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1 Motivation 
 
During the last decades, the possibility to create structures confined along one or more 
dimensions to a size in the nanometer range has induced a class of materials with 
extraordinary properties, as well from the scientific as from the technological points of view. 
Beginning from Si based integrated circuits over layered magnetic structures showing the 
Giant Magnetoresistance (GMR) effect [1] to displays out of conducting polymers produced 
by ink-jet technology [2], layered structures use the interface effects on the conducting 
electrons and (in the case of magnetic structures) on the electron spin. 
 
For a complete understanding of the properties of a layered structure the approximation of 
laterally homogeneous layers with sharp boundaries generally does not hold. For example in 
the case of the magnetic exchange coupling between a ferromagnetic and an antiferro-
magnetic layer, which leads to a shift of the hysteresis loop of the ferromagnetic layer 
(“exchange bias”), the measured effect is two orders of magnitude weaker than the calculated 
effect based on the assumption of a magnetic structure in the antiferromagnet which is not 
affected by the interface. The up-to-date models need to take into account monoatomic steps 
at the interface between ferromagnet and antiferromagnet and formation of magnetic domains 
inside the antiferromagnet [3,4,5].  
 
Like this, there are many examples of effects in thin film structures, e.g. chemical 
segregation, magnetic interlayer coupling, tunnelling magnetoresistance, proximity effects, 
spin injection, etc., where it is important to be able to investigate the chemical and magnetic 
structure in the inner layers of the sample. Most of the methods used to investigate thin film 
structures either integrate over the sample (e.g. SQUID magnetometry), are purely surface 
sensitive (e.g. Scanning Tunneling Microscopy STM, Atomic Force Microscopy AFM, 
Magnetic Force Microsopy MFM, Low Energy Electron Diffraction LEED) or integrate over 
a certain depth (e.g. Auger Electron Spectroscopy AES, Kerr microscopy). Some methods are 
element specific (e.g. Photoemission Electron Microscopy PEEM) without pronounced depth 
sensitivity, so they allow to distinguish between different layers consisting of different 
elements, but not to distinguish between several layers with identical composition, e.g. 
between the two Fe layers in a Fe / Cr / Fe trilayer. 
 
For a specific access to the buried interfaces or layers, we need to use a probe that can 
penetrate the sample and that is coherent over the size of the objects of interest to be able to 
detect the interference between signals from different depth. Useful probes are x-ray photons 
as well as neutrons, because they can penetrate solid samples and have wavelengths in the 
order of a few Å, suitable to resolve structures of atomic size. 
 
Generally, in thin film research, the atomic structure of the layers is not subject to the 
investigation, but the layer structure and inhomogeneties of the layers, e.g. growth islands, 
density fluctuations, magnetic domains or interdiffusion regions. 
 



Scattering under Grazing Incidence from Surfaces and Interfaces D2.3 

To resolve layer structure, vertical interface profiles and interdiffusion regions, one needs a 
resolution in the z-direction of the order of a fraction of the layer thickness. As layer 
thicknesses vary from atomic monolayers to several 100 nm, a z-resolution in the order of Å 
to µm is needed. 
 
In the lateral direction, i.e. parallel to the film plane, different structures are of interest. It 
starts with lithographically produced structures in the µm range, grains in polycrystalline 
layers (1000 to 50 nm), growth islands (100 nm to 10 nm) and goes down to self-organized 
lateral structures (down to 1 nm). Sometimes, e.g. in self-organized nanoparticle arrays 
deposited on a substrate, several length scales are of importance. The internal structure of the 
array (i.e. the periodicity of the nanoparticle arrangement) is in the range of several 
nanometers, while the size distribution of the domains of coherent structure or the clusters of 
nanoparticles can extend up to several micrometers. All these length ranges are accessible 
with scattering under grazing incidence. 

 
2 Specular reflectivity and scattering under grazing 

incidence 
 
The investigation of structure and interfaces of thin films with x-rays or neutrons is mostly 
performed using elastic scattering under grazing incidence. In this case, a monochromatic, 
well collimated beam impinges under a well defined, small angle αi = θ (in most cases 
θ << 5°) onto the surface of the sample. It is then partly reflected specularly from the surface, 
i.e. the outgoing angle αf = θ as well, and partly refracted into the material (see Fig. 1). As I 
will derive in section 4, the reflection of x-rays or neutrons from a laterally homogeneous 
medium can be treated according to classical optics. Only the proper index of refraction n for 
the radiation has to be used. 
 
 

reflected beam

      
Fig. 1: Reflection and Refraction from a free surface 

θ
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For most materials, the index of refraction for neutrons and x-rays is slightly smaller than 1, 
leading to total external reflection for small angles of incidence θ < θc, where θc depends on 
the material and the radiation. 
 

reflected beam 1

 
Fig. 2: Reflection and Refraction from a single layer on a substrate 

 

In the case of a single layer on the substrate, reflection and refraction take place at both the 
surface and the interface (Fig. 2). Then, the reflected beams from the different interfaces 
interfere with each other. Maximum intensity is received, when the path length difference 
between the two reflected beams is an integer multiple of the wavelength. Due to the 
continuity relation of the wave function at the interfaces, the intensity of the transmitted beam 
is modulated opposite to the reflected beam. Fig. 10 shows the reflectivity curve of a real 
single layer on a substrate. It is discussed in detail in chapter 5.1. 
 

 
Fig. 3: Specular and off-specular scattering from a laterally modulated interface 
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If surface and interface are laterally ideally homogeneous and flat, the complete beam is either 
reflected specularly or transmitted after refraction. If the interface is not flat, but e.g. 
periodical (as sketched in Fig. 3), additional beams are coming up. Their origin is diffraction 
from the modulated interface, as it is known from an optical grating. This so-called off-
specular or diffuse scattering can be observed at αf ≠ αi. 
 
 

 
 

Fig. 4: General geometry of reflectivity and off-specular scattering 

 
 
The general principle of a scattering experiment under grazing incidence is depicted in Fig. 4 
and the exact geometry is given in Fig. 5. For the mathematical description of the scattering 
process, it is again convenient to introduce the wave vectors ki and kf for the incoming and 
the detected wave, respectively. Neutrons or x-rays impinge on the sample surface under the 
grazing angle of incidence αi with wave vector ki and are detected with outgoing wave vector 
kf whose direction is defined by the angle αf in the plane of incidence and by the angle φ 
perpendicular to it. Let Q = kf – ki be the scattering wave vector and Q// = (Qx,Qy,0) its 
component in the sample plane. I will restrict the discussion to elastic scattering, i.e. ki = kf = 
2π / λ where λ is the wavelength of the radiation. 
 
If the sample can be considered as laterally homogeneous, i.e. invariant by translation along 
its surface, intensity can only be observed in the specular direction defined by Q// = 0, i.e. at 
αf = αi and φ = 0. If the sample shows lateral fluctuations like chemical roughness, magnetic 
roughness or magnetic domains, then some intensity can be observed in the directions given 
by Q// ≠ 0, i.e. by αf ≠ αi and φ ≠ 0. Very often specular reflectivity and scattering under 
grazing incidence are observed simultaneously. Specular reflectivity then gives information 
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on the order parameters averaged over the lateral coordinates and diffuse scattering gives 
access to the fluctuations around this mean value. 
 

