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1 Introduction

Soft Matter Science investigates the structure and dynamics of macromolecules, macromolec-
ular aggregates, and small particles in solution. The notion “Soft Matter” has been coined by
Pierre-Gilles De Gennes, nobel prize winner 1991 for “his discovery that methods for the in-
vestigation of ordering phenomena in simple systems can be generalized to complex forms of
matter, in particular for liquid crystals and polymers”. The notion “Complex Fluids” is often
used synonymously with Soft Matter.
The classical fields of Soft Matter Science are polymer solutions and melts, colloidal suspen-
sions, and amphiphilic systems. The early days of the investigation of such systems dates back
at least to the beginning of the last century. However, it has been recognized only in the 1980s
and 1990s that these three classes of materials should really be seen as special cases of Soft
Matter systems. The reasons for this realization is four-fold:

• All Soft Matter systems are characterized by a mesoscopic structural length scale, in the
range of tens of nanometers to tens of micrometers.

• The systems are characterized by a typical energy scale comparable to the thermal energy
kBT (where kB is Boltzmann’s constant, and T is room temperature), so that thermal
fluctuations play a large role.

• The constitutive macromolecules can have many architectures, which are intermediate
between linear synthetic polymers, hard-sphere colloids, and short-chain amphiphilic
molecules, as illustrated in Fig. 1.

• Many systems studied today contain components of different character, such as polymers
and colloids, which is essential to construct new materials with tailored properties.

This chapter focuses on amphiphilic systems, because this is the archetypical example of struc-
ture formation in complex fluids. Here, the building blocks are amphiphilic molecules, which
consist of a polar head and a non-polar hydrocarbon tail. Amphiphilic molecules are also often
called “surfactants”, as an abbreviation for surface active substance. Structure formation in
mixtures with water and/or oil is then driven by the “hydrophobic effect” that polar and non-
polar substances do not want to mix — a example from daily live is salad sauce, where the oil
inevitably separates from the water after shaking or mixing. In oil-water-amphiphile mixtures,
this leads to the formation of amphiphilic monolayers at the oil-water interface, and thereby to a
reduction of the surface tension. In mixtures of water and amphiphilic molecules, bilayers form,
in which the polar heads are directed towards the water and shield the hydrocarbon tails, which
are buried inside the bilayer, from water contact. The resulting structures are shown schemati-
cally in Fig. 2. The formation of amphiphilic mono- or bilayers is only the first level of structure
formation. On a second level, this aggregates are the building blocks of larger structures and
mesophases. The understanding of the physical mechanisms of this structure formation, and
how it can be revealed by scattering experiments, is the content of this chapter.
The behavior of other soft matter systems, in particular of polymer solutions and melts, will be
explained in Chaps. B.6, E.2 and E.3.
The statistical physics of amphiphilic systems, membranes, and related subjects of structure
formation in complex fluids, has been discussed in recent years in a many books and reviews,
inter alia by Porte (1992) [3], Gompper & Schick (1994) [4], Gelbart et al. (1994) [5], Safran
(1994) [6], Evans & Wennerström (1994) [7], Lipowsky and Sackmann [8], David et al. (1996)
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Fig. 1: The “magic triangle” of soft matter, which shows that the classical fields of colloids,
polymers and amphiphilic systems have merged into one. The aspect ratio (length/width) in-
creases in the vertical direction, the amphiphilicity in the horizontal direction. From Refs. [1, 2].

[9], Seifert (1997) [10], Gompper & Kroll (1997) [11], Cates & Evans (2000) [12], Dhont et
al. (2002) [13], Nelson et al. (2004) [14], Witten & Pincus (2006) [15], Poon & Andelman
(2006) [16], Dhont et al. (2008) [17], and Dhont et al. (2011) [18].

