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1 Introduction

Among the properties that make the neutron a unique and valuable probe for condensed matter
research, its spin and magnetic moment is of particular importance in the scattering process.
There are two aspects to consider, firstly, the strong nuclear interaction of the neutron with
an nucleus depends on the either parallel or antiparallel alignment of the spins of neutron and
nucleus, and secondly, the neutron’s magnetic moment interacts with the unfilled electron shells
of atoms or ions in magnetic scattering. The scattering process will also have an impact on the
spin state of the neutron probe. Hence, one may expect that controlling the neutron spin in a
scattering experiment will provide further valuable information, which leads us to the subject
of this lecture: polarized neutron scattering and polarization analysis. Indeed, it is possible
by working with polarized neutron and polarization analysis to separate scattering terms with
respect to their different structural or magnetic origins, and moreover, to uncover scattering
contributions that remain hidden in usual unpolarized scattering experiments.

2 Neutron spins in magnetic fields

The neutron has a spin S = +1/2 with angular momentum L. = AS. The magnetic mo-
ment of the neutron results from the spins of the individual quarks and their orbital motions,
and the relation between spin and magnetic moment is given by the neutron g-factor, g, =
—3.8260837(18), in units of the nuclear magneton jiy = 2~ = 5.05078324(13) - 10727JT~!

2my

tn = gnSpun =~ F1.913uy = £vapin,

where v, = —g,S is the gyromagnetic factor of the neutron (see Refs. [1, 2]) . Because of
the small ratio ., /up = m./m,, the neutron magnetic moment /i, is small compared to the
magnetic moment of the electron . = g.Sup ~ 1upg, with the Bohr magneton g = 2?;1 and
the Lande-factor g, = 2(1 + o/2m — 0.3280%/72) & 2 (see Refs. [3, 4]), « is the fine structure
constant. A peculiarity to note is that different to the electron and proton, the neutron magnetic

moment is aligned opposite to its spin.

2.1 Interaction of neutrons with magnetic fields

The dipolar interaction potential of a neutron with the magnetic field is given by Vyy = — py, -
B, where B is the magnetic induction. For neutrons passing from zero-field into a magnetic field
the potential energy changes by the Zeeman term 4., B depending on the relative orientation
of the magnetic moment. The according change in kinetic energy to conserve the total energy
is small, 0.06 eV /T, which in experimental practice is of relevance only in rare cases [5].

Larmor precession

The characteristic motion of the neutron magnetic moment in a magnetic field is Larmor preces-
sion, which for simplicity can be considered in a classical treatment. In fact, even the quantum
mechanical treatment, which introduces Pauli spin matrices & into the Schrodinger equation,
is effectively a classical treatment considering the origin of these matrices. Originally[6], they
result from the problem of mapping three dimensions onto two by introducing a complex com-
ponent describing the classical problem of a spinning top.[7]
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Fig. 1: Larmor precession: the motion of the neutron in a constant magnetic field conserves
energy and angular momentum.

The magnetic interaction tends to align the neutron moment with the magnetic induction in order
to minimize the interaction energy. The magnetic moment is related to the angular momentum
as pu = L, where v is the gyromagnetic ratio. Therefore, there is a torque g x B = L equal
to the time derivative of the angular momentum, which leads to the Bloch equation of motion:

f=7p xB. (1

The gyromagnetic ratio for the neutron, not to be confused with the gyromagnetic factor, is
given by v = 2v,un/h = —1.83- 10 s7'T~! or, in cgs units, /27 = —2916 Hz/Oe. Because
of the cross product, the time derivative of the magnetic moment is always perpendicular to the
moment itself. Therefore, the resulting motion is a precession, where the angular momentum,
the component L, along the field, and the energy are constants of the motion, see Fig.1. The
precession frequency is the Larmor frequency wy, = —vB, and hw = 21 B, the Zeeman splitting
energy.

Next we consider the many particle ensemble of neutrons in a neutron beam. Polarization of a
neutron beam is defined by the normalized average over the neutron spins.

P = 2(S) )

In an applied field the individual neutrons split in spin up 74+ and and spin down states n. Since
polarization will be measured with respect to a magnetic field defining a quantization axis, any
device for polarization analysis will take the projection of the spins in up- and down state states,

p— 3)
TLT—FTQ

Motion in time dependent fields

The polarization will behave like the individual neutron spin in a constant magnetic field and
will be a constant of motion. However, if we consider time-dependent fields, the finite velocity
distribution in a neutron beam will result in a different time dependence. Hence dephasing of
neutrons spins and degrading of the polarization are possible experimental effects and have to
be taken into account.

