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1 Introduction

Investigations of the structure and dynamics of materials have been an important and essential
endeavor in condensed matter physics since the early 20" century. Both neutron and x-ray scat-
tering techniques have been used extensively to study the crystallographic structure of materials
and provide complementary views of structure. For example, neutron scattering has tradition-
ally been the standard tool for studies of magnetic structure and the dynamics of condensed
matter systems. X-ray diffraction has largely been applied to detailed crystallographic structure
determination. The principle interaction that makes structure determination possible for x-rays
is the Coulomb interaction between x-rays and the electronic distribution which gives rise to
driven harmonic oscillation of the electrons, and the emission of electric dipole radiation. This
is the classical Thomson scattering process.

At x-ray absorption edges photoelectric absorption occurs and electrons are promoted from core
levels into empty states above the Fermi level. Photons that take part in the photoelectric ab-
sorption are lost for the scattering experiment. However, the incident photons can also give rise
to virtual transitions between core levels and states above the Fermi level that relax back to the
core states with the emission of x-rays with the same energy as the initial beam. For charge scat-
tering, this is known as anomalous charge scattering which yields additional terms in the x-ray
scattering form factor that can be used to enhance the scattering contrast between neighboring
elements. Anomalous scattering is also sensitive to the anisotropy of local environment, such
as the arrangement of orbitals and orbital order. In addition to charge scattering, x-rays interact
with the magnetic moment of the system. Indeed, the magnetic scattering of x-rays from elec-
trons in molecules and solids is well documented in theory [1] and was observed experimentally
by de Bergevin and Brunel in 1970’s with a commercial x-ray tube [2]. de Bergevin and Brunel
also presented a classical picture of the interaction between x-rays with electrons and magnetic
moments [3] illustrated in Fig. 1. Unfortunately, from a practical point of view, the x-ray scat-
tering cross-sections from electron spins are reduced by approximately six orders of magnitude
compared to normal charge scattering and, therefore, using x-ray magnetic scattering to study
magnetism was largely impractical in 1970’s.

The situation changed in 1990’s when Gibbs and coworkers successfully observed magnetic
scattering from Ho metal due to the dramatic increase of photon flux available from synchrotron
radiation.[4] The increased photon flux compensates for the weakness of the magnetic scattering
signal. The polarization properties and tunability of the x-ray energy at a synchrotron source
provides additional advantages for magnetic x-ray scattering. As will be discussed in the next
section when x-ray energies are tuned through the absorption edges of an element of interest
there is a resonant enhancement of the scattering signal now known as x-ray resonant magnetic
scattering [5]. Away from the resonance condition, the magnetic scattering signal is known as
non-resonant x-ray magnetic scattering. All of the above processes have been reviewed and
described in detail in several texts [6, 7]. In the following, we will concentrate mainly on the
basic principles and applications of the x-ray resonant magnetic scattering and nonresonant
magnetic scattering.
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Figure 1: Illustration of the processes leading to scattering of x-rays by the charge (top) and

the spin moment (bottom three) of the electron in a classical picture. Figure has been adapted
from de Bergevin and Brunel [3] and Th. Briickel [§].
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Figure 2: Schematic illustration of the second order perturbation process leading to XRMS in
the case of a lanthanide metal. An electron being photo-excited from the core level to the empty
states above the Fermi energy Er . The subsequent decay of the electron to the core level gives
rise to an elastically scattered photon.
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2 Cross-section for the resonant and nonresonant magnetic
x-ray scattering:

The calculation of the x-ray scattering cross-section from a quasi-relativistic Hamiltonian for a
electron in a quantized electromagnetic field using second order perturbation theory was done
by Blume [9] and Blume and Gibbs [10], and was later presented in a simplified form by Hill and
McMorrow [11] in the coordinate system convenient for an x-ray resonant magnetic scattering
experiment (XRMS) experiments. We start with the Hamiltonian for electrons in a quantized
electromagnetic field:

1 e ) o o
"= _{Pj_SA(T”)}Q—FZV( U)_;—mC ' 5; -V x A7)
] ) : (1)
h g nl — T
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’ kX

Here, the first term corresponds to the kinetic energy of the electrons in the electromagnetic
field, represented by the vector potential A(f) The second term corresponds to the Coulomb
interaction between electrons, the third term corresponds to the Zeeman energy, —/i - H, of the
electrons with spin s}, the fourth term is the spin-orbit coupling in the initial or final states and
the last term is the self energy of the electromagnetic field.

The vector potential A () is linear in photon creation and annihilation operator ¢! (k) and c(k)),
and can be expanded in plane wave form as:

- 271'7102 1 VRN . iq T /= T g7
A(R) = Y (G508 x [d0)e(do)e™ + & (o)l (Go)e T @
o 1

Here V is the quantization volume and €(go) is the unit polarization vector corresponding to a
wave vector ¢ and polarization state o. The index o(= 1, 2) labels two polarizations for each
wave vector . Since A(F) is linear in photon creation and annihilation operator, (k) and
c(l;)\), scattering occurs in second order for terms linear in A and in first order for quadratic
terms. For the spin orbit term in Eq. 1, E can be written in terms of scalar potential ¢ and the
vector potential A as:

F=—-vé— %X 3)

After substituting Aand E in Eq. 1, the Hamiltonian in Eq. 1 can be re-written as the sum of
three terms:[9]

H=Hy+Hp+H @)

Where Hj contains only the degrees of freedom for the electron system, Hpy is the Hamiltonian
for the quantized electromagnetic field and H' corresponds to the interaction between the elec-
tron and the radiation field. Scattering cross sections are calculated by assuming the solid is in
a quantum state |a) which is an eigenstate of Hy with energy E, and there is a single photon
present. We then calculate the probability of a transition induced by the interaction term H' to a

state |b), with photon %’ \'. The transition probability (£2) per unit time can be calculated using
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“Fermi’s golden rule" up to second order:
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2.1 X-ray resonant magnetic scattering:

The cross-section for the elastic scattering can be written as:

do R
%:7’3 Zela nfn(ka k‘/,hUJ)

e2

where, do is the differential cross-section of scattering into the solid angle dw, 1o = 5 =
2_.>8 x 1071'° m is the classical electron radius, 5 = k — k’1is the momentum transfer, £ and
k' are the incident and scattered wave-vectors of the photon, f, is the scattering amplitude of
the n'*atom which is at the position 7,. While the detailed derivation of the scattering cross
section is given in Ref. [9], we will outline here the final results. For coherent elastic scattering,

(la) = |b)), and the amplitude can be written as a sum over the following terms:[11]

f:f0+f/+if”+fspin (6)

Here, fy o< Zry is the Thompson charge scattering amplitude and f;, is the non-resonant
spin-dependent magnetic scattering amplitude. Far from resonance, f and f* contribute terms
proportional to the orbital and spin angular momentum. At resonance both electric and magnetic
multipole transitions contribute through the terms f* and f". However, the electric dipole and
quadrupole transitions are dominant with respect to magnetic multipole transitions by a factor
of fiw/mc? (~ 60 for typical x-ray edges) and so the only electric multipole transitions will be
considered here.

For the electric 2--pole resonance in a magnetic ion, the resonant contribution to the coherent
scattering amplitude can be written as[12]

4 - A% e) r1/ e)x /7 ~1 e
Tor(w) = 2o D € ViR R) - Fp, () )

M=-L

Where ¢ and ¢ * are the incident and scattered polarization vectors, and k and k" are the incident
and scattered wave vectors, respectively. YL(f\}(k:) are the vector spherical harmonics and fp
is the Debye-Waller factor. The strength of the resonance is determined by the factor Fg; (w),

which is, to 0" order, determined by atomic properties:

P,P,(n)'y(aMn; EL)
FE = 8

p1() ;2(En—Ea—hw—iF/2) ®)
Here, |n) is the excited state of the ion and |a) the initial state. P, is the probability of the ion
existing in the initial state |a) and P,(n) is the probability for a transition from |a) to an excited
state |n). It is determined by overlap integrals between the two states |a) and |n). I', and I" are
the partial line widths of the excited state due to a pure electric 2”-pole (EL) radiative decay and
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due to all processes, both radiative and non-radiative (including, for example, Auger decay), re-
spectively. These electric multipole (predominantly dipole and quadrupole) transitions involve
the virtual photo-excitation of an electron from a core level to the unoccupied states above the
Fermi energy with a subsequent de-excitation to the core-levels yielding an elastically scattered
photon. These processes become sensitive to the magnetic state in exchange split bands due
to the difference in occupation of minority and majority bands as illustrated schematically in
Fig. 2. Due to the resonant denominator in Eq. 8, enhancements occur at the absorption edges
of the magnetic elements (e.g. when, F,,-F, =hw). The strengths of these enhancements for
XRMS depend mainly on three factors as discussed by Hannon ez al. [12] and shown by XRMS
experiments on a series of rare-earth intermetallic compounds (RNiy,Ges, R= rare-earths) by
Kim et al. [13]:

* The magnitude of the transition matrix element. Dipole transitions between states |a)
and |n) differing in orbital angular momentum quantum number by AL = 1 are generally
stronger than quadrupolar transitions with AL = 2. A large overlap of the wave functions

“._n

la) and |n) favors large transition matrix elements. In contrast, transitions from “s" core
KN

levels to “p" or “d" excited states do not show large resonance enhancements due to the
small overlap of the wave functions.

* The difference in the density of empty states above the Fermi level for minority and
majority spin states. To give an example: in lanthanide metals, the 5d bands are spin
polarized due to the magnetic 4f states. However, the exchange splitting in the 5d is
much weaker as compared to the 4 f states and dipolar transitions 2p — 5d are sometimes
not much stronger than quadrupolar transitions 2p — 5f.

* The strength of the spin-orbit coupling in the ground and excited states. It is this coupling
that provides electric multipole transitions with sensitivity to the spin magnetism.