 
 

Fig. 5: The different geometries of scattering under grazing incidence. Off-specular 
scattering probes lateral correlations along the x-direction, while grazing incidence 
small angle scattering (GISAS) probes correlations along the x- and y-directions. 

 
 
In practice, two types of scattering under grazing incidence geometries can be used (Fig. 5). 
The first one is obtained by scanning αi and αf while integrating the measured intensities 
along φ. This is called off-specular scattering. For the second one, the experimental conditions 
are such that φ can be resolved. Recording the intensities along φ as a function of αi and αf is 
called grazing incidence small angle scattering (GISAS). 
 
Taking into account the small values of the angles αi, αf and φ, the scattering wave vector 
projects itself on the three axis of the coordinate system of Fig. 5 in the following manner: 
 

⎪
⎩

⎪
⎨

⎧

α+α⋅≈
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Note that while Qx is a linear combination of squares of small angles, Qy is linear in φ. Qx is 
then always much smaller than Qy. Typically, at a neutron source one has 0.5 µm < dx = 2π/Qx 
< 20 µm and 1 nm < dy = 2π/Qy < 300 nm. The lower limits are defined by the maximum 
available intensity and the upper limits are fixed by the reachable resolution in Qx and Qy. It 
appears then that GISANS (grazing incidence small angle neutron scattering) probes much 
smaller length scales than off-specular scattering. For x-rays the lower limits for dx and dy can 
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be brought even smaller thanks to the availability of high intensity synchrotron sources. As 
GISAS gives access to the nanometer length scale in the sample plane, one observes at the 
moment a rush on this method, with both neutrons (GISANS) and x-rays (GISAXS). 
 
Off-specular and GISAS intensities are represented differently, because they have a different 
dimension. The 3-dimensional off-specular data are typically represented as a function of αi 
and αf with a colour encoding of the intensity (Fig. 6a). Along the main diagonal where αi = αf 
is the specular line (Qx = 0). Out of this diagonal, off-specular scattering is measured and the 
lateral correlations are probed along the x-direction (Qx ≠ 0). Along lines perpendicular to the 
specular line where αi + αf = constant, the correlations are probed along Qx at Qz constant (cf. 
eq. (1)).  
 
GISAS measurements are 4-dimensional and therefore cannot be displayed in a single figure 
containing all data. As the experiments are usually performed on a small angle scattering 
instrument [6] where the data is collected on the 2D position sensitive detector, it is a 
common way to present the measurements at fixed αi. For a well defined angle of incidence αi 
and a well defined sample-to-detector distance, the intensities recorded on the 2D detector 
give the GISAS signal as a function of αi + αf and φ (Fig. 6b). As Qy ≈ k·φ, the φ axis directly 
gives access to the correlations along the y-axis. The specular reflectivity peak can be found 
at the coordinate (αi + αf = 2 αi , φ = 0).  
 
 

     
Fig. 6: Data representation of off-specular scattering (a) and GISAS (b) 
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3 Spatial coherence of the beam 
 

An important quantity to consider in the interpretation of specular reflectivity and scattering 
under grazing incidence is the coherence volume of the beam [7], because its projection Scoh 
on the sample surface, while sometimes large enough to induce multiple scattering effects, 
stays smaller than the illuminated part of the sample surface. This is always true for a neutron 
beam. At shallow angles it might not be true for a x-ray beam at a synchrotron source, 
because of the high spatial coherence of the x-ray beam due to the large distance of the source 
with respect to the sample, its small lateral size and the good wavelength resolution. In that 
case, the surface of coherence is the entire illuminated part of the sample surface. 
 

y
coh

x
cohcoh LLS ⋅=  (2) 

 
is connected to the resolutions of the in-plane components of the scattering wave vector 
 

.Q1LandQ1L y
y
cohx

x
coh δ∝δ∝  (3) 

 

which themselves depend on the quality of monochromatization (wavelength spread) of the 
beam and the angular divergence. These values always depend on the instrument used and the 
settings of the slits etc. that should be optimized for the specific experiment. 

 

 

 
Fig. 7: Projection of the coherence volume of the beam on the sample surface. The 
surface thus obtained has the lateral dimensions  and  along the x- and y-
directions of 

x
cohL y

cohL
Fig. 5. In order to interpret correctly the measured data, those lengths 

have to be compared with the correlation length ζ of the lateral fluctuations. 
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If, within Scoh, the sample consists of homogeneous layers with flat interfaces, there cannot be 
any transfer between the in-plane components of ki and kf and intensity is observed only 
along the specular direction defined by Q// = 0 with a precision given by δQ//. The measured 
reflectivity is therefore an average over all the reflectivities generated by all the surfaces of 
coherence that compose the surface of the sample and for which the homogeneous and flat 
approximation holds. Therefore, the absence of scattering under grazing incidence is not 
always due to the fact that the sample is homogeneous and flat over its whole surface.  
 
If, on the contrary, the system is not invariant by a lateral translation along the x or y direction 
by a vector whose modulus is smaller than  or , respectively, a transfer of 
momentum parallel to the surface can take place (Q// ≠ 0) and scattering under grazing 
incidence can be observed. The scattering cross section is then an average over the scattering 
cross sections generated by the different surfaces of coherence that compose the sample. 

x
cohL y

cohL

 
Usually, scattering under grazing incidence and specular reflectivity coexist. Reflectivity 
comes from the depth variation of the order parameter averaged over the lateral coordinates 
and scattering under grazing incidence finds its origin in the fluctuations around this mean 
value. 
 
 

4 Specular reflectivity: Optical approach 
 

For the case of a perfectly smooth surface, an exact description of the reflected and 
transmitted intensity can be deduced from quantum theory. This approach is also valid, if the 
correlation lengths of the fluctuations exceed largely the coherence length in the respective 
direction.  
 
As an example, I will show the case for neutrons, although the identical calculus is valid for 
x-rays. Only some nature constants are different, resulting in a different term describing the 
index of refraction. 
 
The starting point is the Schrödinger equation for the wave function of the neutron 
 

)(E)()(V
m2

2

rrrΔ Ψ=Ψ⎥
⎦

⎤
⎢
⎣

⎡
+−  (4) 

 
The energy of the neutron is given by with the modulus )m2/(kE 22= λπ /2k =  of the 
wave vector k. As we assume elastic scattering, the energy of the incident and of the outgoing 
wave is identical. 
 
The resolution of a reflectometry experiment does not resolve the atomic structure of the 
sample in any of the three directions. Therefore, it is a valid approximation to describe the 
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potential V1 of the homogeneous material as the sum of the scattering length densities of all 
constituents (see lecture A4): 
 

∑=
j

jj

2

1 b
m

2V ρπ  (5) 

 
where bj are the coherent scattering lengths and ρj the atomic number densities of the different 
elements (evtl. isotopes) in the material. With that, we receive  
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with the wave vector k1 inside the medium. From this equation, it is justified to introduce the 
index of refraction of the material 
 

k
kn 1=                     ∑ −=−=

j
jj

2

1:b
2

1n δρ
π

λ                       ∑=
j

jj

2

b
2

ρ
π

λδ  (7) 

 
It is a number very close to 1 for thermal and cold neutrons. The correction δ is called 
dispersion and is in the order of 10-5 to 10-6. For most materials δ is positive (because the 
coherent scattering length b is positive for most isotopes), so that n is smaller than 1. This 
means that the transmitted beam is refracted towards the sample surface, which is opposite to 
the daily experience with light refracted at a glass or liquid surface. 
 