2 Oil-Water-Surfactant Mixtures

Phase Behavior of Water-Surfactant Mixtures — The experimental phase diagram of the
binary mixture of the non-ionic surfactant C12E5 and water is shown in Fig. 3. The phase
diagram is dominated by the two-phase coexistence between a dilute micellar phase L′

1 and a
more concentrated micellar phase L′′

1 at low temperatures. Here, micelles are small spherical
aggregates of amphiphilic molecules, with a hydrocarbon core and layer of polar heads outside,
as shown schematically in Fig. 5 below. At high surfactant concentration, a lamellar phase Lα

— a one-dimensional stack of surfactant bilayers separated by thin water films — is stable in
this temperature range. At higher temperatures, the lamellar phase suddenly becomes stable
already at very high dilution of only a few percent surfactant. Simultaneously, a sponge phase
L3 appears at even lower surfactant concentration.

Both the lamellar phase and the sponge phase are made of surfactant bilayers. Since the two
leaflets of the bilayers are equivalent, these membranes cannot have a preferred curvature by
symmetry (in contrast to monolayers, where in general a preferred curvature towards the oil- or
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Fig. 2: Amphiphilic molecules self-assemble into complex aggregates due to the hydrophobic
effect. In mixtures with oil and water, they form monolayers at the water-oil interface. In
mixtures with water, they form bilayers.

water-side exists).

Lamellar Phase Lα — The stability of the lamellar phase at these strikingly low surfactant
concentrations has caught the imagination of physicists in the late seventies of the last century.
It was proposed by Helfrich (1978) [20] that this swelling behavior of the lamellar phase under
the addition of water can be understood by the repulsive force generated by the suppression of
long wave-length undulation modes of an individual membrane by its neighbors in the stack.
This leads to a reduction of its entropy, and therefore to an increase of the free energy Δf per
unit area, which was predicted to have the form [20]

Δf = c∞
(kBT )

2

κ
d−2 (1)

where d is the repeat distance of the lamellar phase, and κ is the bending rigidity of the bilayer.
This behavior has since been investigated and verified experimentally (Safinya et al. 1986,
1989) [21, 22]. Monte Carlo simulations [23] give a value c∞ = 0.106 for the value of the
universal coefficient in Eq. (1).

Sponge Phase L3 — Freeze-fracture microscopy reveals the mesoscopic structure of the sponge
phase, as shown in Fig. 4. The fluid is frozen very rapidly to preserve its mesoscopic structure
during the freezing process, then fractured into pieces. Fortunately, the fracture surface follows
preferentially the midplane of the bilayer. Therefore, the three-dimensional structure of the
membrane is revealed by this technique. Fig. 4 demonstrates impressively that the sponge phase
is a complicated network of water channels, which are separated by membranes with a locally
saddle-shaped structure.
The “sponge phase” has gotten it’s name because its structure resembles the structure of a sea-
water sponge (compare Fig. 4). The pore space of the sea-water sponge has to be connected
in order for the water to be able to penetrate the sponge; its solid component has also to be
connected to keep the sponge together. Thus, both objects are “bicontinuous” (see below).
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Fig. 3: Experimental phase diagram of the binary mixture ofC12E5 and water (Strey et al. 1990)
[19]. The phase diagram is dominated by the two-phase coexistence between a dilute (L′

1) and
a more concentrated (L′′

1) micellar phase at low temperatures. At higher temperatures, the
lamellar phase (Lα) becomes stable already at high dilution of only a few percent surfactant.
Simultaneously, a sponge (L3) phase appears at even lower surfactant concentration. The phase
at high surfactant concentration (L2) is an inverted micellar phase (with surfactant tails point-
ing outwards). The hatched areas are two-phase coexistence regions. Note the logarithmic
scale of the abscissa.
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Fig. 4: Left: Freeze-fracture-microscopy picture of a sponge phase in the system water/NaCl
and AOT (Strey et al. 1992) [24]. Note the local saddle-shape structure of the membrane, which
can be seen most clearly in the inset. Right: A sea-water sponge.

However, the length scales are very different.