Thermal neutrons move with a speed of thousands of meters per second. When passing through
spatially varying magnetic fields, the neutrons experience time-dependent field changes in their
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reference system. Replacing the constant B by B(¢), the differential equation Eq. (1) can be
used to calculate numerically the effect of all relevant field variations in an experimental set-up.
Usually, it is possible to work within two simple limiting cases of either (i) slow adiabatic field
variation, in which the non-precessing spin component parallel to the field smoothly follows
the field direction, or of (ii) sudden field reversal, in which the non-precessing spin component
has no time to reorient itself, when traversing abruptly from a parallel to anti-parallel field or
vice versa. Slow field variation means that the field B changes or rotates in the coordinate

system of the neutron with a frequency that is small compared to the Larmor frequency, see Fig.
1.

sudden field changes w, >>w
slow, adiabatic field changes Wy <<, 9 B Larmor
B
S, S, B, B,=-B,
P & T4 BNel | 13
neutron
— travel direction Meissner shield,

current sheet

Fig. 2: Neutron polarization can be best preserved in the asymptotic cases of either slowly or
suddenly varying fields. The second case is used in a cryoflipper to reverse the polarization
with respect to the external field.

2.2 Experimental devices
Polarizer and polarization analyzer

The most common methods to polarize neutrons are (1) using the total reflection from magnetic
multi-layers, (ii) using Bragg reflection of polarizing single crystals (typically Heusler crystals)
and (iii) polarized He-3 filters, in which for anti-parallel spins the (n,He)-compound has a large
absorption cross-section while all neutrons with parallel spins may pass the filter cell. The first
two methods use an interference effect of nuclear and magnetic scattering amplitudes having
the same absolute value.

(1) Polarizing total reflecting supermirrors are an easy experimental tool to obtain a broad
wavelength band of cold polarized neutrons. The angle of total reflection for a single ferromag-

netic (FM) layer is given by
0F = A\y/n(b—p)/r. 4)

Here n denotes the particle density and b and p the nuclear and magnetic scattering lengths,
respectively. However, the critical angle can be further increased by artificial multi-layers (su-
permirrors) of alternating FM and non-magnetic layers of varying thickness [8], see Fig. 3. The
A dependence of the total reflectivity makes this type of polarizer less favorable for thermal
neutrons of shorter wave length as it reduces the accepted divergence of the beam.

(i) Bragg reflection by Heusler crystals is alternatively used to polarize thermal neutrons.
CuyMnAl is a Heusler alloy, its (111) Bragg reflection gives 95 % polarization. However, the
reflectivity of such crystals is low compared to usual non-polarizing monochromators and a
saturating field is required over the entire monochromator, which makes it technically more
complicated to combine with focusing though this is feasible.
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(ii1) He-3 filter cells, see Fig. 4, are of growing importance for polarizing neutrons, particularly
for the more challenging case of thermal neutrons, although such cells are technically rather
demanding and still under development. In case of spin-exchange optical pumping (SEOP) the
spin polarization of 3He gas is achieved in several steps. The cell is filled with additional Rb, K
and N, vapor. Rb electrons are polarized with a a circular polarized laser, by collisions the spin
is exchanged with K, which most efficiently exchanges spin with *He. Since polarization results
from absorption, such a device does not interfere with the beam divergence. One may note that
requirements for field homogeneity are very high and it is a kind of art and glass alchemy to
make cells with small depolarization all determining the lifetime of He-3 polarization. The
neutron polarization P raises with increasing He-3 cell size or pressure, while the transmission
T decreases. The optimum in efficiency is usually chosen by the maximum of a quality factor
P2T.
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Fig. 3: Spin dependent reflectivity and polarisation of a Fe/Si polarizing supermirror. The
degree of polarization is high, note the expanded scale . m=1 () = 0.02174" ) corresponds to
the total reflectivity of natural Ni. (from [9])
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Fig. 4: In-situ polarization of a SEOP He-3 cell and measured polarization of neutron beam in
transmission. (from Babcock et al.[10])
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Guide-fields

A magnetic guide field is used to maintain the direction of the spin and the polarization of the
neutron beam. The guide field preserves the quantization axis to which the neutron moments
have align either parallel or anti-parallel. Typical guide fields in the order of 10 G are strong
compared to earth field and other possible stray fields and usually sufficient to prevent depolar-
ization along the beam path. Such guide fields are usually also too weak to have any significant
impact on the sample magnetization.

Depolarization effects may for an inhomogeneous distribution of field directions over neutron
beam cross-section, which is typically a few cm?. This can easily occur if ferromagnetic mate-
rial is used close to the beam or if the sample itself is ferromagnetic. A neutron beam passing
through a ferromagnet is usually completely depolarized by differently oriented ferromagnetic
domains in the beam path, unless a saturating magnetic field is used to align the domains. De-
polarization will depend also on the path length through the sample, therefore, usually such
effects are negligible in neutron reflectometry of thin ferromagnetic films.

Flipper

The purpose of a ww-flipper is to reverse the polarization and to detect whether the sample causes
spin-flip scattering.

When applying a magnetic field perpendicular to the polarized neutron beam, the polarization
immediately starts its Larmor precession. A flipper that reverses the neutron polarization with
respect to the guide field has to induce a well-defined field pulse so that the polarization pre-
cesses by an angle 7. For this purpose one can use the homogeneous field of a Mezei flipper, a
long rectangular coil, see Fig. 5. Neutrons see a sudden field change when they enter and exit
the coil, in between they precess around the perpendicular flipping field, whose magnitude is
tuned with respect to the time of flight that the neutrons spend inside the coil. Thus, for a 7
flip in coil of thickness d, the time-of-flight t = dAZ* = 7/w = — /7B, (for example \=44A,
B=17G, d=1cm). Just to mention, other types of flippers exist like radio frequency (RF) flipper
(setup Moon, Riste Koehler, Fig. 8 and cryoflipper (Fig.2 and CryoPad Fig.10).

