001     20427
005     20210129210747.0
024 7 _ |2 pmid
|a pmid:22349712
024 7 _ |2 DOI
|a 10.1007/s00066-011-0060-5
024 7 _ |2 WOS
|a WOS:000301776900005
024 7 _ |2 ISSN
|a 0179-7158
037 _ _ |a PreJuSER-20427
041 _ _ |a eng
082 _ _ |a 610
084 _ _ |2 WoS
|a Oncology
084 _ _ |2 WoS
|a Radiology, Nuclear Medicine & Medical Imaging
100 1 _ |a Piroth, M.D.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Integrated boost IMRT with FET-PET-adapted local dose escalation in glioblastomas: Results of a prospective phase II study
260 _ _ |c 2012
|a Berlin
|b Springer Medizin
300 _ _ |a 334 - 339
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Strahlentherapie und Onkologie
|0 25407
|y 4
|v 188
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Dose escalations above 60 Gy based on MRI have not led to prognostic benefits in glioblastoma patients yet. With positron emission tomography (PET) using [(18)F]fluorethyl-L-tyrosine (FET), tumor coverage can be optimized with the option of regional dose escalation in the area of viable tumor tissue.In a prospective phase II study (January 2008 to December 2009), 22 patients (median age 55 years) received radiochemotherapy after surgery. The radiotherapy was performed as an MRI and FET-PET-based integrated-boost intensity-modulated radiotherapy (IMRT). The prescribed dose was 72 and 60 Gy (single dose 2.4 and 2.0 Gy, respectively) for the FET-PET- and MR-based PTV-FET((72 Gy)) and PTV-MR((60 Gy)). FET-PET and MRI were performed routinely for follow-up. Quality of life and cognitive aspects were recorded by the EORTC-QLQ-C30/QLQ Brain20 and Mini-Mental Status Examination (MMSE), while the therapy-related toxicity was recorded using the CTC3.0 and RTOG scores.Median overall survival (OS) and disease-free survival (DFS) were 14.8 and 7.8 months, respectively. All local relapses were detected at least partly within the 95% dose volume of PTV-MR((60 Gy)). No relevant radiotherapy-related side effects were observed (excepted alopecia). In 2 patients, a pseudoprogression was observed in the MRI. Tumor progression could be excluded by FET-PET and was confirmed in further MRI and FET-PET imaging. No significant changes were observed in MMSE scores and in the EORTC QLQ-C30/QLQ-Brain20 questionnaires.Our dose escalation concept with a total dose of 72 Gy, based on FET-PET, did not lead to a survival benefit. Acute and late toxicity were not increased, compared with historical controls and published dose-escalation studies.
536 _ _ |0 G:(DE-Juel1)FUEK409
|2 G:(DE-HGF)
|x 0
|c FUEK409
|a Funktion und Dysfunktion des Nervensystems (FUEK409)
536 _ _ |a 89572 - (Dys-)function and Plasticity (POF2-89572)
|0 G:(DE-HGF)POF2-89572
|c POF2-89572
|x 1
|f POF II T
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adult
650 _ 2 |2 MeSH
|a Aged
650 _ 2 |2 MeSH
|a Brain: radiation effects
650 _ 2 |2 MeSH
|a Chemoradiotherapy, Adjuvant
650 _ 2 |2 MeSH
|a Combined Modality Therapy
650 _ 2 |2 MeSH
|a Disease-Free Survival
650 _ 2 |2 MeSH
|a Dose Fractionation
650 _ 2 |2 MeSH
|a Female
650 _ 2 |2 MeSH
|a Follow-Up Studies
650 _ 2 |2 MeSH
|a Glioblastoma: drug therapy
650 _ 2 |2 MeSH
|a Glioblastoma: mortality
650 _ 2 |2 MeSH