Microemulsions — When oil is added as a third component to a mixture of water and surfac-
tant, the phase diagram obviously gets considerable more complicated [4], as shown schemati-
cally in Fig. 5. The spontaneous curvature of the monolayer membrane is in general non-zero
in these systems. For most non-ionic surfactants, the spontaneous curvature depends sensitively
and approximately linearly on temperature (compare Sec. 5), with curvature towards the oil-side
at lower temperatures and curvature towards the water-side at higher temperatures (this can be
understood by the diminishing hydration shell of the polar heads with increasing temperature).
Therefore, the spontaneous curvature vanishes for one particular temperature, the hydrophobic-
hydrophilic-balance temperature T̄ . In a temperature interval around T̄ , a phase is stable, which
is macroscopically homogeneous and isotropic, and which contains equal amounts of oil and
water. This phase is called a microemulsion . It has a very similar mesoscopic structure as the
sponge phase:

• The membrane in the sponge is a bilayer, in the microemulsion it is a monolayer.

• The microemulsion consists of network of oil- and water-channels, which are separated
by a surfactant monolayer. The sponge phase consists of (at least) two distinct networks
of water-channels, which are separated by a bilayer.

A microemulsion is called bicontinuous, because both the oil- and the water-networks span
the whole system. Since the sponge phase has an equivalent mesoscopic structure with two
networks of water channels, it is also called bicontinuous.
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Fig. 5: Schematic phase diagram of ternary amphiphilic systems at fixed temperature. From
Davis et al. (1987) [25].

3 Theoretical Approaches

3.1 Length Scales

A theoretical model always depends on the type of phenomena to be studied, and on the basic
length scales to be described. This is not much different from experimental studies, where dif-
ferent techniques are appropriate for different ranges of length scales. For oil-water-surfactant
mixtures, the different levels of descriptions, the appropriate length scales, and the the corre-
sponding degrees of freedom, are illustrated in Fig. 6. On the molecular level, we are dealing
with a three-component mixture of different molecules. The length scale is therefore atomistic,
and the degrees of freedom are the atomic coordinates. This is a lot of information, which is
only partially useful for a structured fluid with large oil-rich and water-rich domains. Therefore,
we can zoom out a bit and only consider the concentrations fields, which are averaged over the
local molecular conformations and orientations. On this level, we can already see that surfactant
assembles at the mesoscopic oil-water interface. However, the domain structure is still difficult
to describe. Thus, if we are interested in the shape and topology of the interfaces, we have to
step back even further, and describe the membrane as a mathematical surface, with its shape
and fluctuations controlled by curvature elasticity.

For the calculation of phase behavior and scattering intensities, the descriptions of the concen-
tration level and on the membrane level are particularly useful.
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Fig. 6: Modeling microemulsion structure on different length scales. The basic degrees of
freedom on each level of coarse graining are indicated.
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3.2 Membrane Model

Curvature Energy and Fluctuating Surfaces — We want to try to understand the structure
and phase behavior of binary mixtures of water and surfactant on the basis of a model, in which
the surfactant film is described by a surface, whose shapes and fluctuations are controlled by
the curvature energy (2). First attempts for such a description go back to Helfrich (1973) [26],
Scriven (1976) [27], de Gennes and Taupin (1982) [28], and Safran et al. (1986) [29].
The energy functional of a fluid membrane must satisfy the following conditions

• Motion invariance:
The energy must be invariant under translations and rotations of the whole membrane

• Reparametrization invariance:
Since the molecules can diffuse freely within the membrane, no preferred coordinate sys-
tem can exist — which would correspond physically to a labeling of distinct constitutive
elements of the membrane. Therefore, the energy must be invariant under a change of the
coordinate system.

These conditions imply that in an expansion in powers of the inverse radii of curvature, the
curvature energy to leading order is given by [30, 26]

Hcurv =

∫
dS
[
γ + 2κ(H − c0)

2 + κ̄K + ...
]

(2)

where the integration is over the whole membrane surface,

2H = c1 + c2 , K = c1c2 (3)

are the mean and Gaussian curvatures, respectively, which are expressed in terms of the princi-
pal curvatures c1 = 1/R1 and c2 = 1/R2 at each point of the membrane, compare Fig. 7. It is
interesting to note that H and K are the trace and determinant of the curvature tensor, and there-
fore satisfy the invariance principles stated above. The parameters γ, κ, κ̄ and c0 are the elastic
constants of the membrane, which depend on the structure and interactions of the constitutive
molecules. Their physical meaning is:

• γ is the surface tension,

• κ is the bending rigidity,

• c0 is the spontaneous (or preferred) curvature,

• κ̄ is the saddle-splay modulus – relevant only for topology changes.

