolved scattering or imaging techniques, where data is taken in con-
secutive time slots, allow one to observe processes from the millisecond ms to the 
hour h range.  

 
Even within a spring school of two weeks, it is impossible to cover all scattering techniques 
and applications. Some will be touched briefly in the application lectures, but we have not 
foreseen specialized lectures e.g. for texture and strain analysis, or nuclear (neutrons) and 
electronic (X-rays) Compton scattering. 
 
4.2 Correlation functions 
This somewhat advanced section is intended for readers already familiar with scattering and 
can be skipped during first reading. It is given here for completeness. For details we refer to 
lecture A5. For sake of simplicity, formulas are given only for neutron scattering, but similar 
expressions hold for X-ray scattering.  
 
The neutron scattering cross section for nuclear scattering can be expressed in the following 
form (for simplicity, we restrict ourselves to a mono-atomic system): 
 

(25)  ( )
The cross section is proportional to the number N of atoms. It contains a kinematical factor 
k’/k, i. e. the magnitude of the final wave vector versus the magnitude of the incident wave 
vector, which results from the phase-space density. The scattering cross section contains two 
summands: one is the coherent scattering cross section, which depends on the magnitude 
square of the average scattering length density 2| |b  and the other one is the incoherent 

scattering, which depends on the variance of the scattering length ( )2 2| | | |b b− . The cross 

section (25) has a very convenient form: it separates the interaction strength between probe 
(the neutrons) and sample from the properties of the system studied. The latter is given by the 
so-called scattering functions ( , )cohS Q ω  and ( , )incS Q ω , which are completely independent of 
the probe and a pure property of the system under investigation. The coherent scattering 
function ( , )cohS Q ω  (also called dynamical structure factor or scattering law) is a Fourier 
transform in space and time of the pair correlation function: 

2
2 2 2' | | | | ( , ) | | ( , )inc coh

k N b b S Q b S Q
k

σ ω ω
ω

∂ ⎡ ⎤= ⋅ ⋅ − +⎢ ⎥⎣ ⎦∂Ω∂

 
(26)  

Here the pair correlation function ( , )G r t  depends on the time dependent positions of the 
atoms in the sample: 

( ) 31( , ) ( , )
2

i Q r t
cohS Q G r t e d rdtωω

π
⋅ −= ∫=
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∫
(0)ir  denotes the position of atom i at time 0, while ( )jr t  denotes the position of another 

atom j at time t. The angle brackets denote the thermodynamic ensemble average, the integral 
extends over the entire sample volume and the sum runs over all atom pairs in the sample. 
Instead of correlating the positions of two point-like scatterers at different times, one can 
rewrite the pair correlation function in terms of the particle density as given in the second line 
of (27). Coherent scattering arises from the superposition of the amplitudes of waves scattered 
from one particle at time 0 and a second particle at time t, averaged over the entire sample 
volume and the thermodynamic state of the sample. In contrast, incoherent scattering arises 
from the superposition of waves scattered from the same particle at different times. Therefore 
the incoherent scattering function ( , )incS Q ω  is given in the following form: 

 
(28)  

which is the Fourier transform in space and time of the self correlation function ( , )SG r t : 

( ) 31( , ) ( , )
2

i Q r t
inc sS Q G r t e dωω

π
⋅ −= ∫= rdt

 
(29)  
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N

δ δ= − ⋅ + −∑∫
We next define the intermediate scattering function ( , )S Q t  as the purely spatial Fourier 
transform of the correlation function (here we have dropped the index “coh” and “inc”, 
respectively, as the intermediate scattering function can be defined for coherent as well as for 
incoherent scattering in the same way): 

 
(30)  

3( , ) : ( , )

( , ) '( , )

iQ rS Q t G r t e d r

S Q S Q t

⋅=

= ∞ +
∫

For reasons, which will become apparent below, we have separated in the second line the 
intermediate scattering function for infinite time 

 (31)  
from the time development at intermediate times. Given this form of the intermediate 
scattering function ( , )S Q t , we can now calculate the scattering function as the temporal Fou-
rier transform of the intermediate scattering function: 