B1B

coil

Fig. 5: Principle of a neutron w-spin flipper. The neutrons perform a Larmor-precession of 180°
inside a long rectangular coil. The field B is perpendicular to spin orientation and adjusted to
the speed of the neutrons.

The purpose of a w/2-flipper is to set the polarization in precession mode by turning the po-
larization perpendicular to the guide field. A precessing polarization is used for instance in
high resolution Neutron Spin Echo spectroscopy and for Larmor diffraction, see below. Both
methods use the property of the neutron spin as an internal clock independent of the scattering
process itself and achieve highest resolution.
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Precessing polarization can also be used for analyzing polarization dependent scattering. A
polarization analyzer accepts neutrons with spins aligned with respect to the magnetic guide
field axis. If prior to the scattering process the neutron polarization is precessing with a known
phase and if then finally we detect a neutron polarization along the guide field, we can conclude
that scattering has caused the observed rotation of polarization. This method can be used for
neutron polarimetry or spherical polarization analysis.

XYZ-coils

In order to align the polarization to any desired direction at the sample position, there is in
the simplest version a set-up of three orthogonal pairs of so-called xyz-coils. Fig. 6 illustrates
the field setting along x-direction. With such a device one can probe the direction of magnetic
moments in the sample. One can see that the z-coil has been used to compensate the guide field
at the sample position, and that the x-coils produce a field of a few Gauss. The field needs to be
sufficiently strong so that the neutron polarization can follow the smooth variation of the field
direction adiabatically, finally turning back into the z-direction of the guide field outside the
xyz-coils.

B (Gauss)

o

-40 0 40
d (cm)

Fig. 6: (left) Magnetic field setting in a xyz-coil system for an adiabatic nutation of the po-
larization of cold neutrons in horizontal x-direction at the sample turning to a vertical (guide)
field B, at further distance from the sample. (right) A photo of the xyz-coil system in the DNS
instrument at the FRM-2.

2.3 Polarized neutron instrumentation

The spin of the neutron and its Larmor precession in a magnetic field is an individual property
of each neutron that can also used to measure indirectly the momentum or energy transfer in
a scattering process, and with extremely high resolution. The ideas of the two most interest-
ing applications of neutron precession spin-echo spectroscopy and Larmor diffraction will be
discussed next.

Of course, the main objective of polarized neutron work is determine the polarization depen-
dence of scattering. The selected examples below are important but cannot give an exhaustive
overview on the suite of polarized neutron instrumentation, which is of growing diversity.
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Fig. 7: Precession in spin-echo spectroscopy (left) and Larmor diffraction (right, adapted from
[13]).
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Neutron precession techniques

The idea of neutron spin echo spectroscopy is to use the individual spin precession of the
neutrons to monitor possible small energy transfers of approximately 1peV upon scattering.
The incident beam is polarized first parallel to the field, then set into precession mode by a
/2 flipper and along the path through the precession coil, the total precession angle of the
neutron is increases proportional to the time in the coil. Because ¢ o A, soon neutron spins
are out of phase and the polarization vanishes to zero, which however can be fully recovered.
Therefore, in the simplest case of elastic scattering, an equivalent field of opposite direction
in the secondary flight path will turn the precession angles of all neutrons backwards and a
spin echo - after another 7 /2 flip - can be detected by the final polarization analyzer. Energy
exchange with the sample changes the average neutron speed and to recover the full spin echo
the field integral has to be varied and adjusted. For a more precise understanding of the general
inelastic case, we note that this is a special diffraction experiment, in which the energy transfer
integral of the scattering law S(Q,w) is weighted with P (= P,):

I [ doPoS(@Qw) = 5(5Q) + [ do cos(@)S(Qu))

where S(Q) gives the average from the unpolarized case. With ¢ = wt = const -w [ ds B and
identifying const f ds B =t as a Fourier time, one obtains

I x 2(5(Q)+ S(Q.1)).

2

In Larmor diffraction, all of the neutrons, which make the same Bragg reflection undergo
the same number of precessions. Hence, the full neutron polarization is preserved and can be
measured; there is no dephasing because of wavelength spread, beam divergence and mosaic
of the sample. The total precession angle ¢ is proportional to the time ¢ in the magnetic field
region, and ¢t = s/v = is constant for a given Bragg reflection, since s(f) o k and v  k, any
spread in k distribution is compensated. Furthermore, the sum of incoming and outgoing flight
path through the precessing region remains practically constant for a mosaic of the crystal, i.e.
small tilts of the Bragg planes. Moreover, a combination of Larmor diffraction with the spin-
echo principle, by introducing a 7-flip near to the sample, allows to measure the mosaic by a
loss in polarization.[11] Absolute d-spacings have been measured with 7-10~° A accuracy.[12]
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Fig. 8: Setup for polarization analysis on a triple axis instrument by Moon et al.(1969)[14], see
also text.