Using the above-mentioned factors, we can qualitatively categorize the possible transitions ac-
cording to the magnitude of the resonance enhancement, as listed in Table. 1.[8] Here we define
the term “resonant enhancement" as the ratio between the intensity of magnetic Bragg peaks at
the maximum of the resonance relative to the intensity for non-resonant magnetic scattering.
One of the strengths of resonant magnetic scattering is that the polarization state of the scattered
x-rays can be modified with respect to that of the incident beam. Therefore, by analyzing the
polarization of scattered x-rays, it is possible to discriminate between charge and magnetic
scattering. Furthermore, by analyzing the intensity of scattered x-rays in different polarization
channels, the spatial components of the ordered magnetic moment can be obtained.[14, 15]
Therefore, in the following sections explicit relationship between the amplitude of scattered
x-rays and incident x-rays will be shown according to Ref. [11].

For rare-earth L-edges, electric dipole transitions usually dominate the resonant magnetic cross
section and are the simplest to calculate. An example of such a transition is the 2ps/5 — 5d; /2
transition of Ho, which occurs at the Ly absorption edge. At this transition, the vector spherical
harmonics can be written, for L=1, M = £1:

€ VGO R - = (3/167)[¢ - e Ti(€ x &) 20— (€ - 2)(E-22)] ()
Similarly, forL=1,M =0

Y E W (R - = 6/8m)[(E - 2)(e - 2)] 1o
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Table 1: Magnitude of the resonance enhancement for XRMS for some elements relevant for
magnetism. Only order of magnitude estimates are given with “weak"” corresponding to a fac-
tor of about “10°", “medium" to about “10*" and “strong" to “>10" compared to the non-
resonant magnetic scattering. After Ref. [66]

Elements Edge Transition  Energy Range Resonance Comment
(keV) Strength
3d K 1s—4p 5-9 Weak Small overlap
3d L, 2s—3d 0.5-1.2 Weak Small overlap
3d L, L 2p—3d 0.4-1.0 Strong Dipolar, Large overlap,
high spin polarization
of 3d
4f K 1s—4p 40-63 Weak Small Overlap
4f L, 2s—5d 6.5-11.0 Weak Small overlap
4f L, L 2p—5d, 6.0-10.0 Medium Dipolar and quadrupo-
2p—4f lar
4f M; 3s—5p 1.4-2.5 Weak Small overlap
4f M;;, M 3p—5d, 1.3-2.2 Medium to Dipolar, quadrupolar
3p—4af strong
4f My, My 3d—4f 0.9-1.6 Strong Dipolar, large overlap,
high spin polarization
of 4f
5f My, M 3d—5f 3.3-3.9 Strong Dipolar, large overlap,

high spin polarization
of 5f

|

Figure 3: The coordinate system used for the polarization dependence of the resonant scatter-
ing amplitudes described in the text. k and k' are the incident and scattered wave vectors and
0 is the Bragg angle. é, ( é; ) and €, ( é;r ) are the components of the polarization perpendicular
and parallel to the scattering plane for incident (scattered) x-rays.
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Figure 4: Experimental realization of different polarization channels for the (a) m — o' and
(b) m — 7' scattering geometries.

where Z, is a unit vector in the direction of the magnetic moment of the nth ion. Thus,
XRMS _ (& ) FO — (& - x&)- FW 4 (¢ - 2,)(¢- 2,)F?)] (11

where F()’s are the terms containing dipole matrix elements which have been evaluated by
Hamrick for several rare-earths.[16] The first term of Eq. 11 contributes to the charge Bragg
peak as it does not contain any dependence on the magnetic moment. The other two terms
depend on the magnetic moment. All terms in Eq. 11 can be represented in 2x2 matrix form
with polarization states chosen either parallel and perpendicular to the scattering plane and
resolving each of the vectors k, k' and 2, into their components along the three orthogonal axes
defined with respect to the diffraction plane shown in Fig. 3.

XRMS __ (Aaﬁ\o’ Aﬂ'—)o”)

il AO’*}W’ A7r~>7r’
— F(O) 1 0 _ ZF(I) ' 0 Z1 COS 0 —|— zZ3 sin 6
0 cos26 z38in 60 — z; cos 6 — 25510 20
+F® Z% —25(2z18in 6 — z3 cos )
29(z1 800 + 23 co86)  — cos? O(2% tan? O + 23)

Where A,_,, represents scattering amplitude from the incident o polarized x-rays to the scat-
tered o’ polarized x-rays and so on.

The above matrix equation is sum of three sub-matrices: The first one contributes to the charge
Bragg peak. The second and third contribute to the magnetic Bragg peak. A few points to note
for the magnetic contribution:

1. The second term is linear in the components of the magnetic moment and therefore,
mainly responsible for producing peaks at the magnetic wavevector, 7. For example,
in an antiferromagnet with wavevector, 7, the linear term produces first harmonic satel-
lite peaks. The third term, which is quadratic in the components of a magnetic moment
produces second harmonic satellites as well as contributes to the charge Bragg peaks.>
For a ferromagnetic material both the second and third term contribute to the positions of
allowed charge reflections.

2for a commensurate antiferromagnet with propagation vector 7=0, it can produce intensity at the charge for-
bidden reciprocal lattice points.
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2. Synchrotron radiation is linearly polarized in the plane of storage ring. Therefore, all
combinations of polarization channels are accessible by suitably selecting the scattering
plane (see Fig. 4 for experimental geometries) and, hence, different components of the
ordered magnetic moment can be probed. For example, scattering in the ¢ — 7 channel
is sensitive to the component of magnetic moment in the scattering plane (in the Fig. 3,
2 and z3) and 7 — 7 channel is sensitive to the components of a magnetic moment out
of the scattering plane (2, in Fig. 3).

3. The scattering amplitude depends on the Bragg angle, and therefore by analyzing the
magnetic peak intensities as a function of scattering angle, a specific magnetic model can
be proved or disproved.

The scattering cross-section for the quadrupole transitions is much more complex and the reader
is referred to the Ref. [17] for details.

2.2 Nonresonant x-ray magnetic scattering:

In many cases, the resonant process of XRMS is neither well understood nor efficient, especially
at K edges for 3d transition metals. Nonresonant x-ray magnetic scattering (NRXMS) may
be appropriate for these situations. The scattering amplitude of nonresonant x-ray magnetic
scattering is directly related to the magnetic moment of the ions. While neutron scattering does
not distinguish spin (S) and orbital angular momentum (L), S and L contribute differently to
the scattering amplitude of the NRXMS. Far away from absorption edges of the all elements
the scattering amplitude can be written as:[10]

u(@) = fehorse () + pYRXMS (G YR

In the limit of high photon energies, the nonresonant scattering amplitude may be written as

poevs@y = P @) 245G B (12)

me? 2

hew
i (M)

Here Z(a) and 5_’;(6) are the Fourier transforms of the orbital and spin magnetization den-
sities, respectively. The vectors X and § contain different polarization and () dependencies.
Here the () sign represent ground state expectation value of the operators. Due to this different

and polarization dependencies in the nonresonant scattering amplitude, the orbital and spin
components can be distinguished. This is in stark contrast to magnetic neutron scattering, where

the scattering amplitude is sensitive to the sum of orbital and spin angular momentum. More
explicitly, the expression for the neutron magnetic scattering can be written as:[9]

(M) = G < AL En(@) + 5. < By 7

where o is the neutron spin operator. For the point of view of performing synchrotron experi-
ments, it is convenient to express (M,,) in a basis whose components are parallel and perpen-
dicular to the scattering plane.
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oy = (4 4)
RS ~GHED + B (@) b+ LD Ry
( ED @)y kv B ok )
( . (sin 260) S, . —2(sin® 9') [(cos 9)('[/1 +51) — (sin6)Ss]
2(sin? §)[(cos 0)(Ly + S1) + (sin 6)Ss] (sin 20)[2(sin? 0) Ly + S

Here we note that the diagonal elements are sensitive to the magnetization perpendicular to the
scattering plane whereas the off-diagonal elements are sensitive to the magnetization within the
scattering plane. Further, o0 — ¢’ component is independent of orbital magnetization densities.
In the same basis, the matrix describing the charge scattering can be written as:

1) =0 (o)

0 cos26

where p(a) is the Fourier transform of the electronic charge density.
Following Blume et al. [9] an estimate of the pure non resonant magnetic scattering strength
compared to the charge scattering strength can be obtained as follows:

2
O charge mc? N
where Y= is the ratio of the number of magnetic electrons compared to the total number of
fm

electrons is the ratio between magnetic and charge form factors and (%) is the average
value square of the magnetic moment. For Fe and 10 keV photons,

Tmas_ 4% 107 (2)

O charge
Despite the smallness of the NRXMS compared to the charge scattering, NRXMS has been
observed even for very small magnetic moment systems due to the intrinsic brilliance of the
synchrotron radiation sources. [18, 19, 20, 21]

2.3 Examples of the resonance and the noresonance:

Before proceeding further, it is better to give real examples of resonant and nonresonant mag-
netic scattering. Figure 5 shows energy scans at the Sm Ly, L3 and Fe K absorption edges for
the compound SmFeAsO. Energy scans were performed at the magnetic Bragg positions of Sm
(Fig. 5a & 5b) and Fe ( Fig. 5c¢) moments, respectively. At 6 K (below the magnetic ordering
temperature of Sm), at the Sm L, edge we observed a dipole resonance peak approximately 2
eV above the absorption edge for the (1 07.5) reflection. Similar energy scans were performed
at the Sm L3 edge and are shown in Fig. 5 (b). In addition to the dipole feature observed at the
L, edge, a quadrupole feature appears approximately 6 eV below the Sm L3 edge. Figure. 5(c)
shows the energy scan through the Fe K-edge. Several features are observable in the energy
spectrum: (a) Resonant features at and above £'= 7.106 keV and (b) an energy independent
non-resonant signal for energies below the resonant features. The non-resonant signal is about

)
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Figure 5: (a,b) Energy scans of the (107.5) and (017.5) reflections and of the absorption
coefficient at the Sm Ly (left panel) and Lz edges (middle panel). The dashed lines depict the
Sm Ly and L3 absorption edges as determined from the inflection point of the absorption coef-
ficient [22]. (c) Energy scans of the absorption coefficient and of the (1 06.5) reflection below
(T=55K, filled circles) and above (T = 112 K, open squares) the magnetic ordering tempera-
ture of Fe moments and the measured background at T = 55 K away from the magnetic Bragg
peak (open circles). The dashed line depicts the Fe K-edge. Both resonant and nonresonant
signal can be clearly seen near the Fe K edge.

a factor of 2.5 smaller than the resonant signal. To determine the polarization of the scattered
x-rays, polarization analysis was performed using polarization analyzer which will discussed
in more detail in section 4.4. Au(220) was used at Sm L, edge and Cu(220) was used for
both the Sm L3 and Fe K absorption edges as a polarization and energy analyzer to suppress the
charge and fluorescence background relative to the magnetic scattering signal.