 

( , ) lim ( , )
t

S Q S Q t∞ =
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In this way, the scattering function has been separated into one term for frequency 0, i. e. 
vanishing energy transfer 0E ωΔ = ==  and one term for non-vanishing energy transfer. The 
first term is the purely elastic scattering, which is given by the correlation function at infinite 
times. Correlation at infinite times is obtained for particles at rest. A prominent example is the 
Bragg scattering from a crystalline material, which is purely elastic, while the scattering from 
liquids is purely inelastic, since the atoms in liquids are moving around freely and thus the 
correlation function vanishes in the limit of infinite time differences.  
 
Often times the energy of the scattered neutron is not discriminated in the detector. In such 
experiments, where the detector is set at a given scattering angle, but does not resolve the 
energies of the scattered neutrons, we measure an integral cross section for a fixed direction 
ˆ ' 'k of k : 

 
(33)  
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Momentum and energy conservation are expressed by the following kinematic equations of 
scattering: 

 
(34)  

Due to these kinematic conditions, the scattering vector Q will vary with the energy of the 
scattered neutron E' or the energy transfer ω=  when the integral in (33) is performed. The so-
called quasi-static approximation neglects this variation and uses the scattering vector Q0 for 
elastic scattering (

( )
2

2 '2' ; '
2

Q k k E E k k
m

ω= − = − = −
== = = =

0)ω ==  in (33). This approximation is valid only if the energy transfer is 
small compared to the initial energy. This means that the movements of the atoms are negligi-
ble during the propagation of the radiation wave front from one atom to the other. In this case, 
the above integral can be approximated as follows:  
 

(35)  
( )

which shows that the integral scattering in quasi-static approximation depends on the instan-
taneous spatial correlation function only, i. e. it measures a snapshot of the arrangement of 
atoms within the sample. This technique is e. g. very important for the determination of short-
range order in liquids, where no elastic scattering occurs (see above).  
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Our discussion on correlation functions can be summarized in a schematic diagrammatic 
form, see figure 15.  
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Fig. 15: Schematic diagrams depicting the various scattering processes: a) coherent 

scattering is connected with the pair correlation function in space-and time; b) 
incoherent scattering is connected with the self-correlation function; c) magnetic 
scattering is connected with the spin pair correlation function; d) elastic and 
inelastic scattering from a  crystal measures average positions and movements of 
the atoms, respectively, e) inelastic scattering in quasistatic approximation sees a 
snapshot of the sample. 

 
Figure 15 shows that coherent scattering is related to the pair correlation between different 
atoms at different times (15a), while incoherent scattering relates to the one particle self cor-
relation function at different times (15b). In analogy to nuclear scattering, magnetic scattering 
depends on the correlation function between magnetic moments of the atoms. If the magnetic 
moment is due to spin only, it measures the spin pair correlation function (15c). Since the 
magnetic moment is a vector quantity, this correlation function strongly depends on the 
neutron polarization. For this reason, in magnetic scattering we often perform a polarization 
analysis as discussed in the corresponding lecture C6. Figure 15d depicts elastic and inelastic 
scattering from atoms on a regular lattice. Elastic scattering depends on the infinite time 
correlation and thus gives us information on the time averaged structure. Excursions of the 
atoms from their time averaged positions due to the thermal movement will give rise to 
inelastic scattering, which allows one e. g. to determine the spectrum of lattice vibrations, see 
lecture D4 on “inelastic scattering”. Finally, an experiment without energy analysis in quasi-
static approximation will give us the instantaneous correlations between the atoms, see figure 
15e. This schematic picture shows a snapshot of the atoms on a regular lattice. Their positions 
differ from the time averaged positions due to thermal movement. 
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It is evident that specialized techniques are needed to obtain all the information contained in 
the various cross sections. Optical elements needed to define incident and final wave vectors, 
and detectors to count the scattered particles, will be discussed in lectures C3, C4, C5, C6 and 
C7. It is important, however, to realize that these optical elements are never perfect and thus 
in reality a distribution of initial and final wave vectors are being selected. Therefore, the 
measured intensity in the detector is not simply proportional to the scattering function 

