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1 Introduction

Any kind of matter can be seen as a system of interacting particles, where the structure is
determined by its ground state and the dynamics is represented by excited states. Ground states
and excited states are determined by the Coulomb interaction between ions and electrons. Due
to this interaction the excited states are collective excitations.

Dynamical properties of matter are directly related to physical properties, which on their part
can be measured in experiments. To understand phenomena like temperature dependent effects,
superconductivity, phase transition or also magnetic properties, to name just a few, the basic
elementary excitations have to be understood.

In this chapter two types of elementary excitations in matter will be discussed. First the concept
of lattice waves in the harmonic approximation will be introduced. An outlook to anharmonic
effects which lead to temperature dependent phenomena, and a short comparison to excitations
in amorphous media will then be given.

Analogous to the periodic sequence of atoms in a lattice, the periodic arrangement of electronic
spins of atoms leads to spin waves. On the basis of a model Hamiltonian the examples of ferro-
and antiferromagnetism will be treated. The quasiparticle of the spin waves are the magnons,
similar to the phonons for the lattice waves.

The main part of the formalism presented here deals with an infinite periodic system. As interac-
tions in matter can be manifold and complicated appropriate approximations will be presented.

2 Lattice Excitations: Phonons

2.1 Adiabatic Approximation

A solid represents a quantum mechanical many-body system consisting of interacting nuclei
and electrons. The Hamiltonian contains the kinetic and potential energy with all nuclear and
electronic coordinates and momenta and their interaction.

H = Hnucl + Hel + Hel—nucl'

The wavefunction is thus a function of all nuclear, electronic, and spin coordinates. As this is
a rather complicated system in total, approximations are needed: With the adiabatic approxi-
mation (also called Born-Oppenheimer approximation) one can decouple the electron from the
nuclear dynamics: One uses the fact that the light electrons adjust instantaneously to the slower
motion of the heavy ionic cores (with the electron mass being about 10~* of the ion mass!).
During the motion of the atomic cores the electrons follow the ions adiabatically and remain in
their ground state, the energy of which, however, is given by the ionic configuration.

2.2 Harmonic Approximation

The ions move in a potential V', made up of the potential energy of the ion configuration and of
the energy of the electrons in this configuration.

Assuming small atomic displacements u; out of their equilibrium positions, the potential energy
V' can be written as a Taylor series in these atomic displacements, and the Hamiltonian reads

2 2
19) ov 1 oV
Hin = Y o=+ Vo + ZZ B e T 3 DY gttt (D)
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If one neglects all terms higher than of second order, indicated by dots, this approximation is
called the harmonic approximation. (This approximation is made for convenience: the harmonic
equations of motions are easier to solve and this approximation is justified as the harmonic term
is the dominant one and gives good results at least at low temperatures.)

A closer look at equation (1) shows: Vj is a constant and not relevant for the dynamics. The
first-order term vanishes since it is assumed that the particles vibrate around their equilibrium
positions:

H, = + = — U Uy 3. 2
le g ; (9ul aaul/ Lot ( )

The second-order derivatives of the potential are the force constants
92V

q)a[g(” ) W (3)

They describe the force acting on the atom [ in the direction o when the atom [’ is displaced in
the direction £.

In the harmonic approximation, the atomic vibrations can be transformed into decoupled nor-
mal vibrations (as we see later, leading for periodic systems to (harmonic) phonon dispersion
curves). As these latter vibrations have no coupling, they have infinite lifetime. For lifetime
(linewidth) or frequency shift and other temperature effects one would have to consider the
higher-order terms neglected in the harmonic approximation. They are called the anharmonic
terms.

The considerations above apply to crystalline as well as amorphous solids.

2.3 Normal Coordinates and Phonons

To finally investigate vibrations of particles in our system we have to solve the equations of

motion,
a Ul o
= = — ) ll ’LL/
o 8ula IXB: sl .

Because of the harmonic approximation we can formulate a harmonic ansatz for the time de-
pendence of the displacements u for all /,

w; o exp(—iwt) 4)

and get as result
Z ((I)aﬁ(ll/) — melél,l/(Sa,g) Uy g = 0. (5)
v,
The sum runs over all atoms in the system. With /V atoms, this is a 3N x 3/N-dimensional
problem resulting in a 3N x 3N force-constant matrix.
After diagonalizing this matrix, the diagonal elements are the squared frequencies. All eigenfre-
quencies w), are represented by eigenvectors x (I, a|\) with quantum numbers A, and the general
solution is

ua(t) =Y Qax(l, ol \)e (6)
A

The superposition coefficients () are the so-called normal coordinates.
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Upon quantization, the normal coordinates can be expressed in terms of phonon annihilation
and creation operators, ay, ai\,