3 Poincaré Stokes Parameter:

To calculate the cross-section of magnetic scattering for any magnetic structure for an arbitrary
incident polarization, it is convenient to introduce Poincaré representation for the the incident
polarization and density matrix for the incident beam. In the co-ordinate system of non-resonant
magnetic scattering amplitude the density matrix p can be written as:[10]

1 (1+P1 Pg—in) (13)

P =2 \p+in, 1-P

where P = (P, P,, P3)is the Poincaré-Stokes vector with components P, Py, P3. Taking €
and €, as two orthogonal unit vectors perpendicular and parallel to scattering plane (as in Fig.
3) we can write the incident electric field vector as:

E = Eé, + By, (14)

The components P, Ps, P3 are defined as follows:
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B2 — |EBy|?

P - | 1|2 | 2|2 (15)
|E1‘ +|E2|
B, + B> — |E, — B,

P, — |y + Es| | E 2| (16)

2B + | E2”)

Ey +iBy|* — |Ey — iBy|?
p, — BrtiBhl —|B ik (17)
2(|Er[” + | Es|")

P, =+1(-1) represent linear polarization along the U, §U3) axis respectively. P, = +1(-1) repre-
sent linear polarization at an angle +45°(-45°) to the Uj axis, P3 = +1(-1) represent left (right)

circular polarization. If ‘13‘ = 1, then the beam is completely polarized (100 %); ‘15 ) < 1, the

beam is partially polarized and for ’]3‘ = 0, the beam is unpolarized. We should note that Pis
not a vector in real space, since it does not follow the transformation properties of a vector but
can be thought of as vector in abstract space. If M represent the matrix for the scattering in the
sample, then to calculate the density matrix and final polarization after scattering we need:

P = tr(a;) (18)
p/ _ MPMT (19)
do 2\
= = [—) tr(y 20
N 20)
. tr(ap
: r(@p') (1)
tr(p')
1 1 —
where & represents Pauli matrices. o7 = ( 0 _01 > 02 = ( (1) 0 ) g3 = ( (z) 02 ) and

M’ is the Hermitian conjugate of M.

4 Synchrotron instrumentation for the magnetic scattering:

For a magnetic scattering experiment we need a few basic components. (a) The source: From
the discussion of the XRMS and NRXMS cross-sections, it is clear that for a successful mag-
netic scattering experiment one needs, polarized x-rays with high photon flux as well as tun-
ability of the incident energy. Synchrotron radiation fulfills all the above criteria. (b) The
beamline: This part prepares incoming x-ray from a synchrotron source for the experiment and
consists of different optical elements such as monochromators (to change the wavelength of
the incoming x-ray), focusing mirrors, slits (to define the beam cross-section), attenuators (to
reduce the incident flux), and phase-plates (to change the incident polarization). All the optical
elements are kept under vacuum and the beam is transported through evacuated tubes. (c) The
spectrometer: For the observation of a diffraction peak, the sample has to be oriented within
few tenths of a degree. This is done with a versatile diffractormeter with angular resolution
better than 0.001°. A detector is attached with the 26 arm and more often, before the detector
a polarization analyzer is attached to analyze polarization of the scattered x-rays. (d) Sample
Environment: Most of the cases, sample is placed in a cryostat to decrease the temperature of
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the sample such that the sample is in a magnetically ordered state. This also allows measure-
ment of magnetic order parameter as a function of temperature. Cryomagnets are used if one
needs magnetic field for the experiment.

4.1 The source: synchrotron basics:

Here we will outline basic properties of synchrotron radiation relevant for the magnetic x-ray
scattering. Basic electromagnetism tells us that an accelerating charge particle emits electro-
magnetic radiation. Synchrotron radiation occurs when an accelerating electrons or positrons
follows a curved path in a relativistic speed. The electrons travel in a constant magnetic field
which keep the electrons in a curved circular path.

Figure 6 shows the electron orbit in constant magnetic field. The direction of the radiation cone
is in the direction of instantaneous velocity with opening angle ~y~! = mE—CQ where m.c? is
the rest mass of an electron (= 0.511 MeV) and E. is the energy of the circillating electrons.
Typical energy E. =5 GeV of a third generation synchrotron radiation source gives the opening
angle of the radiation cone ! ~ 0.1 milli-radian. The synchrotron radiation is produced either
in a bending magnet (BM) or some straight insertion devices are placed such as wigglers and
undulators. The radiation coming out of a bending magnet is linearly polarized when viewed
on axis. The beam is elliptically polarized above and below the axis with opposite helicities.
The emitted radiation is very broad with emitted spectrum ranging from far-infra red to hard
x-ray regime. However, the intensity of the emitted radiation falls of very rapidly for photon
frequencies higher than ~3w, where wy is the angular frequency of an electron in the storage ring
which is of the order of 10°cycles/sec. Modern synchrotron radiation sources employ wiggler
and undulators as insertion devices to increase the photon flux. These insertion devices consists
of permanent magnets with opposite polls to create an alternating magnetic field perpendicular
to the orbit of the storage ring. This alternating field leads to the sinusoidal movement of
the charge particles withing the insertion devices. In an undulator or wiggler an important
parameter characterizing the electron motion is the deflection parameter K given by: (see x-ray
Data Booklet, http://xdb.1bl.gov/xdb-new.pdf)

B
K = =2 = 0.934\,[em] Bo[T] (22)
2mmec

Where B, is the peak magnetic field and ), is the magnetic period. The maximum angular dis-
persion of the electrons in the orbit is given by § = % For an undulator, K < 1, and hence, the

angular deviation is smaller than the opening of the radiation cone (~ le)- Therefore, radiation
from different poles adds coherently. The coherent addition of amplitude leads to monochro-
matic spectrum with odd harmonics on axis. Due to the finite number of magnetic poles the
the radiation is quasi-monochromatic with a bandwidth of 0.1 %. The monochromaticity %
is inversely proportion to the number of polls and harmonics index number. For a wiggler,
K > 1(~ 10), and the radiation from different polls adds incoherently.

The fundamental wavelength from an undulator radiation for an observation with an angle 6
with the undulator axis is given by:

A K?
M) = (14 =+ (19)* 23
Since A\, ~ 1cm and v~ 2 is in the range 108, the wavelength of the fundamental radiation lies
in the Angstrom range, i.e. in the x-ray regime. Furthermore, \; can be varied by changing the
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Figure 6: (Left panel): Divergence properties synchrotron radiation of a Bending magnet,
undulator and wiggler source. (Right panel): Energy spectrum from Bending magnet/wigglers
and undulators. Figures taken from Ref. [23]

magnetic field by varying the gap of the undulator (see. Eq. 22). The angular divergence of
the undulator is substantially reduced compared to the bending magnet and the full width half
maximum of the angular divergence is given by :[23]

1 /1+ K2/2
Orwam = —1/ —/ (24)
¥ nN

Where 7 is the harmonics index and N is the number of magnetic periods. This is much smaller

than the angular divergence of the bending magnet which is ~ % The peak intensity of the

undulator radiation scales with N? where as the central cone flux scales with N. Therefore,
undulator radiation is highly collimated, linearly polarized in the plane, tunable with much
improved flux which gives ideal condition for magnetic x-ray Scattering.

For the radiation from an wiggler, the radiated spectrum is same as that of a bending magnet
with same filed strength, however with an intensity improved by a factor of 2N where N is
the number of magnetic periods. The radiation is linearly polarized on-axis. However, off-axis
polarization is still linear with different direction in compared with a bending magnet where off-
axis polarization is elliptical. Divergence, energy spectrum and flux of the outcoming radiation
from bending magnet (BM), undulators (ID) and wigglers has been compared in Fig. 6 and Fig.
7, respectively.

Worldwide, there exist four so-called "third generation synchrotron sources" for the hard x-
ray regime: the European Synchrotron Radiation Facility ESRF in Grenoble, SPRING-8 in
Japan, the Advanced Photon Source (APS) in Argonne, USA and the Petra III radiation source
in Hasylab, DESY, Germany. All these facilities except ESRF have beamlines dedicated to
magnetic scattering. The magnetic scattering beamline at ESRF has been recently closed after
successful operation over years.
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Figure 7: Spectral brightness for the conventional laboratory x-ray tubes and several syn-
chrotron radiation sources. The envelope of spectral brightness for today’s third generation
synchrotron facilities is somewhat higher than the curves above due to increased average beam

current and decreased electron beam emmitance. Figure taken from x-ray data booklet.
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Figure 8: Six-circle diffractometer at the ID20 beamline at ESRF, Grenoble.

4.2 Beamlines:

The typical set-up of such a beamline is as follows: the beam from an undulator source is
tailored by slit systems. Mirrors are used to suppress higher harmonics in the x-ray beam and/or
to focus the beam onto the sample in the experimental hutch. The x-ray energy is selected by a
double crystal Bragg monochromator. To handle the high heat load of several hundred W/mm?,
liquid nitrogen cooled silicon crystals are employed for monochromatization. Usually the Si (1
1 1) or Ge (1 1 1) reflection is chosen, since the second harmonic is largely suppressed for the
Si crystal structure by the diamond glide planes. This beamline optics is situated in a so-called
optics hutch with lead walls serving as biological radiation shielding. In the optics hutch, the
x-ray beam is prepared with a desired properties and then enters the experimental hutch, where
the actual scattering experiment is situated.