Uniaxial polarization analysis on 2- and 3-axis instruments

Uniaxial polarization analysis means that not the full final polarization but only the projection
of the final polarization with respect to an applied field is measured. There are a large number
of triple axis instruments (TAS), which offer in various technical realizations the principle of
uniaxial polarization analysis. In the original setup by Moon, Riste and Koehler[14] at the Oak
Ridge reactor (HFIR), see Fig.15, Co-Fe crystals mounted in the gap of permanent magnets are
used on the first and third axis for the production of the polarized monochromized beam and for
analysis of the scattered neutrons in energy and spin state. At the second axis with the sample
an electromagnet can be turned to set the field either vertically or horizontally. Radio-frequency
coils are used as flipping devices.

XYZ polarization analysis on time-of-flight multi detector instruments

The diffuse neutron scattering spectrometer DNS at the FRM2 in Munich is equipped with
polarization analysis and is particularly devoted to elastic and inelastic diffuse scattering that
may arise from spin correlations and magnetic disorder and ordering in materials. A layout
of the instrument is shown in Fig. 9. DNS is a time-of-flight instrument[15] with a multi-
detector system similar to the D7 instrument at the ILL [16, 17]. The monochromatic incident
beam is polarized with a focusing supermirror bender, xyz-field coils allow for a change of the
polarization at the sample, and the polarization analysis is performed with supermirror analyzers
in focusing arrangement in front of each detector.

Zero-field spherical polarization analysis - CryoPad

The CryoPad is a portable, cryogenic device developed at the ILL by Tasset and LeLievre-
Berna, which avoids any magnetic field and precession at the sample and achieves full and
accurate control of change and rotation of incident to final polarization. As scheme and a set-up
on the POLI-HEIDI instrument at FRM-2 is depicted in Fig.10.
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Fig. 9: Polarization analysis on a time-of-flight multi-detector instrument, the DNS instrument
at FRM-2, see Ref.[30] for the specific setting of polarization.

zero field sample chamber

inner Meissner shield outer Meissner shield

secondary incient col primary turnabout coil

incident nutator

outgoing nutator

Fig. 10: CryoPad (scheme)[18] and set-up at POLI-HEIDI (FRM-2). The zero-field around
the sample avoids a precession of the beam polarization and allows to measure changes in
magnitude and direction of P by scattering.
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3 Scattering and polarization

3.1 Interaction of neutrons with matter

The neutron scattering amplitude Fq is determined by the transition matrix elements for a given
scattering potential Vi

Fq = (K'S'|Vq[kS) (5)
resulting in a scattering cross section that in general depends on the scattering vector k—k’ = Q
and also on the energy transfer, which for simplicity will not be included in the notation:

do My \ 2

—=(—=) |F]? 6

dQ (27rh2) I ©
The nuclear interaction operator V = (27h? /mn)l; can be described by a point-like and

isotope-specific Fermi potential. For nuclei with zero spin ( e.g. 2C, 60 ..., and typically
”gg” isotopes with even number of protons and neutrons ) the scattering length operator bisa
scalar and the scattering will be independent of the neutron spin orientation.
The interaction is spin-dependent if the scattering nuclei have a non-zero spin I and the scatter-
ing lengths differ for parallel and antiparallel alignment of I and S, which can be written as the
sum of an average and coherent part A and a fluctuating spin-dependent part

b=A+Bé-1 (7

A . . — A 0 1Y) =~ 0 —i
where & is the Pauli spin operator given by Pauli spin matrices 6, = ( 1 0 ) Oy = ( C o ) ,
G, = ( é 701 ) Defining a quantization axis z for the neutron polarization P = 2(S) = ( &),

with spin-up states |+) = () and spin-down states |[—) = () we obtain the transition matrix
elements

(6 I+) = L, @®)
(|6 -1+) = I +il, 9)
for non-spinflip and spinflip scattering amplitude, respectively. Therefore, two thirds of the
spin-incoherent scattering is spinflip scattering. The final polarisation is given by P/ = —%P.

There is a change in sign and a reduction in magnitude, but no inclination towards P. We may
note that in contrast to the dipolar magnetic interaction, as discussed below, the obtained result
is independent of the direction of P with respect to Q.

In summary, we can distinguish three contributions to the nuclear scattering | Ng|? arising from
the total nuclear scattering amplitude Ng = > ; b;e’URi the average coherent scattering, the
isotopic, non-spin dependent part of the incoherent scattering, and the spin-incoherent scattering

do ™ , do N do™¥ do ™

5. =INaol"=-5  +-5 -5 :

df) Q dQ) Q,coh ds isotop—inc df spin—inc
In absence of magnetic scattering, the sum of the coherent and isotopic incoherent nuclear
scattering can be separated from the spin-incoherent scattering by measuring spin-flip and non-
spin-flip scattering.