For most materials, such as silicon, aluminium or iron, the absorption of neutrons is 
negligible. In case, it is not negligible, it can be introduced most straightforward by including 
an imaginary part to the index of refraction: 
 

βδ i1n +−=  (8) 
 
In the case of x-rays the description in the framework of optical refraction inside the material 
is valid as well. In this case the index of refraction can be calculated as 
 

∑ +−=++−=
j

jjjj
o

2

i1:)''if'fZ(
2

r1n βδρ
π

λ               ∑ +=
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jjj
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2

r
ρ

π
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δ  (9) 

 
r0 is the classical electron radius r0=e/mec2=2.82 fm, Z is the number of electrons of the atom 
and f ' and f '' are corrections for dispersion and absorption close to resonance energies. 
Typically, they can be neglected, only at the absorption edges they become important. An 
example for contrast variation close to the resonances is given in section 5.3. 
Also for x-rays, the dispersion δ is always positive, so that the index of refraction n is smaller 
than 1. 
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In analogy to classical optics, we can derive e.g. Fresnel’s formulas: For the solution of the 
wave equation at the sharp interface, we assume the surface of the sample to be at z = 0. The 
potential is then   
 

⎩
⎨
⎧

≤
>

=
0zforV
0zfor0

zV
1

)(  (10) 

 
As the potential is independent on x and y, the wave vector kl in the wave equation (6) is also 
independent on x and y. Therefore, the wave equation can be separated by the Ansatz 
 

)()()()( zyx zyx ΨΨΨ=Ψ r  (11) 
 
For the z direction we receive the one-dimensional differential equation  
 

0)z()z(k)z( z
2
zz =Ψ+″Ψ  (12) 

 
To solve the differential equation we use the Ansatz 
 

zzlik
l

zzlik
lzl eret)z( −+=Ψ  (13) 

 
The index l distinguishes between vacuum (l=0) and matter (l=1). The factors t l  describe the 
wave field away from the surface, i.e. the transmitted wave, the factors r l  describe the wave 
field towards the surface, i.e. the reflected wave. The unique solution is determined by the 
boundary conditions. In a half-infinite medium, there is no reflected wave, because there is 
nothing to reflect from, i.e. r1 vanishes. In addition, the wave function and its first derivative 
must be continuous at the interface. So we receive the boundary conditions 
 

0r
)0z()0z(

)0z()0z(

1

1z0z

1z0z

=
=′Ψ==′Ψ

=Ψ==Ψ

 (14) 

 
When we insert (14) into (12) and (13), we receive the continuity equations for the wave 
function 
 

11z000z

100

tk)rt(k
trt

=−
=+

 (15) 

 
t0 is the amplitude of the incoming wave, t1 of the transmitted wave and r0 of the reflected 
wave.  
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We can rewrite this set of equations in a matrix equation 
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The reflectivity R is defined as the ratio of the intensities of reflected and incoming waves, 
the transmissivity T is defined as the ratio of the intensities of transmitted and incoming 
waves. 
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In conclusion, we arrive at Fresnel’s formulas for the reflection at a flat interface 
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Taking into account the continuity relation for the wave vector component tangential to the 
surface  
 

kx0 = kx1           ky0 = ky1 (20) 
 
together with k1 = k0n (eq. 7), Snell’s law for refraction follows from trigonometry:  
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Fig. 8: Reflectivity and transmittivity as a function of the angle of incidence 
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The fact that in most cases the index of refraction is n < 1 means that the transmitted beam is 
refracted towards the sample surface (θ1 < θ in Fig. 1). For angles of incidence θ below the 
so-called critical angle θc with    
 

ccosn θ=                    δθ 2c ≈  (22) 
 
total reflection is observed, i.e. all intensity is reflected and no wave propagating in z-
direction exists in the sample. Only an evanescent wave with propagation parallel to the 
surface is induced. In this case, t1 as well as kz1 are imaginary numbers. Still, as shown in Fig. 
8, the modulus of t1 is increasing when approaching θc. The strong evanescent wave field 
inside the surface is the origin of the strong offspecular Yoneda scattering close to αi = θc and 
αf = θc. For incident angles above θc, the beam can partially penetrate the sample and is only 
partly reflected. 
 
In the case of p layers on a substrate, the same calculus can be used. At every interface, the 
continuity relation can be formulated analogous to (16): 
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The amplitudes of reflected and transmitted wave then can be calculated by a matrix 
multiplication of the individual reflection matrices: 
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From equation (18), it becomes obvious, that reflection is only achieved when a difference 
between the indices of refraction of the adjacent layers exists. If one wants to investigate two 
layers with neutron or x-ray reflectivity, the contrast of the indices of refraction is the 
important quantity deciding, if the interface is visible or not. The higher the contrast, i.e. the 
higher the difference between the two indices of refraction, the higher is the contribution of 
this interface to the reflectivity curve. 
 
The contrast achievable decides, which probe is useful to investigate a certain structure. Fig. 9 
gives an impression of the scattering lengths of different elements for neutrons and x-rays. 
The scattering length density, which is proportional to the dispersion δ as well for neutrons as 
for x-rays, is proportional to the density and to the scattering length of the elements contained 
in the respective layer. For x-rays, the scattering length is generally proportional to the 
number of electrons, while for neutrons it is quite randomly distributed over the periodic 
system and over the different isotopes of each element. Light atoms as well as neighbouring 
atoms in the periodic system cannot be distinguished well with x-rays. 
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σtot [barn]

0.66 H 1.76

24 C 5.55

416 Mn1.75

450 Fe 11.22

522 Ni 13.30

1408 Pd 4.39

2986 Ho8.06

5631 U 8.90

x 10 σtot [barn]

1 2

58 60 62

neutrons

1

6

25

26

28

46

67

92

element
Z

x-ray
 

 

Fig. 9: Comparison of the coherent scattering cross-sections for x-rays and neutrons for 
a selection of elements. The area of the circles represents the scattering cross section (x 
10 for x-rays). For neutrons, the green and blue coloured circles distinguish between 
attractive (green, negative scattering length) and repulsive interaction (blue, positive 
scattering length).  

 
 
As neutrons interact strongly with the magnetic environment, polarized neutrons also show a 
contrast between layers with different magnetization (see section 6). 
 