4.3 The Spectrometer:

Often, the six-circle diffractometers manufactured by Huber GmbH (http://www.xhuber.de) are
used as a spectrometer. Figure 8 shows such a six circle diffractometer which was situated at
the ID20 magnetic scattering bemline at ESRF. The diffractometer is equipped with a motorized
analyzer stage and motorized translation stage. Motorized analyzer stage allows continuous ro-
tation of the analyzer assembly around the scattered x-rays whereas motorized translation stage
allows translation of the sample in three orthogonal directions. With this six circle diffractome-
ter both the horizontal and vertical scattering planes can be utilized since the detector arm can
be moved in the vertical direction as well as in the horizontal plane. Two types of detectors are
generally used. The Nal photomultiplier tube and solid state detectors. Nal detectors has very
low dark current (<0.1 counts/sec) and very high efficiency. However, it has very poor energy
resolution.[24] On the other hand, solid state detectors have very high energy resolution which
allows removal of fluorescence background with electronic discrimination.

4.4 Phase plate and the linear polarization analysis:

X-ray phase plates are used to manipulate polarization of the incident beam. One can change the
direction of linear polarization using half wave plate and also, can convert linear polarization
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into circular polarization using quarter-wave plates. Phase plates are based on the birefringence
(anisotropy of refractive index) near Bragg-reflection. The component of transmitted electric
field perpendicular (o) and parallel () to the diffraction plane take a phase difference (®):[25]

T2\ Re[Fy Fy ] sin(20)¢ ot
2 V2AG A

where r. is the classical electron radius, A is the wavelength of the x-rays, ¢ is the x-ray beam
path in the crystal or the effective thickness, V' is the volume of the unit cell, ¢ is the Bragg
angle, F}, and F) are the structure factors of the (h k) and (E k Z) reflections, respectively.
The phase shift () is proportional to the effective thickness (#) of the crystal and inversely
proportional to the angular offset (A®) from the Bragg peak. For a crystal with it’s diffraction
plane at an angle x ( see Fig. 4) and with a phase shift ®, the Poincaré Stokes parameters are
given by: [26]

b —

(25)

P, = 14 [cos® — 1]sin?2y (26)
d

P, = sin? 5 sin(4y) (27)

P; = —sin®sin(2y) (28)

For & = +7 and x = 45°, the linear components P; and P, are zero whereas the circular
component P3=41. This is known as Quarter Wave Plate (QWP) in optics which produces
circularly polarized light from an incident linear polarization. The sign of the phase shift de-
termines the helicity of the circular polarization, i. e. left or right circular polarization. If
® = +nw(n = 0,£1, £2,...), the the circular component is zero and the two linear compo-
nents are given by: P, = cos(4y) and P, = sin(4x). This is known as Half Wave Plate (HWP).
Variation of P; and Pj as function of offset angle A© for (1 1 1) diamond plate is shown in
Fig.9.

The polarization state of the scattered beam or the direct beam can be analyzed using a linear
polarization analyzer (PA). A polarization analyzer is based on Thomson charge scattering from
crystal such that the scattering angle (26) is close to 90°. The condition 26 = 90° is fulfilled only
approximately as a perfect mach of polarization analyzer crystal d spacing with the incident x-
ray energy can not always be obtained. A list of different PA crystals in different energy range
is listed in Table. 2. The intensity of the scattered radiation from an analyzer crystal can be
written as:

I= %[1 + Py cos(2n) + P, sin(2n)] (29)

where 7 is the rotation angle of the PA around the beam axis (see Fig. 4).

As an example, let us analyze the polarization of the direct beam with a Au(1l 1 1) analyzer
crystal. The energy is chosen such that 20p = 90° condition is fulfilled. In this case, the
polarization of the direct beam has been changed using a HWP by changing y of the diamond
phase plate. The rotation of incident light () is related to the rotation angle of diamond phase
plate by : ( = 2x (see Fig. 4). The integrated intensity of the scattered beam from the PA has
been measured as function of 7 by rocking the analyzer crystal for a particular ¢ and is plotted
for different values of ¢ in Fig. 10. The curves for a particular ¢ has been fit with Eq. 29 and
the values of P; and P, are extracted. These procedure is followed with different ¢ and the
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Figure 9: Poincaré components (P and Ps) as a function of offset angle A© for a (1 1 1)
diamond phase plate with 0.77 mm thickness in an (1 1 1) asymmetric Laue geometry (beam
path of 0.99 mm). Figure taken from Ref. [25]
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Figure 10: Polarization analyzer angle (n) dependence of the scattered intensity for different
incident linear polarization. The solid lines are the fits using Eq. 29 to extract Poincaré Stokes
parameters.
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Figure 11: Poincaré-Stokes parameters for direct-beam from a phase plate as a function of
rotation of the incident light polarization.

resulting values of P; and P, are plotted as a function of ¢ in Fig. 11. The variation of P; and
P, follows the theoretical prediction P, = cos(4y) and P, = sin(4x). Note that the degree of
circular polarization can not be determined in this way. However an upper limit can be placed
since P? < 1— P?— P}

It is also possible to determine P; and P, by collecting integrated intensities for a pair of 7
values since P; and P; can be written from Eq. 29 as P, = [I1(0°) — I(90°))/[1(0°) 4+ I(90°)]
and P, = [1(445°) — I(—45°)1/[1(+45°) + I(—45°)]. However, it is recommended to measure
integrated intensity at different positions of 1 with step size of minimum 30° between 0° and
180° to estimate the systematic error [27]. Furthermore, the integrated intensities should be
measured by rocking the analyzer crystal to avoid the artifacts from the variable resolution
function as a function of 7.

There are several benefits of using polarization analyzer. PA analyzer reduces the background
signal from fluorescence and diffuse signal. It also reduces the remaining higher harmonics.

5 Applications of the magnetic x-ray scattering:

X-ray magnetic scattering have many applications ranging from the study of the thin film mag-
netic system to the magnetism of bulk. Here few examples are selected to illustrate the power
and versatility of the resonant and nonresonant magnetic scattering.

5.1 Determination of moment direction:

For a magnetic structure determination a basic and first step is to determine the direction of
magnetic moments within the unit cell. In different ways this can be done, viz. (a) azimuthal
rotation (b) Q-dependent measurements (c) by analyzing Poincaré Stokes parameters of the
scattered beam. We will discuss all the procedures in the following sections with examples
selected from different compounds with present relevance.
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Table 2: A list of analyzer crystals which are commonly used for polarization analysis. The
photon energy for 20ps = 90° is presented in columns 3 and 6. PG stands for Pyrolytic
graphite.

Crystal (HKL) E(90°) [ Crystal (HKL) E (90°)
[keV] [keV]
Au (111 373 Pt (220) 774
Al (111 375 PG  (006) 7.84
LiF  (200) 435 Ge (333) 8.05
Cu (200) 485 Si (333) 839
PG  (004) 522 Cu (222) 841
Mo (200) 557 LiIF  (400) 871
Al (220)  6.12 Pt (400) 8.94
LIF  (220) 6.16 Pd  (400) 9.0l
Cu (220) 686 Cu (400) 970
Au  (222) 744 PG  (008) 1048
Al (222) 749 Au (333) 11.16

Azimuthal angle dependence:

Gd5(S1,Ge, ;)4 have received attention due to their magnetocaloric, magnetostrictive and mag-
netoresistive properties [28, 29, 30, 31]. Tan ef al. [32] have undertaken determination of
magnetic structure of the Gd moments in Gd;Ge, using XRMS at the Gd L;; edge. Since nat-
urally occurring Gd is strongly neutron absorbing, XRMS is a feasible option to determine the
magnetic structure of this compound.

Magnetization measurement indicate that the Gd;Ge,orders antiferromagnetically below Ty =
127 K. Also, the measurements of magnetic susceptibility along three crystallographic direc-
tions indicate that the moment is along the ¢ direction. Therefore, the crystal was mounted with
b axis vertical and the ¢ and a axis in the horizontal plane. The magnetic (0 3 0) reflection was
accessed. In this geometry the crystal can be rotated around the @ = (03 0) such that the angle
1 between the ¢ axis and the scattering plane can be continuously changed from 0° to 180°.
The rotation of crystal around a scattering vector without changing value of Q vector is know
as azimuthal rotation. A cartoon of azimuthal rotation is shown in Fig. 12.

By rotating the crystal around the b axis either b-c or a-b can be brought into the scattering
plane. The integrated intensity of the (0 3 0) magnetic peak was collected as a function of ¢ and
was normalized to the charge (04 0) reflection for every azimuth angle to reduce the systematic
error and is shown in Fig. 13. The dipole scattering intensity is sensitive only to the moment
in the scattering plane with a cross section f k! “f (k' and jt are the wave vectors of the
scattered photon and the magnetic moment respectively.) With ¢» = 90° (a-b in the scattering
plane), the integrated intensity is close to zero. Whereas when 1 = 90° or 180° (b-c in the
scattering plane), the integrated intensity is maximum. Therefore, only ¢ component of the
magnetic moment contributes to the resonant scattering. Let us assume that the moments are at
an angle 1. with respect to the ¢ axis. Then the angle between the magnetic moment and the
scattering plane for an azimuth angle ) (defined as the angle between c axis and the scattering
plane) is equal to (¢p — 1.). Therefore, f o cos(¢» — 1).) and the integrated intensity can be
written as [ = A cos?(1) — 1) where A is an arbitrary scaling factor. The solid line in Fig. 13
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Figure 12: Schematic representation of the azimuthal rotation. The ) angle is defined as the
angle between the crystallographic ¢ axis and the scattering plane. When c axis lies within
the scattering plane, 1) is defined as zero. When 1) = 90°, the ¢ axis is perpendicular to the
scattering plane. Expected variation of the dipole resonance intensity for the magnetic moment
along the c direction.

represents a fit with the above equation with 1. = 1.9°+£1.8°. Therefore, the magnetic intensity
to the (0 3 0) reflection is sensitive only to the moment along ¢ direction and indicate that either
there is no magnetic component along a or b axis or the intensity of the (0 3 0) magnetic peak
is not sensitive to either the a or b magnetic components due to cancellations arising from the
symmetry of the magnetic order. Later, it was verified by a detailed Q-dependent measurements
that the magnetic moments are indeed along the ¢ direction.