Ox — /7120 (aA + a;) . %

With the eigensolutions we can also formulate the Hamiltonian (1) in terms of these solutions
or normal coordinates. In this representation the Hamiltonian will then be a set of uncoupled
harmonic oscillators, where each of them corresponds to a collective mode. This decoupling is
possible only within the harmonic approximation,

H = Z hwy, (n,\ + %) )]
A
with %hw being the lowest energy state of a quantum harmonic oscillator and

ny = aia)\ 9)

the occupation number operator with the commutation relations for creation and annihilation
operators, [a,al,] = Oy, [ax,axn] = 0 = [al, al,]; hw, is the excitation energy quantum of
the collective mode, the phonon energy.

2.4 Bloch’s Theorem and Vibrations in Crystals

A crystal is an infinite periodic system, and with Bloch’s theorem (or mathematically Floquet’s
theorem) we can make use of this lattice periodicity. The theorem states that the displacements
of same atoms in different unit cells differ only by a phase factor. We denote now not only
the elementary cell by an index [ but also the atom within a cell by an index . Then the
displacements u can be written as

u(lk) = e(k|q)e" R, (10)

1
VMg
(The mass factor is for later convenience.) The first part describes the periodicity of the cells,

the second one is the wave-like part.
Now the equation of motion takes the form

W (q)ea(r]q) =Y Dag(rr'|q)es(K'|q). (11)
KB

This equation now treats only atoms within one unit cell. The so-called dynamical matrix
D,..r(q) is the Fourier transform of the force constant matrix (3), multiplied by the square
root of the masses of the atoms (in order for (11) to obtain the normal form of an eigenvalue
equation),

Dos(kr'|q) = op(ly K, U K ) e (Ry—Ry) (12)

T

(D-definition after Maradudin et al. [2]).
If r is the number of atoms in the elementary cell, now the 3N x 3N problem of (5) is reduced
to a 3r x 3r problem in (11). For each wavevector q the secular problem

‘Daﬁ(/wﬂq) — w2(q)5a75(5&,€/| =0 (13)
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has to be solved. The diagonalization of the dynamical matrix leads to the eigenfrequencies
w;(q) with the branch index j. The quantum number X for general systems above is now de-
tailed by two quantum numbers q and j for lattices. For each eigenfrequency w;(q) = w;(—q)
with j = 1,. .., 3r a corresponding eigenvector e(k|q, j) to equation (11) exists.

As we have seen we can gain all phonon properties from considering only one unit cell. In the
same way as a crystal is composed of a periodic array of unit cells also the phonon properties
show a periodicity:
w;(q) = w;(q+7),
e(xla,j) = e(kla +7, 7).
The vector 7 is a so-called reciprocal-lattice vector.

But still in an experiment one would not necessarily find the same result in different Brillouin
zones (different 7): the scattering function contains terms involving

(q+7) - e(slq, j)e' @t BE),

which might lead to different scattering intensities in different Brillouin zones for the same
frequency!

Because of the hermiticity of the matrix the squared frequencies w?-(q) must be real, and with
this w;(q) can be either real or imaginary. In the latter case, for a calculated imaginary fre-
quency, the crystal shows an instability. The curves w;(q) as a function of ¢ for a given direction
of q are called dispersion curves (analogous to the band-structure curves in the electronic case).
The solutions of equation (11) or (13) describe collective modes for which all ions in a lattice
move with the same time dependence but with a phase shift with respect to each other. The
eigenvectors form a complete set of solutions that can be used as basis for any arbitrary motion
of the ions.

With r atoms in the unit cell we will find 3r phonon branches per g-vector. The factor 3
describes thereby the three spatial degrees of freedom of each atom within the elementary cell.
Common to the phonon dispersion of all solids are the branches with lowest frequencies, which
are the acoustic modes which start from the center of the Brillouin zone with a linear dependence
on q. A simple picture of acoustic modes can be drawn with one of the simplest models, the
monatomic linear chain.

2.5 Phonon Dispersion Curves

Consider a linear chain with atoms, all with mass M, separated by the unit cell length a. And
assume an average force constant C' acting between neighboring planes. This is the model
of a monatomic linear chain. Let U; be the displacement of plane i, With the periodic time
dependence U;(t) = u;e™™" the equations of motion (5) reduce to

—Muﬂui = C’(uiﬂ + Uu;_q1 — 2Ul) .

The solution of these equations are plane waves u;.; = u;e="® periodic with wavevector ¢. For
the dispersion relation w(q) of the monatomic linear chain we get:

w(g) = (40/M)"?|sin L.