In case of low contrast, there might be a chance to enhance the contrast by contrast variation. 
In the case of neutrons, isotopic substitution is a good way to improve the contrast. Especially 
for two polymer layers, the contrast can be enhanced substantially by deuteration of one of the 
polymers, because the scattering lengths of Hydrogen 1H and Deuterium 2H differ strongly 
from each other (see the example in section 5.2). In the case of x-rays, one can modify the 
contrast for one element by tuning the x-ray energy to a resonance. An example is shown in 
section 5.3. 
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5 Layers and interfaces: Specular reflectivity of neutrons 
and x-rays 

5.1 Neutron Reflectivity from a single Ni layer on glass 
 
The first example is a neutron reflectivity measurement from a glass plate coated with a Ni 
layer. Such Ni coated glass plates are used in the neutron guides at several research reactors to 
guide cold neutron beams from the reactor to the instruments without losses. Fig. 10 shows 
the reflectivity curve together with a fit and several simulations. 
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Fig. 10: Specular reflectivity of neutrons from a Ni layer on a glass substrate, as 
measured with the HADAS reflectometer at the research reactor DIDO in Jülich. The 
black line shows the best fit, the coloured lines show simulations obtained by ignoring 
several parameters. 

 

Despite the experimental artefacts below 2θ = 0.4°, where the sample does not yet cover the 
entire beam, a typical reflectivity curve of a single layer has been measured. Up to the critical 
angle of 2θc = 0.93°, all impinging neutrons are reflected. At higher angles, the interference 
fringes of the reflections at the surface and at the interface are clearly visible. As the 
reflectivity drops quickly above the critical angle, it is plotted on a logarithmic scale. 
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It can be seen that the fit takes into account 8 parameters; some of them describe the 
experimental setup and some of them the sample’s properties. The main parameters from the 
experimental setup are the wavelength used, the angular resolution of the incoming beam and 
the background. In the simulation of the green curve, where the resolution has not been taken 
into account, one can see the minima much more distinct than in the measurement. Due to the 
limited resolution in the real experiment, the minima are washed out due to the higher 
reflectivity of neutrons impinging under slightly different angles. The red curve, where the 
background has been omitted, shows that the signal-to-noise ratio of the instrument is strongly 
limited by the background, because the incoming intensity is small compared to a x-ray 
beamline. 
 
The main physical parameters of the sample that have been derived from the measurement are 
the scattering length densities of the layer and the substrate, the roughnesses of surface and 
interface and, of course, the layer thickness. 
 
The layer thickness is the easiest, it can be estimated by the distance between the maxima. 
The highest scattering length density (in this case of the layer) determines the critical angle θc, 
while the difference of the scattering length densities determines the height of the fringes. 
From the knowledge, that the layer consists of natural Ni, we have been able to determine that 
the density of the layer is only 97% of the bulk density, i.e. during the sputtering process a 
small fraction of voids has been introduced into the layer. The information about the density 
and the composition are not independent! Only one of the two can be derived from the 
reflectivity measurement. 
 
The effect of the roughness is a drop of the reflectivity curve at high angles. The blue curve 
shows a simulation of the reflectivity of perfectly flat surface and interface. The growing 
uncertainty of the path length between two rough interfaces with growing angle of incidence 
leads to a decrease of interference quality with higher angles and therefore to a drop in 
reflectivity. 
 
 
5.2 Segregation of polymer mixture under annealing 
 
The second example shows a structure of polymer layers, where a chemical reaction at the 
interface between the two polymers takes place [8]. To increase the sticking between two 
layers of immiscible polymers, some polymer chains have a functional group (“telechelic”) 
added which finds reaction partners in the other layer to form a multiblock copolymer (see 
Fig. 11). This multiblock copolymer is then fixed to the interface, with some sections 
compatible to polymer A and some sections compatible to polymer B. 
 
The chemical reaction changes the sample only at the buried interface, no sign of the 
modification of the system is present at the surface. 
 
 



Scattering under Grazing Incidence from Surfaces and Interfaces D2.17 

 
Fig. 11: A schematic of the in situ interfacial reaction of telechelic oligomers in an 
immiscible polymer blend resulting in the formation of multiblock copolymer 

Homopolymer A 
with telechelic A Homopolymer A 

Multiblock copolymer 
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with telechelic B Homopolymer B 

 
OO

 
Fig. 12: A schematic of the reaction that takes place between the carboxylic acid and 
epoxy groups that were present on the reactive polymer chain ends 

 

 
Fig. 13: Sample used for the neutron reflectivity experiment.  

 
Fig. 13 shows the sample used for this investigation. The bottom layer consists of poly methyl 
methacrylate (PMMA) and PMMA with a carboxylic acid group at the end. The top layer 
consists of polystyrene (PS) and deuterated PS with epoxy functional groups. The mobility of 
the polymer chains at room temperature is low, so that only the molecules react with each 
other that meet by chance at the interface. The reaction scheme is shown in Fig. 12. During 
annealing in vacuum at 150°C the mobility is increased strongly, so that more reactive groups 
diffuse towards the interface, where they react and become immobile.  
 
The strong contrast between the deuterated functionalized PS and all other polymers with 
natural hydrogen makes the enrichment of the reactive polymer at the interface clearly 
observable.  
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Fig. 14 shows the neutron reflectivity data measured on the virgin sample as well as after 
several annealing steps. It can be seen that the shortest period hardly changes but the 
modulation of the peak height changes drastically during annealing. The analysis of the data 
resulted in the scattering length density profile shown in Fig. 15.  
 
The main effect during the first 15 min annealing is a sharpening of the PS/PMMA interface 
and a slight increase in the density of both polymers. At the same time, the total thickness of 
the sample is slightly reduced. This leads to the interpretation that voids in the layers have 
been filled. After the following annealing steps the formation of the interface layer with a 
high concentration of the reactive compound can be observed due to the high scattering length 
density of dPS. At the same time, the remaining PS layer is depleted from dPS, so that the 
scattering length density of this part is reduced. 
 
From the integrated area of dPS peak of the scattering length density profile, the amount of 
immobilized copolymer could be derived and compared to calculations of the diffusion 
velocity in the polymer melt. It was shown that the kinetics of this reaction does not match the 
predictions of a purely diffusion-based theory. 
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Fig. 14: Neutron reflectivity fits from the sample shown in Fig. 13 as cast (light blue) 
and after 15 min, 4 hours, 24 hours and 108 hours annealing at 150 °C.  
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Fig. 15: Scattering length density profile received from fitting the reflectivity data 
shown in Fig. 14. The sample surface is at distance 0, the Si substrate is continued 
towards larger distances. The colours indicate the same annealing steps as in Fig. 14 

 

 

5.3 Fe/Cr trilayer: Contrast variation with x-rays 
 
Here, I show measurements of the buried interfaces of an epitaxially grown Fe / Cr / Fe 
trilayer structure on a thick Ag buffer layer. The thickness of the Ag buffer, the absorption of 
the x-rays over this thickness and the big roughness at the interface between Ag and the real 
substrate GaAs together are sufficient to be able to treat the Ag layer as substrate and to 
ignore everything below. The goal of this investigation is to extract information about the 
interface morphology of the Fe / Cr interfaces [9]. As the interface region is thin, we need to 
be able to measure a large Q-range, which is not possible with neutrons today. Furthermore, 
the influence of the magnetism in the Fe layers would have disturbed a neutron measurement. 
 