(10)

do N do N do™5F  1doSF
=+ == - (11)
ds) Q,coh ds) isotop—inc dQ) 2 dS2
d d SF
o _ 3do (12)

d_Qspin—inc N 561_@
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Fig. 11: Left: Nuclear isotopic incoherent scattering from nickel obtained by rocking the ana-
lyzer crystal through the elastic position, which is essentially all non-spin-flip scattering.
Right: Nuclear spin-incoherent scattering from vanadium show 2/3 and 1/3 contributions in the
spin-flip and non-spin-flip channel respectively. There is no dependence on the direction of P
relative to Q for all nuclear scattering (from Ref.[14]).

Applications to local order in disordered hydrogeneous materials

Typical soft matter samples contain hydrogen which causes a huge spin-incoherent background
(0inc(H) = 80b) in the wide-angle scattering that contains information about local correla-
tions (o.on(H) = 1.76 b). Here, a precise determination of coherent scattering can be achieved
by measuring spin-flip and non-spin-flip scattering. It is particularly valuable to combine this
further with the method of contrast variation using H and D isotopes, having rather distinct
scattering lengths, b.o (H) = —0.374 - 10~ 2cm and b, (D) = 0.667 - 10~ ?cm. Fig. 12 shows
the separated coherent scattering of a polymer glass. Such results provide most useful informa-
tion about local order that can be compared to molecular dynamics simulations of theoretical
polymer models [20].

Applications to dynamics in liquids

Since in a liquid all atoms are moving around, the scattering is not elastic as in the case of Bragg
peaks from a solid, single crystal. Diffraction - the energy integrated scattering - provides us
with structural properties from a snap-shot of typical atomic configurations. Since neutron en-
ergies are comparable to thermal energies involved in atomic motions, it is relatively simple
to achieve an adequate energy resolution to study the dynamics for instance in liquids. There-
fore, a typical instrument set-up uses the time-of-flight technique: the monochromatic beam is
pulsed by a mechanical chopper and the measured time-of-flight of the neutrons can be related
to an energy transfer in the sample. Note, the separation by polarization analysis in coherent
scattering and spin-incoherent scattering distinguishes pair-correlations from single particle
correlations, respectively. The following example of liquid sodium [21] demonstrates in a very
instructive way the complementary information that can be obtained. From simple liquid mod-
els one expects that the incoherent scattering has a Lorentzian shape in energy at constant Q,
related to exponential relaxations in time, with a width that for the macroscopic limit, () — 0,
is related to the macroscopic diffusion constant. On the other hand, the coherent scattering is
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S(Q)coh / S(Q)inc

Fig. 12: Neutron polarisation analysis separates coherent scattering from spin-incoherent scat-
tering, which is typically a disturbing large background in materials that contain hydrogen,
while here it provides a precise intrinsic calibration. In addition, H/D contrast varies the co-

herent scattering of a polymer glass PMMA.[20]

rather different and exhibits a pronounced peak related to typical nearest neighbor distances

reflecting precursors of Bragg peaks and crystalline order, see Fig. 13.

Fig. 13: Contour plot of a) spin-incoherent and b) coherent scattering of liquid sodium at
T=840 K separated by polarization analyis (taken from Ref.[21]). The dotted mesh corresponds

to the coordinates of time-of-flight and scattering angles.
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The magnetic interaction potential is given by
Vi = —(nr0/2)6 - Mg, (13)
where 1\7[5 is the operator of the magnetic interaction vector,
Mg = eq X Mq X eq (14)

which is reduced to only the perpendicular components of Mg with respect to Q. Mgq repre-
sents the total Fourier transform of the spin and orbital contribution to the magnetization density.
The reason for the anisotropy of the interaction is due to the dipolar interaction of the neutron
spin with the magnetic moments [19], which it is illustrated in Fig. 14. The components of a
magnetic dipole field parallel to the scattering vector Q cancel out. Therefore, in contrast to the
spin-incoherent scattering, magnetic scattering is anisotropic with respect to Q and only Mg,
the components perpendicular to Q can be observed.

Fig. 14: Illustration why only Mé is measured. For M L Q, magnetic dipole field amplitudes
show constructive interference, for M || Q destructive interference. ~ Right: Polarized small
angle scattering probing the magnetization of iron oxide nanoparticles.[22]

In analogy to the spin-dependent nuclear interaction, we obtain the transition matrix elements
for the magnetic interaction, choosing z-polarization and x parallel to Q, Mj q =0, and
(+16-Mgl+) = Mg, (15)
(-] & -Mgl+) = M, 4. (16)
Hence, as illustrated in Fig. 15, the component of P parallel to MJQ remains unchanged, while
1 1 1
MQ MQ

M Mg
AP e Al PRA P

Fig. 15: Change of initial polarization P to final polarization P’: the component perpendicular
to Mé reverses sign, the parallel component of P is invariant.

the component of P perpendicular to MJQ reverses its sign. This selection rule combined with
the Q-dependence provides another simple rule: If P || Q, the total magnetic scattering will be
spin-flip.