This dispersion is schematically shown in fig. 1. For one atom in one dimension we will get only
one phonon branch. The sine dependence shows us: For small ¢g-vectors (long wavelengths) the
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Fig. 1: Schematic representation of the dispersion curve of the monatomic linear chain. The
phonon dispersion can be limited to the first Brillouin zone.

frequency w is linear in ¢, w = cyq with the velocity of sound c;. Also we see: for small
g-vectors ¢ — 0 the frequency tends to zero, w — 0.

One striking feature is the periodicity of the function: the period is 27 /a, which is equal to a
unit cell length in reciprocal space. We have seen already that one can add a reciprocal lattice
vector 7 = 27 /a to any point at any wavevector, the frequency and equations of motion will be
identical to the first one. All information is contained within —7/a < ¢ < 7/a. This range is
called the first Brillouin zone. Further zones are called the second, third, etc. Brillouin zone.
One can limit the phonon dispersion to the first Brillouin zone.

The values ¢ = +Z are the Brillouin zone boundaries lying half way between centers. In our
case the slope of the dispersion is zero at the zone boundary, dw/dq = 0 for ¢ = £7.

Phonon modes are grouped in acoustic and optic. Of the 3r possible modes, three modes are
acoustic, and the remaining (37 — 3) modes are optic with a a non-zero frequency at q = 0.

In the acoustic modes in the long-wavelength limit ¢ — 0 all atoms move with nearly the same
phase. The wavelength ) of this movement is much larger than the lattice constant a. Depending

T I A

Fig. 2: Schematic displacement patterns for a two-atomic linear chain for q # 0. Top
left:transverse acoustic mode (TA), bottom left: longitudinal acoustic mode (LA). Right: trans-
verse optic mode (TO).

on the orientation of the polarization vectors e(k|qj) with respect to q, the modes can possibly
be further classified to be longitudinal or transverse. In the longitudinal mode the displacement
is parallel to the g-vector, whereas in the two transverse modes the displacement is perpendic-
ular. This may be true, however, only in main symmetry directions, e.g., for cubic symmetries
along [100], [110], or [111] (edge, face, or space diagonal). In more complicated structures or
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away from main symmetry directions the modes show a mixture of these displacement patterns
and cannot be classified as purely longitudinal or transverse movements anymore.

Phonon dispersion curves w;(q) are usually plotted along high-symmetry directions where de-
generacies may occur. They are obtained experimentally, e.g., from inelastic scattering of neu-
trons, photons, or atoms, and theoretically, e.g., from model or ab initio calculations. For crys-
tals of the same symmetry group similar dispersion curves are obtained, the details depending
upon the specific atom masses and force constants. Scales for frequencies are typically 102 s~!
(THz) = 33.36cm™! = 4.136 meV.

3 400 .
£ |
‘ § 300 +
g 200 +~
CEGE
5
\_ & %Or X K r L

Reduced Wave Vector

Fig. 3: Phonon dispersion for aluminium from first principle ab initio methods in comparison
with data from inelastic neutron scattering. [3] Left: Brillouin zone of the fcc lattice with the
measured high symmetry directions marked.

Figure 3 shows the phonon dispersion curve for the example of aluminium along the main sym-
metry directions of the fcc Brillouin zone. With one atom in the primitive unit cell the phonon
dispersion shows three acoustic branches (one LA, two TA). The two lower transverse acoustic
branches are degenerate in I' — X and I' — L-direction which is characteristic of the symmetry
group (Fm3m) of fcc aluminium. Also can be seen that the modes show zero curvature at the
zone boundaries.
With two and more atoms in the unit cell the dispersion will show also optic modes. In ionic
crystals these modes may be dipole-active, depending on the involved atoms, and can then be
excited optically, e.g., by infra-red light (therefore they are called optic modes).
Figure 4 shows an example for a phonon dispersion with three atoms per unit cell, CaF,, along
the three main symmetry directions of the fcc Brillouin zone and along several other directions
along the Brillouin zone faces. Depicted are also the group-symmetrical representations of the
different phonon branches.
In 1onic crystals where the different atoms are (differently) charged a macroscopic longitudinal
electric field is introduced with the displacement of the atoms. As this field is of longitudinal
character, longitudinal optic modes at ¢ = 0 couple to this field and their energy is increased,
whereas transverse modes are not affected. This fact is described by the Lyddane-Sachs-Teller
relation for ionic crystals for long wavelengths:

€0)  wi

€0 W

This means, in ionic crystals the degeneracy is partly removed at the Brillouin zone center for
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Fig. 4: DOS and phonon dispersion curves for CaFs from inelastic neutron scattering (sym-
bols) and ab initio method. [4] Triangles mean phonons measured in longitudinal, squares in
transverse polarization.

optic modes. The LO modes have higher frequencies than the TO modes. This LO-TO splitting
might be anisotropic and direction-dependent.