( , )S Q ω  (or more precisely, the cross section), but it is proportional to the convolution of the 
scattering function (or cross section) with the experimental resolution function R: 

 (36)  
Here, the resolution function R appears due to the limited ability of any experimental setup to 
define an incident or final wave vector k or k’, respectively. R therefore depends purely on the 
instrumental parameters and not on the scattering system under investigation. The art of any 
scattering experiment is to adjust the instrument - and with it the resolution function - to the 
problem under investigation. If the resolution of the instrument is too tight, the intensity in the 
detector becomes too small and counting statistics will limit the precision of the measurement. 
If, however, the resolution is too relaxed, the intensity will be smeared out and will not allow 
one to determine the scattering function properly.  
 
4.3 Selected examples for applications 
Here we give some selected examples for applications of scattering experiments to topical 
research, which we selected mainly from our own research at Forschungszentrum Jülich.  
 
4.3.1 Diffractometry 
Let us start with structure determination on various length scales. The scattering cross section 
is related to the Fourier transform of the spatial correlation function and therefore a reciprocal 
relation exists between characteristic real space distances d and the magnitude of the 
scattering vector Q, for which intensity maxima appear: 
 

(37)  

Bragg scattering from crystals provides an example for this equation: the distance between 
maxima of the Laue function is determined by 2Q d πΔ ⋅ = , where d is the corresponding real 
space periodicity. (37) is central for the choice of an instrument or experimental set-up, since 
it tells us which Q-range we have to cover in order to get information on a certain length 
range in real space.  
 
In order to calculate the corresponding scattering angle, we make use of (3) to calculate 2θ, 
the scattering angle ( , ')k k) . This angle has to be large enough in order to separate the 
scattering event clearly from the primary beam. This is why we need different instruments to 
study materials on different length scales. Table 1 gives two examples. 

3
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Tab. 1:  Examples for scattering from structures on different characteristic real space 

length scales d. ΔQ is the corresponding characteristic scattering vector 
according to (37), 2θ the scattering angle according to (3), calculated for two 
different wavelength λ. 

 
1. The study of structures on atomic length scales is typically done with a wavelength of 

around 1 Å (comparable to the distance between the atoms) and the scattered intensity 
is observed at rather large angles between 5° and 175°. Therefore one speaks of wide 
angle diffraction, which is employed for the study of atomic structures.  

2. For the study of large scale structures (precipitates, magnetic domains, macromole-
cules in solution or melt) on length scales of 10 up to 10,000 Å (1 up to 1000 nm), the 
magnitude of the relevant scattering vectors as well as the corresponding scattering 
angles are small. Therefore one chooses a longer wavelength in order to expand the 
diffractogram. The suitable technique is small angle scattering, which is employed to 
study large scale structures.  

 
A topical example for wide angle diffraction comes from the field of superconductivity 
(lecture E1), which celebrated the 100 anniversary of its discovery just last year, see figure 
16.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Example 

Distance between 
atoms in crystals 

Precipitates in 
metals (e.g. Co in 
Cu) 

d 

2 Å 

400 Å 

ΔQ 

3.14 Å-1

0.016Å-1

2θ  
(λ=10 Å)

"cut-off"

1.46°

Technique 

wide angle diffraction

small angle scattering

2θ  
(λ=1 Å)

29°

0.14°
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Fig. 16: A brief history of superconductivity with some examples of superconducting 

compounds. The critical temperature for the onset of superconductivity Tc is plotted 
versus the year of discovery.  