One may note that the integrated intensity at ¢» = 0° deviates significantly from the calculated
curve. This is due to the presence of multiple charge scattering. [33] Multiple charge scattering
is particularly a problem for commensurate magnetic structures. Multiple charge scattering
arises due to two or more successive Thompson scattering events. It occurs when another
lattice point ¢ QQ (secondary reflection) intercept the Ewald sphere other than the lattice point
of interest Ql (primary reflection). A third reflection Q3 = Q1 — Q2 is required to bring the
secondary reflection into the direction of main reflection. In this case, not only Ql but also
QZ + ng contribute to the observed intensity. Multiple diffraction depends on several factors
such as incident energy of the x-rays, azimuth angle and crystal symmetry, lattice constants etc.
For a resonant magnetic scattering experiment resonance occurs at particular energy or within a
very small energy range. Therefore, one can reduce the multiple charge scattering background
by varying the azimuth angle (rotation around the primary reflection Ql) such that Qz is out
of the Bragg condition. Typically a very small rotation (< 1°) is needed. The problem of
multiple charge scattering becomes severe for high energy magnetic diffraction since size of the
Ewald sphere is larger and correspondingly, more and more secondary reflection can intercept
the Ewald sphere. In practice, energy scans around the resonant energy as a function of azimuth
angle is performed to select multiple charge scattering free region. Fig. 14 (a) shows contour
map of intensity in dependence on energy and azimuth angle for the (5 0 0) reflection. The
multiple scattering contribution at the resonant energy can be minimized through a judicious
choice of azimuth angle as shown in Fig. 14 (b), where the resonant scattering is well separated
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Figure 13: The integrated intensity of the (0 3 0) magnetic peak normalized by the (04 0) charge
peak at T = 8 K. The solid curve represents the variation expected for magnetic moments along
the c axis. The Figure has been taken from Ref.[32].

from the multiple scattering.

Q-dependence:

The conventional way to determine the moment direction is to measure the scattered intensity
as a function of scattering angle which is commonly known as “Q dependent” measurement
in the scattering community. There are many examples of using this procedure to determine
the moment direction and magnetic structure [15, 14]. Here we will present the case of Sm-
FeAsO [34]. SmFeAsO is the parent compound for the recently discovered superconducting
SmFeAsO;_,F, compounds where the highest 7. of 55 K has been observed. [35, 36]

SmFeAsO crystallizes in the tetragonal P4/nmm space group and undergoes a structural phase
to an orthorhombic crystal structure C'mme below Ts = 140+1 K. Below T =110K, a mag-
netic signal was observed at the reciprocal lattice points characterized by the propagation vector
10 %) when the x-ray energy was tuned through the Sm L, and Fe K-edges, indicating the onset
of Sm and Fe magnetic order, respectively.

For the determination of the magnetic structure in the temperature range 5 K < 7' < 110 K, one
has to look into the details of the magnetic structures allowed by the space group symmetry and
the propagation vector (10 %) Six independent magnetic representations (MRs) are possible
[38]. All the MRs along with the calculated intensities for different polarization geometries are
listed in Table 3 . For a second-order phase transition, Landau theory predicts that only one of
the six above mentioned MRs is realized at the phase transition [38]. We note that the 7 — 7’
scattering geometry is sensitive only to the moment perpendicular to the scattering plane for
the dipole resonance . Since, no magnetic signal was observed at the (0 17.5) (sensitive to I'y
and I'g) and (1 07.5) (sensitive to I'y and I'7) reflections in the 7 — 7’ scattering channel at
the Sm L, edge, one can exclude the moment in the a and b directions and hence, the MRs 'y,
I's, I's and I';. To differentiate between the MRs I'y and I's; (moment along the c direction), the
integrated intensities for a series of (10 %) reflections were measured, see Fig. 15(a).

To differentiate between these two MRs, angular dependence of the magnetic scattering has
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Figure 14: (a) Contour map of the intensity as a function of energy and azimuth angle 1 at
the (5 0 0) position and T = 8 K. Discontinuities in the bands of multiple scattering across the
energy range are artifacts of the scanning process and (b) single energy scan at the azimuth
angle ¢ = 59.9°, which is depicted as a horizontal dashed line in (a). In (b), the vertical dashed
line represents the position of the Gd L;; absorption edge. Figure adapted from Ref. [32].

been calculated as outlined below. The intensity for a particular reflection can be written as:

I = SAL|F,|? (30)

where § is arbitrary scaling factor, A = S.i“ée—*a) is the absorption correction, L = ﬁ is the
. S U cos « . 'sm

Lorentz factor. |F,,| is the modulus of the magnetic structure factor. The magnetic structure

factor F,,, for the (h k) reflections can be written as:

F, = Z fj6277i(hxj+kyj+le) (31)
J

The summation is over all the magnetic atoms in the unit cell. f; is the resonant/non-resonant
magnetic scattering amplitude. The angular dependence of the magnetic structure factor comes
from the magnetic scatterlng amplitude (f;). For dipole resonance and for the 7 — o geometry
f x k;- -f1 where k; and fv are the wave vectors of the incoming photons and the magnetic
moment, respectively. Here, « is the angle that the scattering vector Q( k;f kl) makes with
the crystallographic ¢ direction perpendicular to the surface of the sample and, 6 is half of the
scattering angle. « is positive/negative for larger/smaller angles for the outgoing beam with
respect to the sample surface. For the dipole resonance, and for the reflections of the type
(10L),|F,|? is proportional to sin® (272 L) sin*(f + «) and cos? (272 L) sin*(# + «) for the I'y
and ['s MRs, respectively. z = 0.137 is atomic position of Sm moments within the unit cell
[37]. While sin® (27r2L)/cos? (27rzL) term comes from the relative orientation of the magnetic
moment within the magnetic unit cell, the term sin®(6 + «) comes from the dot product between
k?i and /1 [(90° — 6 — «) is the angle between I%i and /i].

We note, that there is only one free parameter for the dipole intensity (see Eq. 30), namely the
arbitrary scaling factor S. Figure 15(a) shows a fit to the observed intensities for the two above
mentioned MRs. Since the model calculation with the magnetic moment in the I's MR closely
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Table 3: Basis vectors for the space group Cmme with k17 = (0, 1, .5). The decomposition
of the magnetic representation for the Sm site (0, .25, .137) is Tprey = 117 + 175 + 0I5 +
1T} + 1T% + 00§ + 1T} + 1T'L. The atoms of the nonprimitive basis are defined according to 1:
(0, .25, .137), 2: (0, .75, .863). Lattice parameters of the orthorhombic crystal at 100K [37]:
a=5.57324, b=5056114, c = 84714 A.
IR Atom BV components Magnetic Intensity
Mma My M (h0%) (0k1)
T—0 T—=T T—0 T—T

Iy 1 1 0 0 Yes No No Yes
2 -1 0 0

I's 1 0 1 0 No Yes Yes No
2 0 1 0

I'y 1 0 0 1 Yes No Yes No
2 0 0 1

['s 1 0 0 1 Yes No Yes No
2 0 0 -1

I'; 1 0 1 0 No Yes Yes No
2 0 -1 0

I's 1 1 0 0 Yes No No Yes
2 1 0 0

agrees with the observed intensity, we conclude that the magnetic Sm moments are arranged
according to the MR I';5. Using the Q dependence of the non-resonant scattering, the magnetic
structure of the Fe moments can be determined as well. A combined magnetic structure is
shown in Fig. 15 (b).

Full polarization analysis using Stokes parameters:

Here we will discuss, how to use linear polarization analysis to determine the moment direc-
tion. There are several advantages of using Stokes parameter formalism over the conventional
azimuthal scan to determine the moment direction. During the azimuthal scan the sample is
rotated and during this rotation the beam can illuminate different parts of the sample if the sam-
ple is not precisely centered as it is often the case. For a multi-grain sample, this can increase
the systematic error in the measured intensity as a function of azimuth angle. For a commen-
surate magnetic structure with the presence of multiple charge scattering, in principle, one has
to minimize multiple charge scattering at each values of azimuth angle. This procedure might
be time consuming. In contrast, one can obtain the same information by changing the inci-
dent polarization. The beam is fixed on the sample, and hence the previous problems can be
easily avoided. Here we will outline the procedure for full polarization analysis used for the
multiferroic compound TbMn,Os.

TbMn2O; 1s a well known multiferroic where ferroelectric and magnetic order occurs in the
same phase. In this compound a complete reversal of ferroelctric polarization has been ob-
served in a small applied magnetic field (~2 T). [39] The mechanism driving multiferroicity in
this compound is not fully understood. From several studies, it is clear that rare-earth plays an
important role in the magnetoelectric coupling. It was not possible to refine the magnetic struc-
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Figure 15: (a) [ dependence of the integrated intensity at the Sm Ly edge along with the fits for
the (10 % ) reflections. Open symbols are the calculated intensities. Lines serve as guides to the
eye. (b) Proposed magnetic structure in the temperature range 5 K < T < 110 K. Figure taken
from Ref. [34].

ture of Tb moments in this compound due to a very large no of free parameters in the neutron
scattering refinement and the presence of another dominant magnetic subsystem, namely Mn.
Resonant magnetic scattering offers an alternative to to study magnetism of Tb moments alone
due it’s elemental specificity.