For identical atoms in the unit cell, the modes at the Brillouin zone center are degenerate. With
increasing charge difference the gap between the LO and TO modes increases.

2.6 Phonon Density of States

A convenient way to display a phonon spectrum is also the phonon density of states (DOS).
The phonon spectrum with a a given dispersion w;(q) can be characterized by the one-phonon
density of states, D(w) = >_ ;d(w — w;(q)). It counts the number of phonon modes within
a frequency interval at a given frequency w by summing over all branches in the first Brillouin
zone and is the sum of all frequencies in all directions in reciprocal space (not only those in a
chosen dispersion direction). It is shown on the left hand side of fig. 4. Pronounced peaks can
be seen coming from flat parts of the branches.

2.7 Anharmonic Effects and Phase Transitions

Within the harmonic approximation we introduced before many experimental results can be
reproduced but temperature dependent effects cannot be predicted. In experiment and real life
those effects are omnipresent. To model and understand effects like thermal expansion, effects
coming from phonon-phonon collision or phase transitions, etc., the higher order terms in the
Hamiltonian (1) have to be taken into account. With this the decoupling of vibrations is not
possible anymore and an interaction of phonons takes place.

In experiment temperature effects will be seen in a shift of the phonon frequency compared to
the harmonic one, in thermal expansion and a phonon linewidth broadening. The linewidth is
the inverse of the lifetime of a phonon and can be seen via a damping of the spectral lines in
experiment. This is ascribed to decay processes where a phonon decays after a certain time into
other phonon states.

The thermal expansion is the process easiest to consider. With increasing temperature in general
the volume of the material increases. One can expect that frequencies decrease with increasing
volume as bond lengths increase and interatomic forces decrease.
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Fig. 5: PbTiO3 undergoes a cubic-tetragonal phase transition at 763 K. Left: distortion as-
sociated with the transition involves small atomic displacements in [001]. Right: Decreasing
[frequency when approaching the transition temperature. Below the phase transition a splitting
in two modes occurs. Taken from [5])

The change of volume and frequency with changing temperature can be described with the
mode-Griineisen-parameter:
9Inw(q,j)
’quj = T T a1
d(In'V)

For the shift of phonon frequencies decay and scattering processes have to be taken into account,
including higher order terms than the harmonic ones as well as thermal expansion, all depending
on higher order terms in the potential.

When calculating the phonon frequencies of the structure known to exist at high temperatures
with the harmonic equations of motion (11), the squared phonon frequencies w? can be negative,
leading to imaginary frequencies. This means the assumed structure is not stable at 0 K and an
another structure with lower energy exists. The structural distortion can be identified when
finding the eigenvector corresponding to the imaginary frequency.

An example for the change of frequency with temperature is the second order displacive phase
transition. From high to low temperatures the system seems to undergo small structural modifi-
cations. Figure 5 shows the temperature variation of the two-fold degenerate TO frequency near
the ferroelectric phase transition in PbTiO3. When cooling in an experiment from high to low
temperatures the phonon frequency will decrease from the stable harmonic value at high tem-
peratures to zero at the transition. At this point the crystal is unstable against the corresponding
distortion and undergoes a phase transition to a lower energy phase. This mode which can be
found in the high temperature phase is called a soft mode. Below the phase transition there will
be another mode increasing in frequency when cooling. Below 7} a splitting into two modes
occurs due to the reduced symmetry.

2.8 Other Thermal Effects

The internal energy of a phonon system is
U(T) =) hwj(a ((na,) + 3) (14)
a.J

with the Bose occupation number

1
<nq1j> - 1 — efw;i(@)/ksT "

(15)
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There are two effects from temperature: The one comes from the explicit 7'-dependence of the
Bose factor; the other comes from the (anharmonic) 7-dependence of w;(q). Neglecting the
latter is called the quasi-harmonic approximation.

Similarly to the internal energy the entropy, free energy, specific heat, etc. can be calculated.

2.9 Amorphous Media and Liquids

So far we considered perfect lattice symmetries.

If only single atoms of the crystal are replaced by defects, then still an average lattice periodic-
ity on a long-range scale is preserved. The wavevectors are still approximately good quantum
numbers, and the notions of Brillouin zone etc. are good approximations. In contrast, in disor-
dered materials like amorphous materials, glasses or liquids there is less or no long-range order
at all leading to structural disorder. As a consequence, the g-vector is not well defined and no
longer a good quantum number.