|a Glioblastoma: pathology
650 _ 2 |2 MeSH
|a Glioblastoma: radiotherapy
650 _ 2 |2 MeSH
|a Glioblastoma: surgery
650 _ 2 |2 MeSH
|a Humans
650 _ 2 |2 MeSH
|a Magnetic Resonance Imaging
650 _ 2 |2 MeSH
|a Male
650 _ 2 |2 MeSH
|a Mental Status Schedule
650 _ 2 |2 MeSH
|a Middle Aged
650 _ 2 |2 MeSH
|a Positron-Emission Tomography: methods
650 _ 2 |2 MeSH
|a Prospective Studies
650 _ 2 |2 MeSH
|a Quality of Life
650 _ 2 |2 MeSH
|a Radiation Injuries: etiology
650 _ 2 |2 MeSH
|a Radiotherapy Planning, Computer-Assisted: methods
650 _ 2 |2 MeSH
|a Radiotherapy, Intensity-Modulated: methods
650 _ 2 |2 MeSH
|a Supratentorial Neoplasms: drug therapy
650 _ 2 |2 MeSH
|a Supratentorial Neoplasms: mortality
650 _ 2 |2 MeSH
|a Supratentorial Neoplasms: pathology
650 _ 2 |2 MeSH
|a Supratentorial Neoplasms: radiotherapy
650 _ 2 |2 MeSH
|a Supratentorial Neoplasms: surgery
650 _ 2 |2 MeSH
|a Tyrosine: analogs & derivatives
650 _ 2 |2 MeSH
|a Tyrosine: therapeutic use
650 _ 7 |0 0
|2 NLM Chemicals
|a O-(2-((18)F)fluoroethyl)-L-tyrosine
650 _ 7 |0 55520-40-6
|2 NLM Chemicals
|a Tyrosine
650 _ 7 |a J
|2 WoSType
653 2 0 |2 Author
|a Dose escalation
653 2 0 |2 Author
|a Glioblastoma
653 2 0 |2 Author
|a Radiotherapy
653 2 0 |2 Author
|a Dose fractionation
700 1 _ |a Pinkawa, M.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Holy, R.
|b 2
|0 P:(DE-HGF)0
700 1 _ |a Klotz, J.
|b 3
|0 P:(DE-HGF)0
700 1 _ |a Schaar, S.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Stoffels, G.
|b 5
|u FZJ
|0 P:(DE-Juel1)131627
700 1 _ |a Galldiks, N.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a Coenen, H.H.
|b 7
|u FZJ
|0 P:(DE-Juel1)131816
700 1 _ |a Kaiser, H.J.
|b 8
|0 P:(DE-HGF)0
700 1 _ |a Langen, K.J.
|b 9
|u FZJ
|0 P:(DE-Juel1)131777
700 1 _ |a Eble, M.J.:
|b 10
|0 P:(DE-HGF)0
773 _ _ |0 PERI:(DE-600)2003907-4
|a 10.1007/s00066-011-0060-5
|g Vol. 188, p. 334 - 339
|p 334 - 339
|q 188<334 - 339
|t Strahlentherapie und Onkologie
|v 188
|x 0179-7158
|y 2012
|t Strahlentherapie und Onkologie: journal of radiati
856 7 _ |u http://dx.doi.org/10.1007/s00066-011-0060-5
909 C O |o oai:juser.fz-juelich.de:20427
|p VDB
913 2 _ |a DE-HGF
|b Key Technologies
|l Decoding the Human Brain
|1 G:(DE-HGF)POF3-570
|0 G:(DE-HGF)POF3-572
|2 G:(DE-HGF)POF3-500
|v (Dys-)function and Plasticity
|x 0
913 1 _ |a DE-HGF
|0 G:(DE-HGF)POF2-89572
|v (Dys-)function and Plasticity
|x 1
|4 G:(DE-HGF)POF
|1 G:(DE-HGF)POF3-890
|3 G:(DE-HGF)POF3
|2 G:(DE-HGF)POF3-800
|b Programmungebundene Forschung
|l ohne Programm
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1110
|2 StatID
|b Current Contents - Clinical Medicine
920 1 _ |k INM-4
|l Physik der Medizinischen Bildgebung
|g INM
|0 I:(DE-Juel1)INM-4-20090406
|x 0
920 1 _ |k INM-5
|l Nuklearchemie
|g INM
|0 I:(DE-Juel1)INM-5-20090406
|x 1
920 1 _ |k INM-3
|l Kognitive Neurowissenschaften
|g INM
|0 I:(DE-Juel1)INM-3-20090406
|x 2
970 _ _ |a VDB:(DE-Juel1)135925
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)INM-4-20090406
980 _ _ |a I:(DE-Juel1)INM-5-20090406
980 _ _ |a I:(DE-Juel1)INM-3-20090406
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)INM-5-20090406
981 _ _ |a I:(DE-Juel1)INM-3-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21