TbMn,O5 shows a series of magnetic transitions. At 7'y =43 K, the manganese moments orders
in an incommensurate structure with magnetic propagation vector (6, 0, 7) with § = 0.5 and
7 ~0.3. At a slightly lower temperature, T =38 K, the system enters into a ferroelectric
phase with ferroelectric polarization along the b direction. Between 33> T' > 24 K, the system
locks into a commensurate phase with 6 = 0.5 and 7 =0.32. [40, 41] From a full polarization
analysis Johnson et al. [42] have shown that in the commensurate phase the Tb 5d bands are
polarized by the manganese subsystem.

A outline to determine the magnetic structure using full polarization analysis will be provided
here. At an atomic site (j) the magnetic moment vector can be written as:

m(]) = mlé’l + m222 + m123 (32)

where my, ms, m3 are the components of magnetic moment along the directions of 2y, 25, 23 re-
spectively (see Fig. 3). The scattering matrix can be calculated for dipole resonance as follows:

unit—cell
Alc - 7)) = Z [m1(5) cos O + ms(5) sin §)e’7 7
J
= F(my)cosf+ G(ms)siné (33)
where F and G are two different functions of m; and ms, respectively. In a similar way o — o’

and 7 — 7’ components can be evaluated. Therefore, the scattering matrix can be calculated
for dipole resonance can be written as:

AO‘*}O" AO’A)T('/
<Mm> B (Aw—ﬂr’ A7r—>7r’>
0 F(ml)COSG—l—G(mg)sine)

(—F(ml) cosf + G(ms)siné L(ms) sin 260 4
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Figure 16: (a) A plot of the measured Poincaré-Stokes parameters Pl and P2 as a function
of the incident x-ray polarization of the commensurate reflection (4+9, 4, 0-7) at the EI-El
(dipole) energy resonance at 25 K. Simulations of the Mn** and Mn** magnetic structures as
refined by Blake et al. [Ref. [41]] are shown as blue solid and red dashed lines, respectively.
A simulation of the terbium magnetic structure scattering at the EI1-E1 transition in this phase,
as refined in Fig. (b) at the E2-E?2 transition, is shown by the green dash-dotted line. (b) A
plot of the measured Poincaré-Stokes parameters Pl and P2 as a function of incident x-ray
polarization of the commensurate (4+6, 4, 0-7) reflection at the E2-E2 (quadrupole) energy
resonance at 25 K. (c¢) Diagrammatic illustration of the refined terbium ion magnetic-moment
directions (black arrows) in a the CM phase. Figures taken from Ref. [42] .

where L(m-) is a different function of . The density matrix of incident linear polarized light
with a rotation ( can be written as:

1/ 14 cos?2 sin 2
A ¢ (35)
2 sin 2¢ 1 —cos2(
The final polarization of the scattered beam from the sample can be calculated as follows
Py =) = f(my,my,ms, ) (36)
P, = tﬁff{;,p)/) = g(mi,mgy,ms,() (37)

where o) = MpM?*. P and P, can be measured experimentally using a linear polarization
analyzer for a particular magnetic reflection as function of ¢ and can be refined simultaneously
with equation 36 and 37 to obtain the values of the three magnetic moment components. For
TbMn,Os5, P, and P, were measured using a Au(2 2 2) analyzer crystal (see the procedure
mentioned in section 4.4) for the commensurate (4+9, 4, 0-7) reflection at the dipole and the
quadrupole resonance at the Tb L;;; absorption edge and is shown in Fig. 16(a) and (b) respec-
tively.

Here we recall that the dipole resonance is sensitive to the polarization of the 5d band whereas
sensitivity to 4f magnetism comes from the quadrupole resonance. Fig. 16(a) shows three
simulations: (1) The solid blue line is the simulation assuming that the Tb moments are arranged
according to the AFM superexchange interaction with nearest Mn** moments.[43] (2) The red
dashed line is the simulation assuming the interaction between Tb and Mn3* moments and (3)
the green dashed line is the simulation according to the interaction with the Tb 4f moments,
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the direction of which is refined in Fig. 16(b). This clearly established that the Tb 5d band
are polarized by the close proximity of the Mn**spin density wave, as opposed to Mn®* spin
density wave. A reduced x? value of 2.8 of the Mn** simulation, when compared to the value
of 5.8 of the Tb 4f band simulation also shows that the Tb 5d band is predominantly polarized
by the Mn** 3d band; however, one clearly cannot exclude the interaction with the terbium 4f
spin configuration.

The magnetic moment direction of the Tb moments was also refined from Fig. 16(b) with
moment directions on the 1 and 2 sites were refined to be 10.54-2.6° in the a-b plane relative to
the a-axis and 0.240.1°out of the plane and on the Tb 3 and 4 sites 292.54+-2.0°n the a-b plane
relative to the a-axis and 0.2+0.1° out of the plane (see Fig.16(c)).

Here we note that the resonant scattering is not only element specific but also band selective.
In this case, the Tb 4f and 5d bands were separately probed by tuning the x-ray energy to the
quadrupole and dipole resonances, respectively. The full polarization analysis provides only
the moment directions. To determine the absolute value of the magnetic moment, comparison
of the nonresonant magnetic intensity with charge intensity is needed and was not performed
in this case. One disadvantage of using phase plate is that the incident flux is reduced by at
least a factor of ten due to absorption in the diamond crystal. Therefore, it is difficult to do full
polarization analysis for small magnetic moment system where the magnetic scattering signal
is small.

5.2 Separation of the spin and orbital angular momentum:

We have already discussed during the formulation of nonresonant magnetic scattering cross-
section that it is possible to separate spin and orbital angular momentum component using
specific polarization properties of the cross section. Here we will discuss the results of Ref.
[44] in light of the separation of spin and orbital angular momentum although there exist many
other examples [10, 45, 46]. Monooxides of 3d transition metals such as MnO, FeO, CoO and
NiO are the test samples for the band theory models due to it’s simplistic crystal and magnetic
structures. Their insulating behavior contradicts simple electronic band models in which the
oxygen p states are fully occupied while the metal s states are empty and the metal d states
are partially occupied. To resolve this contradiction, two explanations have been proposed: the
Mott-insulator concept [47] and band calculations based on local-spin-density approximation
that take into account the antiferromagnetic order.[48] The latter approach implies that orbital
moment plays a role in CoO and FeO, while such a contribution is not required in NiO. [49]
Therefore, the determination of the orbital-moment contribution to the magnetization in the
ordered state of NiO is a valuable piece of information towards a better understanding of the
electronic and magnetic properties of these compounds.

NiO has the NaCl fcc structure with a = 4.177 A at room temperature. The ground-state config-
uration of the Ni** ion has a 3d® configuration. Below T =523 K, NiO orders in the type-II
antiferromagnetic structure [50] where ferromagnetic planes are stacked antiferromagnetically
along the [1 1 1] axes with their magnetic moments aligned in the [1 1 1] planes along one of
the [1 1 2] directions [51] . The experiment was performed at the ID20 magnetic scattering
beamline at the ESRF. The sample was mounted on a four circle diffractometer. A [1 1 1]-axis
normal to the surface was carefully oriented along the ® axis of the four-circle diffractometer.
The nonresonant scattering was measured at E = 7.84 keV to match the 26,= 90°of the PG(0 0
6) analyzer crystal. The magnetic signal was measured at both the 0 — ¢’ and ¢ — 7’ channels.
Before, going into details, it is worth to discuss the magnetic domains present in the crystal.
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Figure 17: (a) The scattering geometry for the NiO experiment. (b) Normalized integrated
intensities of the ( % % % ) reflection as a function of azimuth angle ® at 7.84 keV. Intensities
are given in (radians*detector counts/monitor counts). Errors bars are smaller than the dot
size. The two polarized components, 1,o and I/, are out of phase by 5. The total intensity
is the sum of the two components corrected for the reﬂecti\iity of the PG( 006) analyzer. Arrows

indicate the ® averaged values that are used to extract L(Q)) and S(Q).

When the system is cooled from the paramagnetic cubic phase to orthorhombic AFM phase,
there exist 4 symmetry equivalent K domains. The propagation vector (%, %, %) can align in any
of the 4 symmetry equivalent directions [1 1 1], [1 1 1], [1 1 1], [1 1 1] and give rise to four K
domains. In addition, the magnetic moments are aligned in the [1 1 1] planes along one of the
[1 1 2] directions. Since in the cubic state, the [1 1 1] axis is a three-fold symmetry axis, there
exist three equivalent possible spin directions perpendicular to the [1 1 1] axis, the so-called S-
domains. Depending on crystal faults (surfaces, small angle grain boundaries, impurity atoms
etc.), but also on random processes, an arrangement of these K- and S-domains develops in
the sample in the low temperature phase. During the experiment it appears that the sample
is populated by a single K domain with propagation vector parallel to the surface normal, at
least in the near-surface region of 40 yum probed with 7.84 keV x-rays. When measuring the
scattering intensities from a given K domain, all contributions from the associated S domains
add incoherently. By rotating the sample about the surface normal ( angle ¢ in Fig. 17 (a) ),
we could study the S domain distribution within the [1 1 1] K domain. Figure 17 (b) shows the
® dependence of I, and I,/ at the (% % %) position. The two intensities exhibit a modulation
of period 7 characteristic of the S-domain distribution. A modulation with a period 27 would
indicate that the footprint of the beam is moving across the surface of the sample during the ¢
rotation. In a given S domain, the magnetic scattering amplitudes vary in a simple manner with

the ¢ angle: From the non resonant magnetic scattering cross-section we can write:



Magnetic x-ray scattering C7.29

M(o —¢') = sin(26)S, = sin(260) sin ®S(Q) (38)
M(o — ') = —sin(20)sin0[L; + 5] (39)
= —sin(26) sinfcos DS(Q) + cos(® + Bo)L(Q)] (40)

where an angular @, offset is allowed between S and L. The origin of ® is taken with the
spin direction in the scattering plane. In a multi-S-domain sample, scattered intensities are
combinations of sin? ® and cos®> ®. Fig. 17(b) shows that the intensity at the ¢ — ¢’ and
o — 7' are exactly 7 phase shifted implying that ®; = O which is in agreement with the
collinear arrangement of the spin and orbital angular momentum. Taking the ratio of intensities

(IocM?) using Eqgs. 38 and 40, in both geometries, the ratio of (( Q)) can be easily calculated. By

comparing the calculated ratio with the ¢ averaged expenmental values as shown in Fig. 17 (b),

QL;(%)) can be determined. 5 ;8) as a function of Q for three different reflections (311), (323

222 2227
(555

5535) 1s shown in Fig. 13(a). The results in Fig. 18 clearly show that a large contribution (17 +

3%) to the magnetization from the orbital moment exists in NiO. The increase of L(@)/2S(C§)
with the scattering vector reflects the broader spatial extent of the spin density. The orbital
contribution enhances the spin-alone magnetic moment to make the total moment eventually
larger than 2 ;g as expected for spin-only magnetic moment (S = 1).