With x-rays, we face the problem that Fe and Cr are next-nearest neighbours in the periodic 
system of the elements, so that the contrast for normal x-rays is very weak. The way out is 
anomalous x-ray scattering at a synchrotron x-ray source, where the scattering length density 
can be varied by choosing a x-ray energy close to the absorption edge of one of the elements. 
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Fig. 16 shows the dependence of the dispersion on the x-ray energy for Fe and Cr. These 
values have been calculated using the calculus of Cromer and Liberman [10]. It shows a 
strong enhancement of the contrast at the K-absorption edge of Cr, E=5989 eV and at the Fe 
K-edge at E=7112 eV. Unfortunately the calculation is done for free atoms and not for solids. 
In solids the final states are altered due to the bandstructure and the lattice, so that the 
dispersion calculation is not reliable over 50-100 eV above the absorption edge. Therefore, 
we used an energy slightly below the Cr K-edge for high contrast at the Fe / Cr interface. 
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Fig. 16: Calculated X-ray dispersion close to the Cr K-absorption edge (a) and close to 
the Fe K-edge (b) 
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Fig. 17: Colour schematic of the contrast in the Fe / Cr / Fe / Ag system at highest and 
lowest contrast 
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Fig. 18: Specular reflectivity of the Fe / Cr / Fe / Ag layered structure at the two 
different energies with high and vanishing contrast between Fe and Cr 

 

At E=6940 eV, the dispersion curves for Fe and Cr cross when approaching the Fe K-edge. 
The contrast is vanishing. Fig. 17 shows a colour schematic of the contrasts at the two 
energies chosen. At 6940 eV there is no contrast at the Fe / Cr interfaces, the x-rays are 
reflected only at the surface and the Fe / Ag interface. The data is shown in Fig. 18. The 
period of the reflectivity fringes is associated with the total thickness of the Fe / Cr / Fe stack. 
The imperfection of the fit at about qz = 0.13 Å-1 is due to the oxide layer on top, which is not 
perfectly described by the model used. The measurement at this energy can be used to fix the 
parameters of those interfaces which are less interesting. 
 
At E=5985 eV, there is a strong contrast between Fe and Cr, but it is still weaker than the 
contrast at the surface and the contrast against the Ag substrate. The reflectivity curve is now 
dominated by fringes with the period according to the bilayer thickness Fe / Cr. This 
measurement can give reliable information about the roughness of the interface between Fe 
and Cr. 
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6 Magnetization depth profiles: Specular reflectivity of 
polarized neutrons 

 
In this chapter, I would like to have a closer look at the investigation of the magnetization 
depth profile in magnetic layered structures. Polarized neutrons are a suitable probe for the 
layers’ magnetization, because the neutron is a spin ½ particle and therefore interacts with the 
magnetic induction B. As reflectometry measurements average over the atomic structure of 
the sample, antiferromagnetic structures are not accessible due to the vanishing net 
magnetization. In contrast to that, magnetization densities of ferromagnetic layers can be 
measured on an absolute scale with reflectometry of polarized neutrons. 
 
 
6.1 Index of refraction of magnetized material for polarized neutrons 
 
We stay in the approximation of homogeneous layers with flat interfaces, where the potential 
for the neutron only depends on the z coordinate. In the case of magnetic multilayers, we need 
to take into account the interaction of the neutron’s spin with the magnetic induction inside 
matter. To treat this properly, we have to work with wave functions in the 2-dimensional 
quantum mechanical spin space, where the usual space-dependent functions, e.g. the potential, 
become operators on the neutron’s spin.  
 
The potential for the interaction of the neutron with matter in the layer l can be separated into 
two parts 

M
l

N
ll V̂1̂VV̂ +=  (25) 

where  is the nuclear interaction from eq. (3), 1  is the unity operator, which does not 
affect the spin state, and  is the magnetic dipole interaction operator between 
the neutron magnetic moment operator 

N
lV ˆ

ln
M
l ˆV̂ Bσ ⋅−= μ

nσ̂μ  and the magnetic induction Bl. 
 
We assume the direction of the external magnetic field H=Hex to be oriented in the x-
direction of the coordinate system defined in Fig. 5. Then it is convenient to choose also the 
x-axis as quantization axis for the neutron spin, so that the order of the Pauli matrices in the 
spin operator ),,(ˆ zyx σσσ=σ  is the following. 
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It is arbitrary to choose the coordinate system for the scattering experiment (Fig. 5) and for 
the neutron spin to be parallel; the result does not change, if the magnetic field H, which 
defines the quantization axis for the spin, is rotated to any other direction in the x-y-plane of 
the scattering experiment. This rotation will only change the phase of the spin-flip scattering 
(eq. 30), which has no influence on the reflectivities and transmissivities. 
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The magnetic induction can be decomposed into terms of applied field and magnetization 
 

MBMeB )D1())D1(H( 00x0 −+=−+= μμ  (27) 
 
where B0 is the induction from the external magnetic field, D is the demagnetizing factor and 
M the magnetization of the material. In the case of a thin film, (1 – D)M is equal to the in-
plane component of the magnetization.  
 
The magnetization component Mz perpendicular to the film surface cannot induce any 
magnetic contrast between adjacent layers, because 0=⋅∇ B  does not allow Bz to change 
discontinuously when crossing an interface. In fact, this is the origin of the demagnetizing 
effect. 
 
B0 is constant over the sample volume and therefore gives a constant contribution to the index 
of refraction as well for vacuum as for every material involved. Therefore, all these 
contributions cancel out when calculating reflectivity R and transmissivity T according to (18) 
and (19). 
 
The only remaining contributions are Mx parallel to the quantization axis and My 
perpendicular to the quantization axis, but in plane. With that, we can rewrite the total 
interaction operator in analogy to (5) as 
 

)ˆ1̂(
m

2V̂ l
M
l

N
l

2

l bσ ⋅+= ρρπ  (28) 

 
with the nuclear scattering length density , the magnetic scattering length density  and 
the unit vector bl along the magnetic induction vector Bl in layer l. In most cases, if 
µ0M >> B0, bl is approximately parallel to ml.  

N
lρ M

lρ

 
In complete analogy to section 4, the Schrödinger equation can be solved in coordinate and 
spin space. The eigenvectors +  and −  of the operator x0ˆ σ=⋅bσ  with the eigenvalues +1 
and -1, respectively, define states of the neutron with “spin up” and “spin down”.  The 
solution of the Schrödinger equation is the neutron state )(rΨ , which is again a linear 
combination of those two eigenvectors: 
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We end up with a set of two coupled one-dimensional linear differential equations for every 
layer: 
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(30) 

 
The solution of this set of differential equations can be done in analogy to (23). The 
calculation is straightforward, but lengthy. Its solution can be found in [11]. It ends with the 
reflection and transmission operators  and , which are again operators in spin space with 
two different eigenvalues. 

lr̂ lt̂

 
Four types of reflectivities can be measured, which are the squares of the projections of the 
reflection amplitude onto spin up or down neutron states: 
 

2
0r̂R ±±=±±  (31) 

 
These reflectivities have a clear physical meaning. From eq. (30) it is clear that only nuclear 
scattering and the magnetization component Mx parallel to the field lead to non-spinflip 
(NSF) reflectivities. By analysis of the sum and the difference of R++ and R– –, these two 
contributions can be separated from each other. Fig. 19 shows the influence of the magnetic 
scattering length density on the critical angle and the Reflectivity for the case of a 
magnetically saturated surface, where only NSF reflectivity is present. 
 