Crystal Liquid Amorphous

Fig. 6: Schematic presentation of a crystalline, liquid and amorphous ordering. No long-range
order or large distance periodicity exists in the latter two.

But there exists still short range order and the local environment of a given atom is, similar to
the crystalline case with nearest and next-nearest neighbor distances, relevant. With increas-
ing distance from a given atom, these structural quantities are less well defined and become
increasingly smeared out. With this loss of periodicity also no well defined Brillouin zones can
be identified, one speaks about pseudo-Brillouin zones, where the size of the zones is defined
by the next neighbor distance.

Nevertheless, in the long-wavelength limit glasses and disordered materials behave like crystals
with propagation of sound waves. In this limit the phonon dispersion is similar to the one found
in a crystalline system. With increasing wavelength vibrational properties lose their plane-wave
character, which can be seen as a broadening of spectral distribution in experiment coming from
the disorder of the system. This means for small ¢ a linear dispersion can be found which is
the macroscopic velocity of sound in the system and corresponds to the longitudinal acoustic
phonon branch.

Figure 7 shows measured longitudinal dispersion curves for different glass systems. The modes
show a pseudo-periodic behavior, where the extent of the Brillouin zone is determined by the
nearest neighbor distance. Depending on the system, the minimum in the second Brillouin zone,
which would correspond to the next Brillouin zone center, might be more pronounced like it is
in the case of ethanol hinting to an order at slightly larger length scales. Liquids and amorphous
materials are different from crystalline systems in that the former have strongly reduced trans-
verse forces. Anyway, for reduced symmetries the terms longitudinal and transverse might lose
their meaning.
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Fig. 7: Dispersion curves of various glass-like systems measured with inelastic neutron scat-
tering, rescaled for comparison in respect to frequency and wavevector () [6]. The straight line
indicates the velocity of sound.

As a result of structural disorder, e.g., the heat conduction will be smaller in glasses and lig-
uids than in crystalline materials due to defect-induced scattering. In a simple model, the heat
conduction is given by

1

K= gcvvl

with the specific heat ¢y, velocity v and mean free path length /. The structural or compositional
disorder reduces the average mean free path and the thermal conductivity becomes reduced in
comparison with that of a perfect crystal lattice.

3 Spin Waves: Magnons

So far we considered lattice vibrations, where the position of the atoms changes periodically
leading to phonons as quantized particles. We will focus now on properties coming from
the electron spin, which have been neglected so far. An electron system with its quantum-
mechanical exchange interaction will lead to a spin-ordered ground state and its elementary
excitations, the spin waves. The elementary excitations of a periodic spin system are of a
wavelike character in analogy to lattice vibrations, and, similarly to the phonons, magnons as
quantized particles of the spin wave, can be introduced. In this chapter the equation for spin
wave excitations in a ferromagnet as well as in an antiferromagnet will be deduced. Usually
magnetic order exists below a critical temperature at which a phase transition takes place. The
temperature and magnetic field dependence will be treated shortly at the end of this chapter.
For the spin ordered ground state one can imagine different realizations, like all spins parallel
(ferromagnetism), or antiparallel (antiferromagnetism), (anti-) ferrimagnetic ordering or more
complex like helix-form.
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Here we will focus on the most prominent cases of a spin ordering with parallel and antiparallel
spins, leading to ferro- and antiferromagnetism.

FM:...T1T11111... AFM . TLTLTLT...

Fig. 8: Classical ferromagnetic (FM) and antiferromagnetic (AFM) ground state in a Heisen-
berg chain. The spin states S7=+S and S; =-S are pictured by ']’ and ’|’. The AFM ordering is
described by two sublattices with opposite magnetization.

The exchange interaction between magnetic moments leads to the alignment of the spins. The
energy of the interaction between two atoms ¢ and j and their spins S; and S; can be formulated
within the Heisenberg model:

U=-2> "J;S;-8;,
]

where J;; is the exchange integral describing the exchange energy of overlapping charge distri-
butions of the different atoms i and j. >’ means summation over i # j. For a ferromagnetic
system the exchange integral is defined as positive, J;; > 0. For antiferromagnetics .J is taken
as negative for up and down spins, J;; < 0.

3.1 Spin Waves in Ferromagnets

Ferromagnetic materials show a spontaneous magnetic moment also without an external mag-
netic field. In the ground state all (total) atomic spins are aligned parallel, and the magnetic and
chemical unit cells are identical.