The orbital and spin angular momentum can be put in an absolute scale by comparing scattered
magnetic intensities with charge intensities and by talking care of extinction correction, if any.
The resulting values are shown in Fig. 18(b) as a function of the scattering vector. The extrap-
olated values at zero scattering vector, S(0) = 0.9540.1 and L(0) = 0.32+0.05, lead to a value
of 2.2+0.2up for the staggered magnetization at 7 = 300 K. This is in close agreement with
neutron results giving 1.814+0.2 up [52] and 1.97 up [53].

Summarizing the main results of NiO, (a) the spin and orbital contributing to the total mag-
netization was measured using nonresonant magnetic scattering. The extrapolation at Q =0
shows that the effective L/S ratio amounts to 0.34. This is unexpectedly large contribution in
transition metal oxides like NiO where L is supposed to be largely quenched. Furthermore the
orbital angular momentum is parallel to spin, as expected from simple spin-orbit coupling for
a 3d® free atom. The results also indicate a contraction of the atomic wave function for Ni in
NiO, if the experimental values are compared with the predictions of theory. The atomic wave
functions are contracted by 17 % as compared to the free ion. We can conclude that the magne-
tization density in a simple system like NiO is not yet fully understood and the results of these
studies have to be taken into account, when models for the electronic and magnetic structure
and properties of transition metal compounds are being made.

5.3 Nonresonant magnetic scattering from Ho Metal:

Nonresonant magnetic scattering from Ho metal illustrates the advantages of magnetic x-ray
scattering compared to the neutron scattering and reveals new features in magnetic structure that
was unobserved in neutron diffraction experiments [4, 56, 57]. Ho metal has an h.c.p. crystal
structure with two layers per chemical unit cell and a large magnetic moment of 10up/atom.
Below the magnetic ordering temperature, 7y ~ 131K, a pair of satellite reflection appears
around each main Bragg reflection parallel to the reciprocal ¢ axis [57, 58]. These results are
usually taken as evidence for a simple spiral antiferromagnetic structure in which the average
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Figure 18: (a) Measured variation of 1( Cj 12S( @ ) as a function of sin % = %. The continuous
line is the K dependence estimated by Blume [Ref. [54]] adjusted to fit through the data with a
contraction of the wave function by 17%. L( C? V2S( Cj ) extrapolates to 0.17 at C? = 0. (b) Spin
form factor and orbital-moment form factor in NiO. The data have been obtained by normaliz-
ing magnetic intensities to charge peaks corrected for extinction. The continuous lines are the
calculated variations of S( Q ) and L( Q ) with sin < from Refs. [54] and [55] with an expansion

of the Q scale by 17%.

moments are aligned ferromagnetically within the basal planes, but rotate from one plane to
the next plane with an average turn angle varying between ~50°/layer at T and ~30°/layer
near T.. The exact turn angle can be determined by measuring the modulation wave vector
at each temperature. Figure 19 shows the schematic of the magnetic structure along with the
temperature dependence of the magnetic propagation vector.
Gibbs et al. [4] first reported non-resonant x-ray magnetic scattering on Ho. The count rate of
the magnetic signal was comparable with neutron diffraction (~25 counts/sec). The background
of the NRXMS was one order of magnitude higher than that of neutron. This was more than
compensated for by a five fold increase of resolution, which proved to be very important for the
success of the experiment. The wave-vector resolution of 1073 A~! reveals new features in the
temperature dependence of the propagation vector and leads to a new model of the magnetic
structure. The temperature dependence of the propagation vector measured by x-rays is in
very good agreement with the neutrons as is shown in Fig. 19(a). In addition, several lock-in
transition was observed as shown in the inset of Fig. 19(a). Below 50 K thermal hysteresis,
irreversibility, coexistence of phases with differing wave vector, and apparent lock-in behavior
was observed.
Figure 20 (a) shows the diffraction pattern obtained with synchrotron radiation at 17 K when
the magnetic satellite is located at a commensurate position 7,,, = % A second peak of intensity
comparable with the satellite but of greater width (0.0075 VS 0.005 A1 ) is observed at 7, =

. As the temperature is increased, 7,, shifts away from 2 7> and the second peak apparently
broadens and disappears. To establish the origin of the additional scattering at 3, the scan at
17 K was repeated with the polarization analyzer in place. As seen in Fig. 20(a), the second
peak is completely eliminated when measured with PG(0 0 6) analyzer crystal in the 0 — 7’
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Figure 19: (a) Temperature dependence of the Ho modulation wave vector T obtained with
both synchrotron x-ray (open circles) and neutron (filled circles) scattering. The wave vectors
obtained by neutron scattering in the coexistence region below 20 K are the result of fits to
the first harmonic. Th fine lines across the hysteresis loop indicate the results of cycles of the
temperature below 50 K. Inset: Plot of the wave vectors obtained from several cycles of the
temperature between 13 and 24.5 K obtained with x-ray scattering. [4] (b) Schematic of the
magnetic structure of Ho determined using neutron diffraction as a function of temperature.

[7].
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Temperature dependence of the magnetic and charge satellites measured during cooling.[59]
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Figure 21: (a) The magnetic structure proposed by neutron scattering at low temperature where
moments in the consecutive layers rotates by 30°. (b) The low temperature magnetic structure as
proposed by Gibbs et al. [4] where a pair of doublet rotates by 60°giving the same propagation
vector as (a). (c) The spin-slip model for the magnetic structure. In(a)-(c), the right sides
depicts projection of the magnetic moments in the hexagonal a-b plane.
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scattering channel, showing unambiguously that (1) the scattering at Tm=25—7, 1S magnetic in
origin, and (2) the peak at TC:%, originates from the charge scattering. For a pure spiral with
the propagation vector perpendicular to the moment direction, magnetoelastic coupling is zero
and thus, no periodic modulation of the lattice is expected [7]. Therefore, the existence of the
charge scattering at 7, = g is completely unexpected from the previous model of the magnetic
structure.

The existence of the commensurate magnetic satellite and associated charge scattering can be
explained based on the spin slip model. Spin slip model of the magnetic structure is based on the
low temperature 7,,= é structure which is schematically shown in the Fig. 21. In this structure
the pairs of magnetic moments or doublets are oriented along one of the easy directions of
hexagonal lattice. The adjacent pairs are rotated by 60° so that 12 atomic layers or 6 chemical
unit cells are needed to complete a 360°turn. Thus the magnetic period 7,,= %. Shorter period
modulations occur due to periodic spin slips where single atomic layer (singlet) makes a 60°
turn as shown in Fig. 21(c). In principle, the spin-slip model allows a large number of possible
sequences of doublet and singlet, producing modulation wavevector in the range % > T >
%. The change in magnetoelastic coupling at spin-slip sites causes a small distortion of the
chemical lattice, with a period equal to the spin slip period. The spin-slip model describes
not only the lock-in behavior of the magnetic modulation wave vector, but also predicts also
the wave vector for the charge scattering. In Ho it was proposed that the magnetic structure
consists of two basic blocks: the spin-slip block consisting of single atomic layer and a no-spin-
slip block consisting of a doublet. A magnetic unit cell then can be described as a sequence of
N no-slip blocks and § spin-slip blocks. For the periodic sequence of N ans S blocks it can be
shown in the case of Ho metal that: [7]

m+1

S 41

7 6m + 3 @1
2

= 42

T om + 1 “42)

where m = % Some of the allowed wave-vectors for different values of m are given in Table
4. One can see that there is a remarkable agreement between the allowed wave-vectors in the
spin-slip model and the observed experimental data shown in Fig. 19(a). Although we have
assumed a periodic structure for the spin-slip array, it is clear from the data of Fig. 20 that the
peak at % is not instrumentally narrow. This width is direct evidence of the lack of long range
periodicity in the spin-slip distribution.