From a statistical mechanics point of view, the calculation of the thermodynamic properties
of an ensemble of fluctuating surfaces is a formidable problem. It amounts to calculating the
partition function

Z =
∑

topologies

∫ ′
DR(σ) exp{H[R(σ)]/kBT} (4)

where
∫ ′ DR(σ) denotes an integration over all possible shapes with parametrization R(σ) of

the surface at fixed topology, where σ is a two-dimensional coordinate system on the surface.
However, this integral cannot be just over all possible parametrizations R(σ) of a surface of
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R1

R2

n

Fig. 7: The two principal radii of curvature, R1 and R2, of a point on the surface.

fixed topology, but has to be restricted to those parametrizations, which lead to physically dif-
ferent shapes in the embedding space; this is indicated by the prime. Finally, the contributions
off all different topologies have to be summed over. It is clear that this problem is sufficiently
complex that no exact solution will be found anytime soon. Therefore, approximations have to
be made in order to get some insight into the behavior of these phases.

Energy Considerations — Let us first take a closer look at the curvature energy itself, and
consider the effect of fluctuations in a second step. It is easily seen that for c0 = 0 the curvature
Hamiltonian (2) can be rewritten in the form

E =

∫
dS

[
1

2
κ+

(
1

R1

+
1

R2

)2

+
1

2
κ−

(
1

R1

− 1

R2

)2
]

(5)

with

κ+ = κ+
1

2
κ̄ , κ− = −1

2
κ̄ (6)

This form is convenient to show that the stability of lamellar phase requires

κ+ > 0 , κ− > 0 (7)

since otherwise the energy of the system could be lowered without bounds by making the term
with negative amplitude very large in magnitude. With Eq. (6), the stability conditions (7) are
equivalent to

−2κ < κ̄ < 0 (8)

Instabilities occur as κ+ or κ− approach zero:

• For κ+ → 0, it costs very little energy to make |c1+ c2| large, as long as |c1− c2| remains
small. Thus, in this limit it costs a very small energy to form small spherical objects with
c1 � c2, which in the case of monolayers are called micelles, in the case of of bilayers
vesicles.
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Fig. 8: The three most important triply periodic minimal surfaces (TPMS) of cubic symme-
try: Schwarz P-surface (right), Schwarz D-surface (middle), and Schoen’s gyroid surface (left)
[31].

• For κ− → 0, it costs very little energy to make |c1− c2| large, as long as |c1+ c2| remains
small. Thus, in this limit it costs a very small energy to form surfaces with c1 � −c2 and
small domain size, such as microemulsions or sponge phases.

It is interesting to note that sufaces with c1 = −c2 have been studied extensively for more than
100 years. These surfaces are called minimal surfaces. In the context of amphiphilic systems,
triply periodic minimal surfaces (TPMS) of cubic symmetry, shown in Fig. 8, are particularly
relevant. These phases are also often called plumber’s nightmare phases, because this multiply
connected system of tubes would be almost impossible for a plumber to prevent such a structure
from leaking.
Scaling Considerations — Let us consider an arbitrarily shaped piece of membrane with fixed
geometry. Let the local curvatures be denoted by ci, and the curvature energy of this patch be
Eb. When this membrane piece is rescaled uniformly by a scale factor λ — i.e. the “shape”
remains the same but the size changes — then the new local curvatures become c′i = λ−1ci, and
the curvature energy changes to

E ′
b =

∫
dS ′ {2κH ′2 + κ̄K ′}

=

∫
dSλ2

{
2κλ−2H2 + κ̄λ−2K

} ≡ Eb (9)

Thus, the curvature energy remains invariant under uniform scale transformations. This results
implies immediately that the energy density, which is the energy per unit volume, depends on
the surface-to-volume ratio, S/V , which is proportional to the amphiphile concentration, as
[32]

Eb/V ∼ (S/V )3 (10)

Eq. (10) shows that the curvature energies of all membrane structures scale in exactly the same
way (although with different prefactors), so that an intersection of the energy curves for different
structures as a function of S/V cannot occur. This result allows an important conclusion. On
the basis of the curvature energy alone, without thermal fluctuations, we will not be able to
understand transitions between different mesophases as the amphiphile concentration is varied,
such as the lamellar-to-sponge transition in Fig. 3 at fixed temperature. It must be the entropy



B2.12 G. Gompper

which is responsible for these transitions.