The z-component of a single spin S is mg = S. Exciting this state, the z-component be-
comes reduced, mg < S. In an energetically more favorable excitation state the excitations are
distributed over all spins and the orientation of the spin vector relative to the lattice changes
periodically forming a spin wave. The quantized particles of this spin wave are magnons.

In the Heisenberg-model the Hamiltonian of spins in an external magnetic field B can be written
in the following way:

The exchange integral J;; decays fast with increasing distance between the atoms ¢ and j, and
in practice the interaction is limited to next neighbors. The second term is the Zeeman energy
— e - B which presents the potential energy of the spin magnetic moments with an external
magnetic field B; one typically chooses B = —B(0, 0, 1). The ions form a regular lattice, each

TYYYYYY

wavelength

Fig. 9: Schematic representation of a spin wave with wavelength .
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site is associated with a magnetic moment x, with p, = —yugS;/h, where  is the Landé factor
or gyromagnetic ratio (y ~ 2.00232 for a single electron), 1.5 is the Bohr magneton.

In general the Hamiltonian can contain further contributions, coming, e.g., from crystalline
anisotropies coupling the spins to certain crystallographic directions, or the dipole-dipole inter-
action of the spins, etc. These contributions are usually smaller than the terms written down and
shall be neglected.

We are now not dealing anymore with displacements (or creation and annihilation of displace-
ment states) as in the phonon case but with creation and annihilation of magnon states. To
describe excitations or the change in the z-component we introduce spin operators:

Sy|m) oc|m+1), S_|m)oc|m—1), S,|m)=m|m) (17)

Note that S - S = £(S;.S_ + S_S,) + S2. The spin operators fulfill the commutation relations:
[St,S_]=2S,,[5,,5+] = £54.

To determine the eigenstates of (16) we relate the spin operators to Bose creation and annihila-
tion operators a' and a. This is the Holstein-Primakoff transformation. The spin operators can
then be written as:

N
i i s / a;a;
S+ = Sx + ZSy =25 (1 - ﬁ) * A, (18)

- 1/2
St = S —iS =25 (1_‘;1‘;@) — (50)1,

Sho= S —ala;.

)

The last equation describes the deviation from the maximum value S by the number operator
ajai, which will turn out to be the quantized excitations. The commutation relations for the
creation and annihilation operators are the same as they were in the phonon case.

As in the phonon case, we assume a periodic lattice. The Hamiltonian (16) is invariant against a
translation of basis vectors within the lattice. This means, solutions of the equation of motion in
plane wave form will exist, and we will make a Bloch ansatz as for lattice waves, equation (10).
It is then convenient to let the creator and annihilators act on collective states given by the

wavevector q:

a; = —— Z bqe_zq'R and aZT = — Z bgelq'R ) (19)
VN % VN 4

The commutation relations for a; and aj are also valid for the b4 and b:fl.

In the following we will consider low excitations with S — mg < S. Similar to the harmonic
approximation for the phonons where we expanded the potential only up to second order we
will now only consider the lowest terms in a; or byq. With this the square root in equation (18) is
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aT a;

1/2
approximately (1 — & ) ~ 1, and the spin operators result to:

28
SLo= ‘/W% bge "R, (20)

St = \/WZbLeqR,
q

i 1 Z-_/,i
Sio= 8= 5 D by O,

qq

These equations are of a similar type as the displacements in a lattice in the harmonic approx-
imation. The applied approximation assumes small deviations of the spins from their original
direction and thus only small excitation energies. This would be the case for small temperatures
but the approximation has proven to be reasonable in many cases.

The solutions are thus collective wave-like states, which are the spin waves. In an analogy to the
phonons, the quantized particles of these vibrations are called (ferromagnetic) magnons which
are created and destroyed by the operators bg, by

With the ansatz (20) in the Hamiltonian (16) and with the restriction to a Bravais lattice where
Jij = Jo,i—; one assumes low excitations and truncates the expansion after second-order terms
in bg, bq. The Hamiltonian for spin waves in ferromagnets results to

H = Ey+ hw(q)ng  with ng = b bg. (21)

with the ground-state energy depending on the interaction of the spins with an external magnetic
field
Eo(B) = —=NS*) "Jon — yupBNS (22)
h

and the excitation energy

hw(q) = 452 Jonsin?(q - R®*/2) + yupB =~ SZ Jon(q-R™? +yupB.  (23)
h h

The result is valid with the assumption of small values of (n4) and neglects magnon-magnon
interaction.