The spin-flip (SF) reflectivities R+– and R–+ are equal to each other and arise from the 
magnetization component My in plane, perpendicular to the field. As the sign of the 
magnetization is only coded in the phase of the SF reflected wave, it is lost when measuring 
the intensities. Therefore, only |My| can be measured. 
 
In conclusion, polarized neutron reflectivity can measure the nuclear scattering length density 
ρN and the magnetization components Mx and |My| for every layer in the thin film structure. 
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Fig. 19: Reflectivity and Transmissivity for polarized neutrons from a saturated 
ferromagnetic material 
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6.2 Magnetic contrast: Co/Cu multilayer 
 
This example shows experimentally the contrast for polarized neutrons which depends as well 
on the nuclear as on the magnetic scattering length densities. We have measured the 
reflectivity of a multilayer with 20 periods of a Co layer and a Cu layer [12]. The thickness of 
the Cu layer is so that the Co layers are coupled ferromagnetically, and the sample has been 
saturated in a strong magnetic field. During the experiment, the guiding field, which defines 
the quantization axis for the neutron spin, is kept parallel to the magnetization of the Co 
layers. 
 
The nuclear scattering length density for Co is 2.3 E-6 Å-2. For Cu it is much higher 6.53 E-6 
Å-2. The magnetic scattering length density for Co is 4.24 E-6 Å-2. So the sum of nuclear and 
magnetic scattering length density of Co hardly differs from the scattering length density of 
the non-magnetic Cu, so that there is no contrast for spin-up neutrons, i.e. neutrons with the 
spin parallel to the external field. The contrast for spin-down neutrons, which feel the 
difference of nuclear and magnetic scattering length density, is huge. Fig. 20 shows a colour 
sketch of the different contrasts. 
 
Fig. 21 shows the reflectivity curve for spin-up and spin-down neutrons. As no magnetization 
component perpendicular to the field is present, the spin-flip channels only contain a signal 
coming from the imperfect polarisation of the beam and are not shown. The total reflection 
angle for both channels is the same because it is dominated by Cu. Due to the large contrast 
for spin-down neutrons, two Bragg peaks at 2θ=3° and at 2θ=6° corresponding to the 
structural periodicity are easily observed already after short beam time. The reflectivity curve 
for spin-up neutrons is rather unstructured due to the missing contrast between magnetized Co 
and Cu. 
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Fig. 20: Colour representation of the contrasts in a magnetically saturated Co / Cu 
multilayer. Purely nuclear contrast (left), contrast for spin up neutrons (middle) and 
contrast for spin down neutrons (right) 
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Fig. 21: Specular reflectivity of polarized neutrons from a magnetically saturated 
Co/Cu multilayer. For spin-down neutrons two Bragg peaks at 2θ=3° and 6° are 
clearly visible while the reflectivity curve for spin-up neutrons is hardly structured. 

 
 
6.3 Layer-by-layer magnetometry: Polarizing supermirror 
 
Polarizing supermirrors are commonly used for the polarization of cold neutron beams. For 
the operation of a polarized neutron instrument, it is of course important to know the 
performance of the polarizers used and their behaviour in the magnetic field. During the 
characterization of the device, it turned out that a lot of physics of the layered magnetic 
structure can be understood by having a closer look at the data, and so we have investigated 
the polarizing supermirror thoroughly [13,14]. In this section, I will present the laterally 
averaged data from specular reflectivity; the off-specular and GISANS measurements can be 
found in reference [14]. 
 
A polarizing supermirror is a stack of bilayers of a magnetic and a non-magnetic material. 
The thickness of the bilayers is gradually increasing to receive constructive interference for a 
broad range of Q-values, what results in an extended plateau of high reflectivity above the 
total reflection angle. The materials are chosen to have a high contrast for one spin direction 
and no contast for the other.  
 
The supermirror we have investigated is a polarizing supermirror produced by 
Swissneutronics which reflects the neutrons with the proper spin direction up to m=2.5 times 
the critical angle of Ni. The first three columns of Fig. 22 show the intended scattering length 
density sequence. 100 bilayers of FeCoV (ferromagnetic) and TiN (nonmagnetic) with 
gradually increasing thickness are transparent for neutrons with spin antiparallel to the 
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magnetization and reflecting for neutrons with spin parallel to the magnetization. Below the 
stack, there is a strongly absorbing Gd layer to absorb all spin down neutrons and a glass 
substrate for mechanical stability. 
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Fig. 22: Colour representation of the scattering length density distribution in a 
polarizing supermirror. On the left, the nuclear scattering length density distribution is 
shown. The next two columns show the intended contrast for neutrons with spin 
antiparallel to the magnetization (no contrast) and for neutrons with spin parallel to the 
magnetization (high contrast). The two columns on the right show the measured 
scattering length density profile. We found magnetically dead layers at the interfaces 
between FeCoV and TiN, so that a 2-4Å of the FeCoV layer show only the nuclear 
scattering length density, but no magnetic contribution.  
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Fig. 23: Magnetization curve of a polarizing supermirror with 40 bilayers [15] 
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As our sample cannot be measured in a magnetometer because the back surface is also coated 
magnetically, we show the magnetization curve of a comparable sample with only 40 bilayers 
in Fig. 23. After negative saturation, the polarizer remains almost completely saturated in 
negative direction at small positive fields. This allows two different working conditions for 
the polarizer. On the one hand, it can work in saturation, i.e. after exposure to a high positive 
magnetic field. Then all magnetic layers are magnetized along the field direction, and the 
supermirror reflects spin-up neutrons, i.e. neutrons with spin along the magnetic field. On the 
other hand, it can be used in remanence with all layers magnetized opposite to the applied 
(small) magnetic field. Then the spin-down neutrons are reflected.  
 
Fig. 24 shows the polarized neutron reflectivity measurement at different fields after negative 
saturation. Fig. 24 a) shows the remanence. In the “working range” up to αi = 21 mrad, the 
reflectivity for spin down neutrons R– – is more than two orders of magnitude higher than R++, 
yielding a good negative polarization of the reflected beam. The reflectivity for the proper 
polarization channel is close to 1, the increasing slope at small angles is an experimental 
artefact due to the increasing coverage of the beam’s cross section with increasing angle of 
incidence. The spin-flip signal is completely determined by the imperfect polarization of the 
incident beam, no spin-flip specular reflectivity is coming from the sample. Fig. 24 d) is 
measured at saturation and is almost exactly opposite to the remanent state. 
 