Therefore, as exemplified in Moon, Riste, Koehler’s seminal paper [14] nuclear and magnetic
Bragg peaks can be separated from non-spin-flip and spin-flip scattering respectively b scanning
with P || Q.
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Fig. 16: Separation of magnetic and nuclear Bragg peaks for powder diffraction from Fe;0O3
by non-spin-flip and spin-flip scattering with P || Q, from Ref.[14].

3.2 Scattering and polarization analysis, the Blume-Maleyev equations

However, turning from the more simple expressions for the scattering amplitudes to scattering
and interference of nuclear and dipolar magnetic interaction potentials, we have to face more
complex expressions. As shown by Blume[23] and Maleyev[24], the scattering process can
be completely described by two master equations (see Appendix). The first equation gives the
scattering cross-section oq, the second one describes the final polarization P/,

oq = |Ng>+|Mg|* +P(N_qMg + MLqNg) +iP(Mq x Mg)
(17)
P'oq = |Ngl’P +Mg(PM=q) + M—q(PMg) - PMgM*q
+MGN_q + MZgNq +iMg x Mg +i(MgN_q — MZgNg) x P

The notation uses —Q to denote the complex conjugate. Here, for simplicity only the Q-
dependence is specified for Bragg scattering or diffuse scattering. However, in a more general
form they apply to inelastic scattering and can be related to van Hove correlation functions (see
Appendix).

These equations readily show the different information that can be obtained from an unpolarized
with respect to a polarized experiment. While unpolarized neutrons only measure the sum of
nuclear and magnetic intensities, for polarized neutrons additional intensity may arise first, due
to possible structural-magnetic (NM-terms) interference and second, due to cross products of
the magnetic interaction vector iMé X MfQ describing chiral correlations in non-collinear spin
systems. A look at the second equation for the final polarization reveals that we can identify
such terms "NM” and "MxM” even with unpolarized neutrons, because they may create final
polarization (set P = 0).
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3.3 Spherical neutron polarimetry

Another convenient description is given by the standard convention in spherical neutron po-
larimetry (SNP), or in other words spherical polarization analysis, expressing the final polariza-
tion P’ in a tensor equation [25]

Po = (INP+R)P+P’ (18)

in which the first term (| NV|> +R)P consists of the scalar nuclear scattering | N|? and the matrix
‘R describing the rotation of P, and P” is the created polarization.

Using the common specific orthogonal setting x parallel to QQ, and y and z perpendicular to Q,
horizontally and vertically set to the scattering plane respectively, R and P” are obtained as

—IM,2— M2 2Im[NM)  2Im[NM,)
R = | —2Im[NM.] +[M,>—|M.]> 2Re[M,M,]
—2Im[NM,]  2Re[M.M,] —|M,? +|M,?

P’ = (=2Im[M,M.], 2Re[NM,), 2Re [NM.])

In general, to detect all elements of the tensor R, one needs spherical neutron polarimetry
SNP. Experimentally this can be achieved with a Cryopad device [18] using superconducting
material to shield the sample area from magnetic fields. In a MuPaD device, likewise p-metal
is used obtain the zero field condition, which prevents undesired precessions. In particular,
SNP is important because it allows to distinguish a rotation from a depolarization of the beam.
Depolarization may occur due to an incoherent superposition of intensities with different polar-
ization, this includes spin-incoherent scattering, and more important for determining magnetic
structures, intensity from different magnetic domains. See Ref.[25] for detailed examples and
analysis.

We may note that SNP does not necessarily require zero field conditions, if the precession can
be controlled. Therefore, one can start with precessing polarization P and analyze the non-
precessing polarization P’ along the field. This provides a relatively simple principle, which in
contrast to zero-field methods works even for multi-detectors and time-of-flight instruments[26,
27], see also Appendix A.2.

3.4 Uniaxial neutron polarization analysis

Most polarized neutron work is performed on TAS instruments with only uniaxial polarization
analysis, sometimes also called longitudinal polarization analysis, which limits the information
to the trace of the polarization transfer tensor. Typical applications are like those demonstrated
in the experiments by Moon, Riste and Koehler, the separation of magnetic scattering and its
directional dependence, and of nuclear coherent and nuclear spin-incoherent scattering.

Half-polarized experiments

Nuclear (or structural) -magnetic (NM) interference and chiral interference can be determined
not only by SNP from the off-diagonals of R but experimentally much simpler in half-polarized”
experiments, by reversing the direction of P.

0q(P) —0q(-P) = 2P(N_qMg + MIgNq) + 2iP(Mqy x Mg)
= —2Im[M,M,),, 2Re[NM,], 2Re [NM,] for P = P,, P,,and P,
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The possible three terms are distinguished by the direction of P alone and there is no need for
polarization analysis. Because of the orientation of P to M, and M., chirality is seen in spin-
flip and nuclear-magnetic interference in non-spinflip mode. NM interference can follow from
either accidental coherence, external fields or inherent correlations. Applying magnetic fields
in paramagnets, the NM terms measured at Bragg peaks yields a susceptibility for the atomic
sites of the crystal. The example of magnetization distribution in iron oxid nanoparticles, see
Fig. 14, has been determined with this approach from the nuclear magnetic interference rather
than from the magnetic scattering | Mg |.