Table 4: Some of the commensurate magnetic (7,,) and lattice modulation wave vectors pre-
dicted by the spin-slip model of Ho [7]. The rotation of magnetic moment between no-spin-slip
block and spin-slip block is 60°.

m| |0 1 2 3 4 5 6

~ 11 z 1T & 5 2 7 1
m 3 g g 221 227 121 329 6

12 3 5 7 5 i i3 O

So far we have discussed nonresonant magnetic diffraction at low to medium energies (4-20
keV). The nonresonant magnetic diffraction can be performed also at very high energies which
has several advantages. First of all, instead of specialized Be windows, less expensive Alu-
minum windows can be used due to less absorption at high energies. Secondly, due to the high
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penetration of the high energy x-rays, bulk sample can be probed in transmission geometry and
one do not have to worry about sample surface preparation. For 3d transition metals, the absorp-
tion length increases from some pm at 8 keV to several mm at 80 keV. Due to the enhancement
of penetration depth, the effective scattering volume increases and hence, the scattering intensity
increases by a factor of 3-4 orders of magnitude. Corrections for absorption, extinction, beam
foot print etc. are simple and therefore, by normalizing the intensity of the magnetic reflections
to the intensity of the charge reflections, absolute values for the spin moment can be determined
[60]. For high energies, scattering angles are very small for the low index reflections. Therefore,
neglecting terms in sin® # one can write the nonresonant magnetic cross-section as follows:

AO’—)O” AU—HT’
s - (4 )

Aﬂ%a’ A7r~>7r/

[ (sin20)S, -0
B ( 0 (sin26)52) )

We can see from the matrix Eq. 43 that the magnetic scattering at high energies is only sensitive
to spin component perpendicular to the scattering plane and the scattering does not change
the polarization state. Nonresonant magnetic scattering at high energies has been successfully
employed to study the magnetism of MnF, by Strempfer et al. [61]. With 80 keV x-rays a
high peak count rates 13000 counts/sec with a peak to background ratio of 230:1 and a very
high reciprocal space resolution can be obtained for the magnetic (3 0 0) reflection as shown in
Fig. 22(a). Figure 22 (b) shows a measurement of the temperature dependence of the sublattice
magnetization. In the critical region close to the Neél temperature 7'y, the reduced sublattice
magnetization m = M (T") /M (T = 0) follows very accurately a power law behavior:

m(r) = D1’ (44)

as a function of the reduced temperature 7 = (Ty — T') /T . The value of the critical exponent
of 5 =0.333(3) corresponds well to the predictions of the Ising model. As discussed previously,
the problem of multiple charge scattering is severe at high energies and unfortunately, it was
the case for MnF, due to the identical chemical and magnetic unit cell and specific crystal
symmetry. Multiple charge scattering was minimized by judiciously selecting the azimuth angle
as discussed 1in section 5.1.1.

5.4 Magnetic scattering from ferromagnet:

We have discussed applications of resonant and nonresonant magnetic scattering in the case of
antiferromagnets where magnetic signal is well separated form charge scattering. For a ferro-
magnetic samples or in an atiferromagnets with Cj =0, where charge and magnetic scattering
coincide, it seems impossible to measure the magnetic signal. However, it has been shown
that for a ferromagnet it is possible to measure magnetic signal by measuring (a) flipping ra-
tio (asymmetry ratio) in a magnetic field or (b) by using the the fact that the charge scattering
from a sample is suppressed by a factor of cos? 20sampie 1n addition to cos? 200nalyzer iInT — 0’
scattering geometry.

(a) The total scattering cross-section generated by the magnetic and charge scattering length
1s:[7]

d
o= WP =1t £oF (45)
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Figure 22: (a) Representative scans of the magnetic (3 0 0) reflection at T = 5 K. (a) and
(c) show transversal scans in the three and two crystal modes, respectively.(b)The main graph
shows the reduced magnetization m=M(T)/M(0) as a function of the reduced temperture T =
(T — T')/Ty on a double logarithmic scale for the magnetic (3 0 0) reflection. The points are
taken from the measurement, the solid line represents a fit using equation 44. The inset shows
the temperature dependence of the intensity of the magnetic (3 0 0) reflection from 5 to 80 K
with Ty = 67.713 K. Figure adapted from Ref. [61].

If f,, and f. are exactly in phase, then the Eq. 45 can be written as:

O 2 (46)

Eq.46 has three terms: the first term is the pure charge scattering which is the most dominant
term. The second term is the pure magnetic term and the third term is due to the interference
between charge and magnetic signals. The pure magnetic term is 10~ times weaker than the
pure charge term and therefore, undetectable in a magnetic scattering experiment. The third
term being linear in f,,, it is much stronger than the pure magnetic term. Moreover, being linear
in f,,, the sign of the third term can be changed by changing the magnetization direction by an
external magnetic field. Thus, the difference in the cross section for two different orientation of
the magnetic field can be detected.

Unfortunately, in a centrosymmetric crystal structure, the f,,, and f. are exactly out of phase for
the plane polarized incident light, and therefore, the interference term vanishes. The interfer-
ence term for the centrosymmetric case only exists if the incident light is elliptically polarized.
In a non-centrosymmetric crystal structure the scattering phases depend on the precise distribu-
tion of the charges and magnetic moment in the unit cell and depending on the phase difference
an interference term is permitted. One clever way to introduce a phase difference is to tune the
x-ray energy to the absorption edge of one of the element in the crystal. Resonant scattering
introduces a strong energy dependent phase shift and hence an interference term is allowed.
Charge magnetic interference was first seen in ferromagnetic Ni single crystal at the Ni K edge.
By reversing the direction of external magnetic field applied perpendicular to the horizontal
scattering plane an asymmetry ratio can be calculated:

Itr-I]
It 4T

Where I 1 and I | represent scattering intensities for two opposite magnetization direction.
The value of asymmetry ratio R, of 1072 and 0.1 was reported for Ni [62]and CoPt alloy [63],

(47)
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Figure 23: (a) Experimental set-up for the measurement of XRMS from ferromagnetic samples.
The primary beam is polarized horizontally, the magnetic field is applied perpendicular to the
horizontal scattering plane. The Bragg peak of the sample and the analyzer were chosen to
scatter close to 90 degrees to minimize the charge scattering. (b) Absorption-corrected energy
dependence of the (1 1 5) reflection measured at the Eu L;; edge. Two measurements with
magnetic fields of +0.5T and —0.5 T were performed at 4 K. Charge and magnetic intensities
contribute to the scattering amplitude. (c) Asymmetry ratio R, of the (1 1 5) reflection at 4 K at
the Eu Lj; edge. Figures adapted from Ref. [64].

respectively. The asymmetry ratio was also measured at the Eu L;; edge for the EuS single
crystal and the ratio as large as R, of 0.67 was obtained [64].

Fig. 23 (a) shows the experimental geometry for measuring the flipping ratio for the EuS single
crystal. The (1 1 5) reflation was measured in the 7 — 7’ scattering geometry to suppress charge
signal relative to the magnetic scattering signal and to access the magnetic moment component
perpendicular to the scattering plane. In the 7 — =« scattering geometry, resonant scattering
amplitude is sensitive to the magnetic moment perpendicular to the scattering plane i.e. in the
direction of the applied magnetic field (m,). Therefore, we can write:

I = ]mag <m§> + Iint <mz> + Icharge

where 1,4, is the pure magnetic term, I.pqrqe 18 the charge term and I;,,, is the interference term
and (m,) is the expectation value of the magnetic moment along the field direction. Figure
23(b) shows the resonance spectra at the Eu L;; edge below and above the ferromagnetic transi-
tion temperature of 17 K. The resonance spectra below 7. was measured for two opposite field
directions. The asymmetry ratio can be calculated using the formula 47 and is shown in Fig.
23 (c). Clearly the asymmetry ratio is quite large compared to Ni and CoPt. Important spectro-
scopic information such as the exchange splitting of the 5d conduction band can be obtained by
fitting the scattered intensity on the energy and the applied magnetic field [64]. The exchange
splitting was found to be € = 0.27(1)eV.

Ferrimagnetism of Gd moments in GdNi;Ge, [65] as well as antiferromagnetism with Q = 0
magnetic structure in SmFeAsO [34] were studied in zero magnetic field using XRMS at the
Gd L;; and Sm L;; edges, respectively. In both cases, the authors employed m — ¢’ scattering
geometries where the charge signal can be reduced by cos? 20 analyzer X cos? 205ampie compared
to the reduction by cos? 20unaiyzer in the o — 7’ scattering geometry. In the 7 — ¢ scattering
geometry with scattering angle of the sample (20,,,,,,) close to 90° the charge scattering is
reduced by a factor of 10, Therefore, the charge and magnetic scattering intensities become
comparable and measurement of magnetic signal becomes feasible.



Magnetic x-ray scattering C7.37

In the above examples, resonant magnetic term interfere with the charge scattering and is known
as resonant magnetic-charge interference. Similarly one can utilize the interference term be-
tween nonresonant magnetic and resonant charge scattering by tuning the x-ray energy to the
absorption edge of a nonmagnetic element in the crystal. This is known as magnetic-resonant
charge interference scattering. One can also go far above the absorption edge associated with
a weak resonance enhancement (such as K-edges of transition metal) so that the resonance en-
hancement is small and still there is a phase shift which leads to nonzero interference term. This
approach was utilized in the first magnetic scattering experiments on ferromagnets [63].

6 Summary

The above examples clearly demonstrates that magnetic x-ray scattering becomes a microscopic
probe of magnetism. Like any other experimental techniques magnetic x-ray scattering has it’s
own weaknesses and strengths. For example, determination of a completely unknown magnetic
structure is very difficult since magnetic signal from powder sample is very weak compared
to the charge signal. Therefore, magnetic structure determination from powder samples will
remain a typical task for neutron scattering where nuclear and magnetic signal have compara-
ble intensities. It is also very difficult to determine the absolute value of the ordered magnetic
moment using nonresonant x-ray scattering. Nevertheless, using nonresonant x-ray magnetic
scattering, it is possible to separate spin and orbital angular momentum which is not possible
using neutron diffraction. Furthermore, in contrast to neutron scattering, resonant scattering
is not only element specific but also band selective as shown in the case of TbMn;O5. Due to
the intrinsic collimation of the synchrotron x-rays, the Q-space resolution is much better for
a synchrotron experiment. This is often helpful to study incommensurate magnetic structure
and detect lock-in transitions as in the case of Ho metal. Magnetic x-ray scattering provides an
alternative to study magnetism of compounds which contains strongly neutron absorbing mate-
rials such as Gd, Sm,Eu etc. The magnetic form factors for the XRMS, NRXMS and neutron
scattering are quite different. In XRMS, the spatial extension of the core levels is relevant and
therefore virtually no decrease of the scattering amplitude as a function of momentum transfer
is observed. In non-resonant x-ray scattering, the form factors of spin and angular momentum
can be determined separately, while neutrons are sensitive to a combination of both.

In summary, both magnetic x-ray and neutron scattering are complementary probe of magnetism
and one has to select both methods or any one of them depending on the specific problem.
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