Equation (23) shows that the dispersion w(q) is quadratic in ¢ for small ¢, i.e. for long wave-
lengths. Unlike the case of phonons where w(q) is linear in ¢ for long wavelengths. The magnon
dispersion is in the same energy range as the phonon dispersion, namely meV, see fig. 10.
Similar to a phonon dispersion the magnon dispersion can have several branches, e.g., different
atoms in the magnetic unit cell or different sublattices can lead to not only one acoustic branch
but additionally to one or several optic branches.

3.2 Spin Waves in Antiferromagnets

A simple model of an antiferromagnet assumes a lattice with two different sublattices with
opposite spin directions like shown in fig. 3, where adjacent atoms belong to different sublat-
tices. The total magnetization results to zero. An example is the lattice of the antiferromagnetic
insulator MnF, crystal.
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Fig. 10: Magnon dispersion for ferromagnetic EuS from inelastic neutron scattering showing a
strong anisotropy for different directions in q space. [7]

The Hamiltonian has to include now the two different spin types, and the exchange integral is
Jij < 0 for an antiferromagnet. Like in the ferromagnet case we limit the interaction to next
neighbors:

H =Y J;Si-S—yusB Z Si. —S5.). (24)

ij

For simplicity, the Landé g-factor is assumed to be the same.
The following transformations are similar to the ferromagnet case, only one sort of spin (1)
is aligned parallel to the z-direction, the other one antiparallel (2), as can be seen in the z-
component of the spin operator. We employ again the Holstein-Primakoff transformation to
replace the spin operators by boson operators. Now we have to take into account the two spin
operators for the different sublattices. The equation equivalent to (18) is:

t 1/2
. A+, Q15
1+ = V2§ (1— ;—;) - i, (25)

1/2
i /554 a2za2l
Sz+ = Say, (1 T 99 ) )

i T T T
1. = S —apau, Sy = =5+ aya

and Sj_ = (S,)f, S5_ = (S3,)".
We perform the same transformation to operators in g-space, equation (19), and the truncation
of the expansion in by,

H = E0+QSZJOhZ Z b qg +ZSZZJO heq 1bq2 +bq1b112) (26)

q o0=1,2

The middle term counts elementary excitations on each sublattice. The last term contains cross-
terms describing a coupling between two different sublattices. To finally diagonalize the Hamil-
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Fig. 11: Left: Crystal and magnetic structure of MnF,. The grey spheres represent Mn**
ions, the arrows their relative direction of spin. [8] Right: Magnon dispersion for two different
directions in k space. [9]

tonian this coupling has to be removed via a transformation called the Bogoliubov transforma-
tion:

bg1 = UgCq1 + vchﬂ, , b= vqc:;l + UgCq2-
Here the magnon creators of one sublattice are related to annihilators in the other sublattice
where the size of each part might vary with the substance under consideration.
The requirement that the new operators ¢’ and ¢ be Bose creation and annihilation operators
lead to “?4 — vfl — 1. The resulting Hamiltonian contains terms with cc (as one expects), but
also terms with two creation or annihilation operators, cfc' and cc as in the last term in (26).
The second requirement is the vanishing of the latter. This fixes the v and v and the final form
of the Hamiltonian.
Finally the Hamiltonian for antiferromagnetic spin waves results to:

H=FEo+ Y hwg(cl,cqr+1/2). (27)
qo
Different from ferromagnetic magnons the Hamiltonian contains here the number operators of
two elementary excitations with the same energy and a zero point contribution.
With the approximation for small g and B = 0:

1/2
hwq =~ 28 (Z Jon(q - Rh)2> . (28)
h

We see that in an antiferromagnet the dispersion w(q) for small ¢ or long wavelength is linear in
q as it was for the phonon dispersion. As an example this linear dispersion measured by inelastic
neutron scattering is shown in fig. 11. In this special case the dispersion does not follow the
linear dispersion in ¢ but exhibits a gap at ¢ = 0. This is due to an anisotropy field, which
removes the degeneracy of the two different magnons leading to a finite energy at ¢ = 0.

3.3 Temperature Dependence of the Magnetization

Magnons can be thermally excited similar to phonons. Without external magnetic field and at
very low temperatures we assume the magnetization M (0) = gup NS saturated and all spins
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Fig. 12: Reduced magnetization vs. reduced temperature for ferromagnetic Ni and Fe. The
solid lines are calculations with different values for the total spin. [1]

aligned. With increasing temperature the spontaneous magnetization M (T") will decrease. We
have seen before that the deviation from the saturated magnetization M/ (0) o S is described by
the occupation number operator ny.