XYZ-polarization analysis for isotropic samples, paramagnets and powders

Recall that by measuring with P || Q and P L Q, one separates and distinguishes nuclear co-
herent, sin-incoherent and magnetic scattering, It is straightforward to generalize the separation
for magnetic powder diffraction for the use of multi-detectors, although in this case it is not
possible to set the polarization parallel to all Q simultaneously. Therefore, one uses the method
of xyz-polarization analysis [28], and measurements of spin-flip and non-spin-flip intensities
are taken with the polarization set into three orthogonal directions, say with z perpendicular
to the scattering plane. By the two horizontal polarization settings, we collect the sum of the
in-plane and out-of plane magnetic intensities. The following linear combinations eliminate all
nuclear scattering contributions and yield the magnetic scattering only[28]. The pre-condition
is isotropy, valid for powder samples, and the method is applicable to paramagnets and antifer-
romagnetic ordered systems (ferromagnets cause depolarization).

do dO,SF dO_SF dO_SF do_NSF do_NSF dO_NSF
e A Y A [ A LA I )
dS2 pm dQ2x dQdy dS2,, dS2x dQy a2,

Fig. 17 shows the XYZ-separation results for the magnetic diffuse scattering from a molecular
magnet.
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Fig. 17: Moy Fe30X molecule (magnetic Fe-ions at vertices, Mo-purple; X: O-black, H, C not
shown) and a 3-sublattice non-collinear spin model resulting from AF Heisenberg exchange
(left). XYZ-separation of weak magnetic intensities (middle). Comparison of the magnetic
intensity and the spin-model calculation (right).[29]



C6.18 W. Schweika

0,0,
bh om0

Fig. 18: Magnetic monopoles evidenced in the diffuse scattering from spin ice, HosTi; O, (mid-
dle) experimental SF scattering at T = 1.7 K with pinch points at (0,0,2), (1,1,1), and (2,2,2);
(right) Monte Carlo simulations of the near neighbour model. [31]

XYZ-polarization analysis for single crystals

For scattering from single crystals all terms in the Blume-Maleyev equations need to be con-
sidered. However, there is a new approach, which provides a valid XYZ-polarization analysis
for single crystals, making a full separation from the diagonal terms alone by including polar-
ization reversal, see Ref.[30]. The method also applies to inelastic scattering. The premise is
the absence of different magnetic domains. Hence, a valid application is the diffuse scatter-
ing of homogeneous states in disordered phases, where the efficient use of multi detectors is
particularly valuable.

The example on a “’spin-ice” system Ho,TiyO7, a cubic pyroclore structure, Fig. 18, shows a
measurement of a single polarization element, spin-flip in vertical polarization, which gives
essentially the correlations of the in-plane magnetic components. The tetrahedral network and
Ising (111) spin-anisotropy leads to strong frustration for ferro-type exchange. In the ordered
state the local spin-correlations can be described for each tetrahedra by a simple rule: two spins
are pointing along the (111) cube diagonals towards the center of the tetrahedra and two spins
point outwards. Actually this rule is the perfect analogue to the ice rules in hexagonal ice, de-
scribing the hydrogen bonds around the tetrahedral environment of the O ions. Hence Pauling’s
famous ice model also explains why there should be a residual entropy due to remaining dis-
order in spin-ice, which is the origin of the broad diffuse scattering at low temperatures. The
extraordinary features of this diffuse scattering are so-called pinch-points, the saddle-points
in intensity at (111) and (200) positions; on one hand the intensity variation radially, along
the modulus of Q, is rather smooth, involving short-range correlations, on the other hand the
transverse variation at constant Q is almost discontinuous and singular, which involves many
Fourier coefficients and long-range correlations. The explanation is that the ice-topology cre-
ates effectively long-range interactions, — any local decision for a specific two-in two-out spin
configuration imposes far-reaching constraints for the other tetrahedra —, an effective interac-
tion that can be mapped to Coulomb interaction between monopoles and provides a picture,
where the dipole moments in their local sums over four tetrahedral sites can be viewed as two
separated monopoles.[31]
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A Appendices

A.1 Density matrix formulation

Properties of Pauli spin matrices

N ~ aA oA ~ 0 1 ~ 0 —i ~ 1 0

6 = (04,04,0.), aX:<1 0),0y:<i 0),0z=(0 _1)
&a(}é :A 5&5 +1 Z,y Eaﬁvff7

Tr(6408) = bap

TT(@'aﬁﬂé',y) =2 €afy

TT(@'OL@'/B@ZYOA'(;) = 2(50155&,5 — (50575,35 — (5015557)

Neutron polarization density matrix

The 2x2 neutron polarization density matrix P is a linear combination of the identity matrix
and the Pauli spin matrices, P = % { (é ?) + P&}, with the polarization vector P = (&)
In the eigenstates of 6.,

P = (}0) for spin up state | ) = |+),

P = (79) for spin down state | |) = |—),

P= % ((1) ) means unpolarized.