 
The mechanism of superconductivity for the so-called BCS (Bardeen, Cooper, Schrieffer), 
superconductors is well understood as a Bose-Einstein condensation of Cooper pairs, i.e. 
electrons bound by the exchange of phonons. More than 25 years ago, Bednorz and Müller 
(Nobel prize in physics 1987) discovered a new family of superconductors with transition 
temperatures exceeding liquid nitrogen temperatures, the cuprate superconductors. Despite 
huge efforts of solid state scientists world wide, the mechanism of superconductivity in these 
compounds is still unresolved. Therefore it came as a big relieve, when a few years ago a new 
class of high temperature superconductors was discovered, which is iron based. Just like for 
cuprates, these superconductors show an intimate proximity to magnetism, i.e. the parent 
compounds show magnetic order. X-ray and neutron diffraction was employed to determine 
the structure and magnetic structure of these compounds ([15 - 19]), see figure 17.  
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Fig. 17: Magnetic structures of some iron based superconductors determined by wide angle 

diffraction . 
 
This structural information is an essential prerequisite for an understanding of 
superconductivity in these compounds. All iron-arsenide superconductors have in common 
that they are layered structures with Fe tetrahedrally surrounded by As. In fact, the closer the 
bond angles to a perfect tetrahedron, the higher the transition temperature. The magnetic 
structure is stripe-like with a rather small moment, indicating frustration and/or spin density 
wave mechanisms.  
 
Wide angle scattering can provide even much more detailed information, such as the 
magnetization density distribution within the unit cell [20] (for this study, polarized neutrons 
are required), or the phase diagram as function of temperature, field or pressure [21].  
 
A topical example for small angle scattering stems from the study of magnetic nanoparticles 
[22]. Magnetic nanoparticles are of fundamental interest for the understanding of magnetism 
on the nanoscale. They have potential for applications as ferrofluids, in medicine and 
magnetic data storage. The internal structure of such particles can be determined with a 
special wide angle scattering technique, the Pair Distribution Function PDF analysis (lecture 
D5). With polarized small angle neutron scattering, the magnetic structure of such particles 
can be determined, where one finds a significant reduction of the magnetic moment as 
compared to its bulk value and a spin canting in a surface near layer of the particle [23]. Of 
special interest is the self assembly of such nanoparticles into 2-dimensional or 3-dimensional 
ordered structures. We were able to grow well-ordered mesocrystals of maghemite 
nanoparticles on a silicon wafer substrate. In order to analyse the depth resolved mesocrystal 
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structure, small angle x-ray scattering is performed under grazing incidence of the beam at a 
synchrotron radiation facility. Figure 18 shows an example of such a measurement.  
 

 
 
Fig. 18: Scheme showing the principle of Grazing Incidence Small Angle X-ray Scattering 

GISAXS with an actual diffraction pattern from mesocrystals of magnetic 
nanoparticles . 

 
It turns out that quite complex structures develop. As an example, figure 19 shows the 
structure obtained for truncated maghemite cubes with 8.5 nm edge length. The body centred 
tetragonal structure found had been predicted to exist, but had never been observed before.  
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Fig. 19: Schematic diagram of the body centered tetragonal structure found for truncated 

nanocubes of maghemite [24]. 
 
From a systematic series of such studies, the interaction energies can be determined. The 
ability to modulate interparticle interactions by a variation of the particle shape is promising 
to open a new direction in crystallography, where the mesocrystal structure depends largely 
on the shape of the primary constituents [24].  
 
4.3.2 Spectroscopy 
While diffraction provides information on “where the atoms are“, spectroscopy tells us “how 
the atoms move”. Again, this is a very wide field, from diffusion of single atoms or molecules 
(lecture B3), via coherent elementary excitations in solids (lattice vibrations, spin waves, see 
lecture B4) and local excitations such as crystal field transitions (lecture B5) to the dynamics 
of large molecules (lecture B6) like polymers (lecture E3), proteins (lecture E8) or glasses 
(lecture E9). Just like for diffraction, we can only give two representative examples.  
 