In the two intermediate states shown in Fig. 24 b) and c), there is a crossover between R++ and 
R– –, showing that some of the layers are magnetized along and some antiparallel to the field. 
In the fit, we can address the individual magnetization of every layer and find out, which 
layers have flipped and which stay magnetized opposite to the field direction. It turned out, 
that the thinner, i.e. lower magnetic layers flip first. In the case of 3.8 mT (Fig. 24 b), 48 
layers have flipped, in the case of 5.6 mT  (Fig. 24 c), 94 FeCoV layers have flipped in field 
direction. Fig. 25 shows the number of layers flipped in field direction as a function of the 
field strength.  
What is striking, is the relatively high R– – signal in saturation that drops at twice the angle of 
the end of the supermirror plateau. It shows that spin-down neutrons see a structure that has 
half the period of the intended supermirror structure for the spin-up neutrons. It turned out, 
that this feature comes from magnetically dead layers at the interface between FeCoV and 
TiN. At the top and the bottom of the FeCoV layer, there is a 2 – 4 Å thick nonmagnetic 
region with the purely nuclear scattering length density of FeCoV. The two pictures on the 
right side of Fig. 22 show a schematic of the real scattering length density profile, where the 
reflectivity in R– – comes from the yellow – blue bilayers, that have about half the thickness of 
the red – blue bilayers that result in R++. 
 



Scattering under Grazing Incidence from Surfaces and Interfaces D2.29 

 
Fig. 24: Polarized neutron reflectivity measurements on the polarizing supermirror at 
different magnetic fields applied after negative saturation. The dots show experimental 
data, the lines are fits.  

 
Fig. 25: Number of FeCoV layers flipped in field direction as a function of the positive 
magnetic field applied after negative saturation 
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7 Scattering from lateral fluctuations 
 
7.1 Lateral correlations in layered structures 
 
The normal case of real layered structures is that they are not completely laterally 
homogeneous but they show at least some roughness at the interfaces. Chemical deviations 
may come from interdiffusion at an interface or oxidation processes at the sample surface. 
Magnetic layers split laterally into magnetic domains which are visible for polarized neutrons. 
Lateral structuring of layered structures is of high technological importance for many 
applications in modern electronic devices. 
 
If lateral fluctuations (i.e. all local variations in scattering length density from the laterally 
averaged scattering length density) exist with a correlation length smaller than the projected 
coherence lengths (eq. (2) and (3)), then scattering under grazing incidence can be observed. 
At grazing incidence, those coherence lengths can extend into the µm range and the 
interaction of the x-ray photons or neutrons with the fluctuations will lead to multiple 
scattering processes within this surface, so that the Born approximation will not be able to 
describe the effects properly. 
 
In most cases, the layered structure is dominant, so that the main scattering feature is the 
specular reflection that is caused by the laterally averaged scattering length density contrasts. 
In this case, the potential inside layer l can be decomposed into two terms describing the 
laterally averaged potential (as main potential Vl

0 (z)) and the fluctuations around the main 
potential Vl

1 (r). 
 

)(V)z(V)(V 1
l

0
ll rr +=  (32) 

 
 

 
Fig. 26: Decomposition of the potential of layer l for the treatment with the DWBA 
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Fig. 26 shows the decomposition of the potential of the layer no. l in the case of magnetic 
domains. The main potential V0 shows a homogeneous magnetization for every layer. It is 
defined by the lateral average magnetization direction and modulus. V1 contains all deviations 
in magnetization direction and the domain walls. 
 
In a comparable way, the formalism can be defined for interface roughness, interdiffusion or 
chemical precipitations. 
 
The main potential then can be treated exactly (see section 4), and the fluctuations can be 
treated in the framework of the Distorted Wave Born Approximation (DWBA) as a 
perturbation. Then, all refraction effects close to θc and reflected wavefields are taken into 
account as origin of off-specular scattering. Depending on the length scale of the correlations, 
they can be seen in offspecular scattering (in x-direction, where the coherence length extends 
into the µm range) or in GISAS geometry for fluctuations in the nm scale. 
 
A description of the DWBA formalism for the case of magnetic domains can be found in 
[16]. Different cross sections are used in the case for interface fluctuations or density 
fluctuations within layers separated by flat interfaces [17, 18, 19, 20, 21, 22]. Today, off-
specular scattering from many structures can be modelled successfully. Modelling GISAS 
scattering is still a challenge in the framework of the DWBA, but first successful results are 
published for systems with a high degree of order. 

 
 
7.2 Off-specular scattering from nanoparticle supercrystals 
 
Here, I would like to present the scattering results from a system, where very different length 
scales are realized in a single sample. The sample consists of spherical Fe2O3 nanoparticles 
with 9.5 nm diameter surrounded by an organic ligand shell, which originally are dispersed in 
an organic solvent. When this solution is drop-casted onto a flat Si wafer surface and the 
solvent evaporates slowly, the nanoparticles self-assemble in well-ordered supercrystals with 
dimensions up to 2 µm in diameter and 1 µm in height. These supercrystals are then randomly 
spread over the wafer surface [23, 24] with a typical spacing of a few µm. 
 
Fig. 27 shows a scanning electron microscope (SEM) picture of the arrangement of 
supercrystals on the surface of a Si wafer. One can see a lot of crystals which are bigger than 
1 µm and spread over the surface with several µm of space in between. In between the 
supercrystals, some single nanoparticles remain on the Si surface, which are not ordered. 
When zooming in, one can see the perfect order of the nanoparticles within a single 
supercrystal (Fig. 28). The SEM picture gives the impression that the nanoparticle layers 
inside the supercrystals are parallel to the surface of the Si wafer. 
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Fig. 27: SEM (Scanning electron microscope) picture of self-organized nanoparticle 
supercrystals dispersed over the surface of a Si wafer. 

 
 

 
 

Fig. 28: SEM picture zoomed into one supercrystal showing the perfect order of the 
nanoparticles on the surface of the supercrystal 
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Fig. 29: Specular reflectivity and offspecular x-ray scattering from an array of 
nanoparticle supercrystals. The specular reflectivity can be found in the main diagonal 
of the image, where αi = αf.  

 

 
Fig. 30: Specular reflectivity extracted form the measurement presented in Fig. 29 
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Fig. 31: Rocking scan at αi + αf = 1.9° out of the measurement presented in Fig. 29. In 
the middle, one can see the specular reflection which dominates the curve. Below the 
specular reflection there is offspecular scattering which can be fitted with a Gaussian 
describing the lateral correlations between the neighboring supercrystals. The peaks at 
θ = 0.25° and θ = 1.65° are due to the Yoneda effect at αi = θc or αf = θc, resp.  

 
 
Fig. 29 shows the specular reflectivity and the off-specular scattering measured from the 
surface of such a supercrystal array with x-rays with Cu Kα wavelength (λ = 1.54 Å). One can 
see the specular reflectivity dominant in the main diagonal of the figure together with a lot of 
offspecular scattering, mainly perpendicular to the main diagonal. 
 
The specular reflectivity, which is extracted in Fig. 30, shows clear oscillations showing a 
layered structure perpendicular to the sample surface. This is the first proof of the alignment 
of the inner structure of all (!) supercrystals with the surface of the Si wafer. The period of the 
oscillations reveals the layer thickness, which in this case is the thickness of a close-packed 
layer of nanoparticles with organic shell. Therefore, the layer thickness is slightly thicker than 
the nanoparticle diameter. 
 