PA = (6) =Tr(P6) = H{Tr(6)+ PTr(66)}.
(P

) =Tr(PP) = §(1+|P).
Boundaries for unpolarized and polarized states 5 < P|=|6| <1land0 < |P| < 1.

Polarized neutron scattering cross section

Differential inelastic scattering cross section for polarized neutrons

S ZMZ (Ao IVEIN, ') (X, o' [Vl A, 0)8(Er — Ex + hw)

)\/ !

77 oA S —iQRm A A7 QR ; 7O Aqorl
Vq = bq + 6aq, with bg = Z bme and &q = Z B,,61,.¢ + 2in O'MQ

Z P (0 [VEIo") (o' Vglo) = N palalVEVQPlo) = Tro (VEVQP) = Try (PVEVQ)

N 1 ~ N ~
TrU(PvaA/AVQ)\A') = §Tr,, {(1 + Pa)(b+A’A + O‘QNAO')(Z’Q,\,\/ + aQAA’U>}
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o .. Tr(PVEevg)
Polarization of the scattered beam P’ = (§) = ——————
Tr(PVEVe)
1 (G . A\ A7 A -
Tre(PVEnéVaiw) = §T7“o {(1 +P6&)(bgus + Gqua0)8 (bguy + O‘QAXU)}
(nuclear) = Ea N /\EQ wP
(magnetlc + &a/\’/\(&QAA/ * P) + (&5)\/)\ * P)aQ)\)\/ - P(&EA//\aQAA,)

(nuclear — magnetic NM + lA)Jé/\,/\dQM, + &EA/AI;QM,

(chiral
(rotation by NM

)
)
)
)
) — ic‘ua\,A X Gy
)

. ~+ 7 74 ~

, d’o k'
dQdE k

A.2 Precession spherical neutron polarimetry

Although scattering terms of all correlation functions appear on the trace of the polarization
tensor, and can be separated from the twelve measurements with spinflip, non-spinflip and field
reversal,[30] the off-diagonal terms are of interest in case of magnetic domains. In view of the
instrumentation at the new spallation sources, one should note that multi-detector and time-of
flight instruments can not apply zero field techniques for SNP, however, a precession technique
for SNP has been developed for this purpose and been demonstrated at on the DNS instrument
[26, 27]. Most important to note is that by measuring the non-precessing final component, one
can readily measure and analyze the polarization of the scattering simultaneously for all Q and
w.

The principle idea is to start with precessing incident polarization and to analyze the non-
precessing final polarized scattering. Therefore, (i) a 7/2 flipper set the polarization into pre-
cession mode, (ii) a variation of the field strength before the sample determines the precession
angle and the polarization at the sample, (iii) a variation of the field direction before the sample
will rotate the precession plane to access all matrix elements; a simulation and an experiment
are shown in Fig. 19 and Fig. 20.

One of the early successful examples of spherical polarization analysis solving a complex anti-
ferromagnetic structure is the study of Uj4Aus; by zero-field polarimetry on CryoPad[32]. It is
a magnetic structure with zero propagation vector, for which nuclear and magnetic Bragg peaks
coincide. We repeated the experiment on DNS with the new precession technique. Fig. 20 illus-
trates the identification of nuclear and magnetic scattering for the (201) Bragg peak. The crystal
is oriented vertically with its b-axis parallel to z. The spins are ordered within the a-b plane with
a hexagonal star-like structure. The nuclear scattering is confirmed by a measurement above the
Neel temperature at 30K and remains independent of the polarisation. Maxima are found for
a rotation of the polarisation from the z to the y direction. For an initial polarisation along x
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(which is set parallel to the scattering vector) only spin-flip scattering is observed for the mag-
netic scattering, as it must be. For all cases, when taking nuclear scattering into account, an
effective depolarisation is observed. These results are in excellent agreement with the results
obtained with CryoPAD [32].

P!

0.8

distance y [m]

Qs

(0001 1 1 0 DO ~

Fig. 19: Simulation of precessing neutron polarisation analysis for typical parameters of the
DNS instrument. Neutrons with wave-vector k are (i) polarized in P,, (ii) undergo a 7 /2-flip to

y» and (iii) precess to the sample to P, in a field turning the normal vector of the precessing
plane from z to y. Scattering is simulated for five different scattering angles, and in each case
the final polarization turns up adiabatically from P, to P,. The inset shows the field variation
for 90° scattering.
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Fig. 20: Spherical polarisation analysis on the (201) Bragg peak of U14Aus,. The initial po-
larisation precesses perpendicular to the applied field in y-direction. At 30 K there is only
a nuclear Bragg component which continues to precess after the scattering event. At lower
temperatures, T=15 K, there is an additional magnetic contribution for which the neutron po-
larisation changes from P ||z to P’ ||y.
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For interested readers in polarized neutron studies, I like to recommend particularly the lectures
of Andrey Zheludev [33], giving a more thorough discussion and a variety of examples for
applications, as well as the lectures and publications of Otto Schérpf [21], which can be found
on his homepage.
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