In a ferromagnet the Curie temperature 7> separates the not-ordered paramagnetic phase, where
the spontaneous magnetization vanishes, from the ordered ferromagnetic phase at 7" < 7. The
transition temperature for antiferromagnets is the Néel temperature 7.

For temperatures below the Curie temperatures 7 the magnetization M (T') for ferromagnets
reads:

M(T) = yug (NS - Z(nq>>, (29)

where the brackets, (...), denote the thermal average. The saturation magnetization of one
sublattice in an antiferromagnet is smaller than NS, and not all spins are parallel but deviate
from a perfect antiparallel spin alignment. The diminution depends e.g., on the type of lattice
or structure. The term in brackets, is the total spin in the z-direction. For a cubic lattice with
lattice constant @ and small temperatures 7' < 7 the relative deviation of the magnetization
from its saturated value results to:

M(0) - M(T) 2315V [kgT\*?
M (0) S 4m2a3 \25J

(30)

This 7°/2-law of the spontaneous magnetization is also found experimentally, see fig. 12.
For an antiferromagnet in analogy to (29) the z-component of the magnetization of the first
sublattice results to

My =y (NS = > (blabar)) (31)
E
The temperature dependence of the magnetization results in approximation for a cubic lattice to
Mi(0) = M(T) __ V (k:BT)2 32)
THB Am2a3/22 \2JS

(# 1s the number of neighbors.) Unlike in a ferromagnet the magnetization of an antiferromag-
netic sublattice decreases with T2 for small temperatures. The different temperature behavior
is related to the different g-dependence of the dispersion curves at long wavelengths.
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3.4 Dependence on magnetic field

So far we stated that in a ferromagnet at low temperatures well below 7 in general all magnetic
moments are aligned parallel. Still one might find that the magnetization of the system increases
in an applied magnetic field until reaching a saturation value. This is ascribed to the existence

M [ reorientation of — sifuration

magnetization

reversible domain wall motion
—IH

Fig. 13: Schematic magnetization curve, magnetization vs. magnetic field.

of domains, first postulated by P. Weiss (1907) and well established by now. In each of these
domains the magnetization is saturated but oriented differently in respect to each other leading
to lower total moment. The domain configuration might then change with an applied magnetic
field. Within one domain however, one can expect to find well aligned spins, as the exchange
interaction J;; is short-range and limited to almost next-neighbors.

With applying an external magnetic field first the volume of the domains which are oriented
already in direction of the external field will grow, then in a stronger external field, all domains
will be oriented in direction of the external field.

4 Conclusion

As a conclusion we have seen here the formalism for elementary excitations for lattice and spin
waves or respectively their quasiparticles phonons and magnons.

We saw first that we can decouple the electron from the ion dynamics and that it’s enough to
treat the ion movement in a potential V. The second major approximation was the truncation of
this potential after the second order term. This allowed a harmonic ansatz for the displacements
leading to a set of uncoupled harmonic oscillators / collective modes. Assuming an infinite peri-
odic crystal the equations could be simplified and it was sufficient to look only at the dynamics
within one unit cell or the first Brillouin zone. From the equations of motions the dynamical
matrix and frequencies and eigenvectors and finally the dispersion curves resulted. For small
q the acoustic-mode dispersion is linear in q approaching the velocity of sound. The phonon
spectrum can also be presented with the phonon density of states . For temperature dependent
effects higher order terms in the potential expansion have to be taken into account.

In case of amorphous materials, where the lattice periodicity is more or less missing, the short
range order still leads to a phonon dispersion at small q vectors.

We treated the spin waves in a similar formalism as the lattice waves. Within the Heisenberg-
model we determined the eigenstates with relating the spin operators to the creation and annihi-
lation operators (Holstein-Primakoff transformation). Only that instead of creating or annihilat-
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ing displacement states we were dealing now with magnon states. For an infinite periodic lattice
we could make a Bloch ansatz for plane waves as for the phonons. And similar to the harmonic
approximation where we expanded the potential only up to second order we considered only
lowest terms in the creation and annihilation operators. In ferromagnets the spin wave disper-
sion curves were found to be quadratic in ¢, in antiferromagnets linear in q. The formalism
for antiferromagnets differs from the one for ferromagnets as one has to consider two different
spin-sublattices. This calls for another transformation called the Bogoliubov transformation,
necessary to decouple the sublattices and be able to diagonalize the Hamiltonian.

In general the magnetization vanishes with increasing temperature. The transition temperature
is called Curie- and Néel temperature for ferro- and antiferromagnets. The formalism presented
was based in general on the assumption of having only one magnetic domain. In reality many

domains might exist in a sample, leading to an increase of magnetization in external magnetic
field.
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