000020427 001__ 20427
000020427 005__ 20210129210747.0
000020427 0247_ $$2pmid$$apmid:22349712
000020427 0247_ $$2DOI$$a10.1007/s00066-011-0060-5
000020427 0247_ $$2WOS$$aWOS:000301776900005
000020427 0247_ $$2ISSN$$a0179-7158
000020427 037__ $$aPreJuSER-20427
000020427 041__ $$aeng
000020427 082__ $$a610
000020427 084__ $$2WoS$$aOncology
000020427 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000020427 1001_ $$0P:(DE-HGF)0$$aPiroth, M.D.$$b0
000020427 245__ $$aIntegrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas: Results of a prospective phase II study
000020427 260__ $$aBerlin$$bSpringer Medizin$$c2012
000020427 300__ $$a334 - 339
000020427 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020427 3367_ $$2DataCite$$aOutput Types/Journal article
000020427 3367_ $$00$$2EndNote$$aJournal Article
000020427 3367_ $$2BibTeX$$aARTICLE
000020427 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020427 3367_ $$2DRIVER$$aarticle
000020427 440_0 $$025407$$aStrahlentherapie und Onkologie$$v188$$y4
000020427 500__ $$aRecord converted from VDB: 12.11.2012
000020427 520__ $$aDose escalations above 60 Gy based on MRI have not led to prognostic benefits in glioblastoma patients yet. With positron emission tomography (PET) using [(18)F]fluorethyl-L-tyrosine (FET), tumor coverage can be optimized with the option of regional dose escalation in the area of viable tumor tissue.In a prospective phase II study (January 2008 to December 2009), 22 patients (median age 55 years) received radiochemotherapy after surgery. The radiotherapy was performed as an MRI and FET-PET-based integrated-boost intensity-modulated radiotherapy (IMRT). The prescribed dose was 72 and 60 Gy (single dose 2.4 and 2.0 Gy, respectively) for the FET-PET- and MR-based PTV-FET((72 Gy)) and PTV-MR((60 Gy)). FET-PET and MRI were performed routinely for follow-up. Quality of life and cognitive aspects were recorded by the EORTC-QLQ-C30/QLQ Brain20 and Mini-Mental Status Examination (MMSE), while the therapy-related toxicity was recorded using the CTC3.0 and RTOG scores.Median overall survival (OS) and disease-free survival (DFS) were 14.8 and 7.8 months, respectively. All local relapses were detected at least partly within the 95% dose volume of PTV-MR((60 Gy)). No relevant radiotherapy-related side effects were observed (excepted alopecia). In 2 patients, a pseudoprogression was observed in the MRI. Tumor progression could be excluded by FET-PET and was confirmed in further MRI and FET-PET imaging. No significant changes were observed in MMSE scores and in the EORTC QLQ-C30/QLQ-Brain20 questionnaires.Our dose escalation concept with a total dose of 72 Gy, based on FET-PET, did not lead to a survival benefit. Acute and late toxicity were not increased, compared with historical controls and published dose-escalation studies.
000020427 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000020427 536__ $$0G:(DE-HGF)POF2-89572$$a89572 - (Dys-)function and Plasticity (POF2-89572)$$cPOF2-89572$$fPOF II T$$x1
000020427 588__ $$aDataset connected to Web of Science, Pubmed
000020427 650_2 $$2MeSH$$aAdult
000020427 650_2 $$2MeSH$$aAged
000020427 650_2 $$2MeSH$$aBrain: radiation effects
000020427 650_2 $$2MeSH$$aChemoradiotherapy, Adjuvant
000020427 650_2 $$2MeSH$$aCombined Modality Therapy
000020427 650_2 $$2MeSH$$aDisease-Free Survival
000020427 650_2 $$2MeSH$$aDose Fractionation
000020427 650_2 $$2MeSH$$aFemale
000020427 650_2 $$2MeSH$$aFollow-Up Studies
000020427 650_2 $$2MeSH$$aGlioblastoma: drug therapy
000020427 650_2 $$2MeSH$$aGlioblastoma: mortality
000020427 650_2 $$2MeSH$$aGlioblastoma: pathology
000020427 650_2 $$2MeSH$$aGlioblastoma: radiotherapy
000020427 650_2 $$2MeSH$$aGlioblastoma: surgery
000020427 650_2 $$2MeSH$$aHumans