 In offspecular scattering, one can observe many Bragg sheets perpendicular to the specular 
direction. These Bragg sheets arise from lateral fluctuations which are periodical in the 
thickness. In this case, they are the supercrystals which obviously have the same place in 
every layer. Close to the axes of the plot in Fig. 29 one can see that the offspecular scattering 
features are bent due to refraction effects. The intensity is enhanced there because of the 
increased wavefield along the surface close to the critical angle θc (Yoneda effect, cf. Fig. 8). 
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Fig. 32: GISAXS scattering from the array of nanoparticle supercrystals at two different 
angles of incidence: 0.2° (top) slightly below the total reflection angle θc and 0.6° 
(bottom) well above θc. The diffraction spots are indexed, the peaks with index R come 
from diffraction of the reflected beam. 
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Fig. 31 shows a cut perpendicular to the specular direction at αi + αf = 1.9°. In the centre, the 
specular reflectivity clearly dominates the curve. At the critical angles αi = θc and αf = θc the 
offspecular scattering is increased due to the Yoneda effect. In the range between, one can 
nicely fit the offspecular scattering with a Gaussian curve. The width of the Gaussian here 
gives the average periodicity of the lateral fluctuations, in this case the distance between the 
centres of the supercrystals. In this case, it turns out to be an average periodicity of 13.6 µm. 
When comparing to Fig. 27, one has to take into account that the coherence area is long in x-
direction but narrow in y-direction, so that this periodicity only resembles the correlations 
along the x-direction. Neighbours that may be closer in y-direction are “invisible”. 
 
Fig. 32 shows the GISAXS pattern at two different angles of incidence. One can see a lot of 
diffraction peaks arising from the order of the nanoparticles inside the supercrystals. As there 
are thousands of supercrystals on the wafer, all in-plane orientations are present, so that the 
diffraction pattern observed is an average of a 2-dimensional powder-like arrangement. Only 
in the direction perpendicular to the surface, the supercrystals are aligned to each other. Due 
to this fact, e.g. the reflections (104) and (015) can be observed simultaneously, although they 
need a different orientation of the supercrystal in the x-ray beam. Indexing the diffraction 
spots yields the trigonal crystal structure 3R  with a lattice parameter again close to the 
nanoparticles’ diameter.  
 
Together with the diffraction spots one can observe the specular reflection and the Yoneda 
peak, both at Qy = 0. At the Yoneda angle αf = θc there is as well increased scattering from 
periodicities parallel to the surface due to the enhanced wavefield, as it is observed in off-
specular scattering. Especially in the bottom graph in Fig. 32 one can see the line of enhanced 
scattering horizontally through the Yoneda peak. 
 
If the angle of incidence is sufficiently small, so that the reflectivity is close to 1, the 
diffraction from the reflected beam is comparably strong as the diffraction from the incoming 
beam. In this case, additional diffraction spots are visible which move with changing αi, while 
those arising from the incoming beam don’t move. In the top graph in Fig. 32 these peaks are 
indexed with “R”.  
 
It is obvious, that here we observe the inner structure of the supercrystals in the range of 
10 nm with GISAXS in the y-direction perpendicular to the scattering plane, while before we 
looked at the arrangement of the supercrystals in the range of 10 µm with off-specular 
scattering in the x-direction in the scattering plane. According to eq. (1) these different ranges 
of lateral periodicities are accessible due to the anisotropy of the arrangement between sample 
surface and beam direction. 
 
 
 



Scattering under Grazing Incidence from Surfaces and Interfaces D2.37 

 

References 
 
 
[1] P. Grünberg, J. Phys. Cond. Matter 13, 7691 (2001) 
[2]  Physik Journal 5, Nr. 11, p. 17 (Nov. 2006) 
[3]  U. Nowak, K.D. Usadel, J. Keller, P. Miltényi, B. Beschoten, G. Güntherodt, Phys. Rev. 

B 66, 014430 (2002)  
[4]  H. Oldag, A. Scholl, F. Nolting, E. Arenholz, S. Maat, A.T. Young, M. Carey, J. Stohr, 

Phys. Rev. Lett. 91, 017203 (2003) 
[5]  I.V. Roschin, O. Petracic, R. Morales, Z.-P. Li, X. Battle, I.K. Schuller, Europhys. Lett. 

71, 297 (2005) 
[6]  H. Frielinghaus, Lecture D1 of this book 
[7]  S. Blügel, Lecture A2 of this book 
[8]  J.K. Rice, “The reaction of telechelic polymers at multicomponent interfaces: A 

molecular loop study”, Dissertation, University of Tennessee, Knoxville, USA, Dec. 
2006 

[9] M. Feygenson, E. Kentzinger, N. Ziegenhagen, U. Rücker, G. Goerigk, Y.G. Wang and 
Th. Brückel, J. Appl. Cryst. 40, 532 (2007) 

[10]  D.T. Cromer, D. Liberman, J. Chem. Phys. 53, 1891 (1970).   
[11]  E. Kentzinger, U. Rücker, B. Toperverg, Physica B 335, 82 (2003)  
[12]  W. Babik, U. Rücker, Experimental Report FRJ-2 2002, p. 167  
[13]  U. Rücker, E. Kentzinger, B. Toperverg, F. Ott, T. Brückel, Appl. Phys. A 74, S607  
[14]  E. Kentzinger, U. Rücker, B. Toperverg, F. Ott, Th. Brückel, F. Ott, Phys. Rev. B 77, 

104435 (2008) 
[15]  P. Böni, D. Clemens, M. Senthil Kumar, C. Pappas, Physica B 267, 320 (1999)  
[16] U. Rücker, E. Kentzinger, chapter D4 in IFF Spring School “Probing the Nanoworld”, 

FZ Jülich, series “Matter and Materials”, Vol 34 (2007) 
[17]  S.K. Sinha, E.B. Sirota, S. Garoff, H.B. Stanley, Phys. Rev. B 38, 2297 (1988) 
[18]  V. Holý, J. Kubena, I. Ohlídal, K. Lischka, W. Plotz, Phys. Rev. B 47, 15896 (1993) 
[19]  V. Holý, T. Baumbach, Phys. Rev. B 49, 10668 (1994) 
[20]  J. Stettner, Dissertation, Christian-Albrechts-Universität zu Kiel (1995) 
[21]  D.R. Lee, S.K. Sinha, D. Haskel, Y. Choi, J.C. Lang, S.A. Stepanov, G. Strajer, Phys. 

Rev. B 68 224409 (2003) 
[22]  D.R. Lee, S.K. Sinha, C.S. Nelson, J.C. Lang, C.T. Venkataraman, G. Strajer, R.M. 

Osgood III, Phys. Rev. B 68 224409 (2003) 
[23] S. Disch, E. Wetterskog, R.P. Hermann, G. Salazar-Alvarez, P. Busch, Th. Brückel, L. 

Bergström, S. Kamali, Nano Lett. 11, 1651 (2011) 
[24] E. Josten, E. Wetterskog, J.W. Andreasen, E. Brauweiler-Reuters et. al., to be published  


	Scattering under Grazing Incidence from Surfaces and Interfaces