The first example is again concerned with the iron based superconductors. If we want to 
answer the question, whether the coupling of electrons to Cooper pairs is mediated through 
phonons, we have to know the phonon dispersion and/or look at charges in the phonon density 
of states between the superconducting and non-superconducting states. The phonon dispersion 
is best determined by neutron triple axis or inelastic x-ray spectroscopy (lecture D4). Phonon 
density of states are measured via time-of-flight neutron scattering (total phonon density of 
states) or nuclear resonant x-ray scattering (element specific, lecture D9). As an example, 
figure 20 shows the phonon dispersion of one of the parent compounds of the Fe-As 
superconductors [25].  
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Fig. 20: Phonon dispersion of CaFe2As2 at room temperature along main symmetry 

directions. Data from neutron triple axis spectroscopy are compared to ab-initio 
calculations (solid lines) [25].  

 
The calculations largely reproduce the measurements with the exception of some branches, 
where calculated energies deviate or a strong damping of modes containing only Fe atoms is 
observed. Similar studies can be performed under applied pressure. Due to the small sample 
volume, inelastic x-ray scattering is ideally suited to study pressure dependence of phonon 
modes [26]. Systematic studies of the phonon density of states have been done as well for the 
non-superconducting as for the superconducting phases [27-30]. At this stage, it is commonly 
agreed that coupling of electrons to Cooper pairs through phonons alone is not likely to be the 
mechanism leading to superconductivity in these iron based superconductors. In fact, 
magnetism has to be involved to reproduce the phonon spectra. Magnetic fluctuations have 
been observed in the non-superconducting and the superconducting phases and a coupling 
scheme through magnetic fluctuations, possibly combined with lattice vibrations, is currently 
being considered.  
 
This example shows clearly, how scattering methods can access microscopic information, 
which directly relates to the mechanism leading to a macroscopic quantum phenomenon such 
as superconductivity (see also lecture E1). A similar example can be given from the field of 
life science for high resolution spectroscopy. Large biomolecules show a slow dynamics in 
the nsec time range, which requires techniques such as neutron spin echo or photon 
correlation spectroscopy.  
 
Proteins are the molecular machinery of life. As nanomachines of metabolism, they are in 
every cell of our body tirelessly active to transport, synthesize, divide and transform 
substances. The ability of specific proteins to do their job is determined by the sequence of 
amino acids and their three-dimensional arrangement as determined by x-ray protein 
crystallography (lecture E10), but also depends on structural rearrangements. To perform their 
function structural changes are often important. They reach from atomic reorientation to 
rearrangements of complete domains to enclose substrates, to release products or to 
reconfigure domains in complexes. Neutron Spin Echo Spectroscopy is a versatile tool to 
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investigate these large scale movements in biomolecules on different length scales with the 
ability to determine the timescale of the motions.  
 
The protein alcohol dehydrogenase (ADH) is responsible for the interconversion between 
alcohol and ketons - a very important catalysis reaction for detoxification after alcohol abuse, 
see figure 21.  

 
 
Fig. 21: The protein alcohol dehydrogenase. The exterior (catalytic) domain tilts outwards 

and opens the cleft which initiates the catalytic reaction.  
 
With neutron spin echo spectroscopy, the internal dynamics of the molecule could be studied 
and the motional amplitude of 0.8 nm determined - an important step in understanding the 
functionality of proteins in catalytic reactions [31], see lecture E8.  
 
These few selected examples serve to give a taste of the capabilities of scattering methods. 
More examples will be given in the lectures on topical applications E1 - E9.  
 
With the planned European facilities ESS and XFEL, the future of scattering methods is 
extremely bright. The high intensity and brightness of these sources will enable entirely new 
experiments. With neutron chopper spectrometers at ESS, dispersion relations of elementary 
excitations can be mapped within a few minutes, allowing parametric spectroscopic studies as 
function of field, pressure or temperature as they are done today for structural studies on 
diffractometers. Fully coherent scattering of radiation from the XFEL permits the use of 
oversampling techniques and possibly the determination of the structure of biomolecules 
without the need for crystallization. The time structure of XFEL with the < 100 fs flashes will 
allow one to study time dependencies e.g. of chemical reactions in the corresponding time 
window. The two European projects ESS and XFEL and the possible new types of 
applications will be presented in lectures C8, C9 and D10.  
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5 Life at large scale facilities 
Neutron and x-ray sources are rather expensive to build and to operate. Therefore, only few 
such installation exist world wide - especially in the field of research with neutrons, where 
licensing of nuclear installations is an additional aspect to be considered. Figure 22 shows the 
geographic distribution of the major facilities for research with neutrons. The Jülich Centre 
for Neutron Science JCNS is present at some of the world’s best sources.  