000020427 650_2 $$2MeSH$$aMagnetic Resonance Imaging
000020427 650_2 $$2MeSH$$aMale
000020427 650_2 $$2MeSH$$aMental Status Schedule
000020427 650_2 $$2MeSH$$aMiddle Aged
000020427 650_2 $$2MeSH$$aPositron-Emission Tomography: methods
000020427 650_2 $$2MeSH$$aProspective Studies
000020427 650_2 $$2MeSH$$aQuality of Life
000020427 650_2 $$2MeSH$$aRadiation Injuries: etiology
000020427 650_2 $$2MeSH$$aRadiotherapy Planning, Computer-Assisted: methods
000020427 650_2 $$2MeSH$$aRadiotherapy, Intensity-Modulated: methods
000020427 650_2 $$2MeSH$$aSupratentorial Neoplasms: drug therapy
000020427 650_2 $$2MeSH$$aSupratentorial Neoplasms: mortality
000020427 650_2 $$2MeSH$$aSupratentorial Neoplasms: pathology
000020427 650_2 $$2MeSH$$aSupratentorial Neoplasms: radiotherapy
000020427 650_2 $$2MeSH$$aSupratentorial Neoplasms: surgery
000020427 650_2 $$2MeSH$$aTyrosine: analogs & derivatives
000020427 650_2 $$2MeSH$$aTyrosine: therapeutic use
000020427 650_7 $$00$$2NLM Chemicals$$aO-(2-((18)F)fluoroethyl)-L-tyrosine
000020427 650_7 $$055520-40-6$$2NLM Chemicals$$aTyrosine
000020427 650_7 $$2WoSType$$aJ
000020427 65320 $$2Author$$aDose escalation
000020427 65320 $$2Author$$aGlioblastoma
000020427 65320 $$2Author$$aRadiotherapy
000020427 65320 $$2Author$$aDose fractionation
000020427 7001_ $$0P:(DE-HGF)0$$aPinkawa, M.$$b1
000020427 7001_ $$0P:(DE-HGF)0$$aHoly, R.$$b2
000020427 7001_ $$0P:(DE-HGF)0$$aKlotz, J.$$b3
000020427 7001_ $$0P:(DE-HGF)0$$aSchaar, S.$$b4
000020427 7001_ $$0P:(DE-Juel1)131627$$aStoffels, G.$$b5$$uFZJ
000020427 7001_ $$0P:(DE-HGF)0$$aGalldiks, N.$$b6
000020427 7001_ $$0P:(DE-Juel1)131816$$aCoenen, H.H.$$b7$$uFZJ
000020427 7001_ $$0P:(DE-HGF)0$$aKaiser, H.J.$$b8
000020427 7001_ $$0P:(DE-Juel1)131777$$aLangen, K.J.$$b9$$uFZJ
000020427 7001_ $$0P:(DE-HGF)0$$aEble, M.J.:$$b10
000020427 773__ $$0PERI:(DE-600)2003907-4$$a10.1007/s00066-011-0060-5$$gVol. 188, p. 334 - 339$$p334 - 339$$q188<334 - 339$$tStrahlentherapie und Onkologie: journal of radiati$$tStrahlentherapie und Onkologie$$v188$$x0179-7158$$y2012
000020427 8567_ $$uhttp://dx.doi.org/10.1007/s00066-011-0060-5
000020427 909CO $$ooai:juser.fz-juelich.de:20427$$pVDB
000020427 9132_ $$0G:(DE-HGF)POF3-572$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$v(Dys-)function and Plasticity$$x0
000020427 9131_ $$0G:(DE-HGF)POF2-89572$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$v(Dys-)function and Plasticity$$x1
000020427 9141_ $$y2012
000020427 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020427 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020427 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020427 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020427 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020427 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020427 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020427 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020427 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020427 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000020427 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000020427 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000020427 9201_ $$0I:(DE-Juel1)INM-5-20090406$$gINM$$kINM-5$$lNuklearchemie$$x1
000020427 9201_ $$0I:(DE-Juel1)INM-3-20090406$$gINM$$kINM-3$$lKognitive Neurowissenschaften$$x2
000020427 970__ $$aVDB:(DE-Juel1)135925
000020427 980__ $$aVDB
000020427 980__ $$aConvertedRecord
000020427 980__ $$ajournal
000020427 980__ $$aI:(DE-Juel1)INM-4-20090406
000020427 980__ $$aI:(DE-Juel1)INM-5-20090406
000020427 980__ $$aI:(DE-Juel1)INM-3-20090406
000020427 980__ $$aUNRESTRICTED
000020427 981__ $$aI:(DE-Juel1)INM-5-20090406
000020427 981__ $$aI:(DE-Juel1)INM-3-20090406