 
 
Fig. 22: Major neutron research centres worldwide which have sources of appreciable flux 

and a broad instrumentation suite for condensed matter research. JCNS is present at 
four of the leading sources worldwide: the neutron research reactor FRM II in 
Garching, Germany, the Institute Laue-Langevin ILL in Grenoble, France, the 
Spallation Neutron Source SNS in Oak Ridge, USA and the Chinese Advanced 
Research Reactor CARR close to Beijing, China. JCNS also has a leading 
involvement in the European Spallation Source project, Lund, Sweden.  

 
The fact that there are only few sources worldwide implies that experiments at large facilities 
have to be organized quite different from normal lab-based experiments. Efforts have to be 
made to use the existing sources as efficient as possible. This means (i) continuous and 
reliable operation of the source during a large fraction of the year; (ii) many highly 
performing instruments, which can run in parallel, located around every source; (iii) 
professional instrument operation with highly qualified staff and a stringent risk management 
to keep the downtime of instruments and auxiliary equipment as low as possible; (iv) and 
access for as many scientists as possible. While there are specialized companies which 
produce beamline and instrument components, there is no true commercial market for neutron 
or synchrotron instruments. Therefore these instruments are being built by research centres, 
where usually one or a few staff scientists work closely with engineers and technicians to 
realize an instrument for a certain application. These highly experienced scientists will then 
later-on also operate the instruments. The Jülich Centre for Neutron Science JCNS has such 
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staff scientists located at the outstations at FRM II, ILL and SNS. However, these large scale 
facilities are way too expensive to be operated just for a small number of scientists. Beamtime 
is offered to external users from universities, research organizations (such as Max-Planck or 
Fraunhofer in Germany) and industry. In order for these users to obtain access to a scattering 
instrument, the user will obtain information from the internet on available instruments, 
contact the instrument scientist and discuss the planned experiments with the instrument 
scientist. Once a clear idea and strategy for an experiment has been worked out, the user will 
write a beamtime proposal where he describes in detail the scientific background, the goal of 
the planned experiment, the experimental strategy and the prior work. The facility issues a 
call for proposals in regular intervals, typically twice a year. The proposals received are 
distributed to members of an independent committee of international experts, which perform a 
peer review of the proposals and establish a ranking. Typically overload factors between 2 to 
3 occur i. e. 2 to 3 times the available beam time is being demanded by external users. Once 
the best experiments have been selected, the beamtime will be allocated through the facility, 
where the directors approves the ranking of the committee, the beamline scientist schedules 
the experiments on the respective instrument and the user office sends out the invitations to 
the external users. Many facilities will pay travel and lodging for 1 up to 2 users per 
experiment. It is now up to the user to prepare the experiment as well as possible. If the 
experiment fails because it was not well prepared, it will be very difficult to get more 
beamtime for the same scientific problem. Typical experiments last between 1 day and up to 2 
weeks. During this time lots of data will be collected which users take home and usually 
spend several weeks or months to treat the data and model it. 
 
A typical scattering facility will run about 200 days a year with a few hundred visits of user 
from all over the world. This is also what makes research at large facilities so attractive to 
young scientists: early-on in their career they will learn to work in large international 
collaborations, get the opportunity to work on state-of-the-art high-tech equipment and learn 
to organize their research as efficient as possible. You have therefore chosen well to attend 
this Spring School! 

 

Conclusion 
 

This overview was meant to give a first introduction to scattering methods, give a climbse of 
the possibilities provided at current and future sources and outline the structure of the course. 
You can now look forward to interesting lectures, where many more details will be explained 
and you will learn the principles to enable you to successfully perform experiments at neutron 
and synchrotron radiation sources. Have lots of fun and success working with these powerful 
techniques! 
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