Membrane Fluctuations — The thermal fluctuations on small scales — i.e. small compared
to the typical domain size of a sponge phase, or small compared to the average separation
of membranes in a lamellar phase — modify the curvature elasticity on larger scales. This
effect can be easily demonstrated with a sheet of paper for polymerized membranes (with fixed
connectivity of neighboring molecules): A corrugated sheet has a higher bending rigidity on
scales larger than the characteristic ripples than a smooth sheet. Thus, “fluctuations” increase
the rigidity in this case. In fluid membranes, fluctuations have the opposite effect of softening
the rigidity on larger scales. There is no macroscopic example to demonstrate this effect. It
follows from renormalization group calculations [33, 34], which show that thermal fluctuations
lead to renormalized, scale-dependent rigidities κR, κ̄R of the form

κR(ξ) = κ− α
kBT

4π
ln(ξ/a) (11)

κ̄R(ξ) = κ̄− ᾱ
kBT

4π
ln(ξ/a) (12)

with α = 3 and ᾱ = −10/3 (Peliti & Leibler 1985, David 1989) [33, 35]. This implies
immediately that the elastic moduli of Eq. (5) are also renormalized, and are given by

κR
±(ξ) = κ± − α±

kBT

4π
ln(ξ/a) (13)

with

α+ = α +
1

2
ᾱ =

4

3
, α− = −1

2
ᾱ =

5

3
(14)

Phase Behavior — When the fluctuation on short scales are taken into account, the instabilities
of the lamellar phase discussed above now occur where the renormalized rigidities vanish, i.e.
at κR

±(ξ) = 0. The length scale ξ, where the renormalization is cut off, is determined by the
average separation of neighboring membranes, which is given by the membrane volume fraction

Ψ ≡ aS

V
= a/ξ (15)

where a is again a molecular scale, here the length of the amphiphiles. This finally implies
(Morse 1994) [36]

ln(Ψ) = − 4π

α±

κ±
kBT

(16)

The phase diagram, which is predicted on the basis of this calculation, is shown in Fig. 9. This
phase diagram does not only contain the instability lines (16), but also results of a somewhat
more detailed calculation, in which estimates of the free energies of the sponge phase (based on
an approximation by minimal surfaces, so that the free energy is taken to be κ̄R(ξ)

∫
dS K) and

of the lamellar phase (based on the steric repulsion expression (1)) are compared. Fig. 9 shows
that the two results are in good agreement.
The phase diagram is dominated by a V -shaped region, where the lamellar phase is stable.
With decreasing amphiphile concentration, a phase transition to the sponge phase occurs for
0 > κ̄/κ > −10/9, while a transition to a vesicle phase occurs for −10/9 > κ̄/κ > −2. The
sponge phase exists only in a narrow strip parallel to the instability line. When the amphiphile
concentration is decreased further, emulsification failure occurs, i.e. the sponge phase cannot
take up any more water, and therefore coexists with an (almost pure) water phase at these low
membrane volume fractions.
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Fig. 9: Phase diagram of binary or balanced ternary amphiphile mixtures, as predicted on the
basis of the renormalization of the bending rigidity κ and the saddle-splay modulus κ̄, for fixed
κ/kBT = 2 (Morse 1994) [36]. The phase behavior is shown as a function of the membrane
volume fraction Ψ (denoted here ρa2) and the saddle-splay modulus κ̄. L3 denotes the sponge
phase, L4 a vesicle phase. The two dashed lines are the stability boundaries (16), with the left
line corresponding to κR

+ = 0, the right line to κR
− = 0.
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3.3 Ginzburg-Landau Model

An alternative description of microemulsion starts from the point of view of ternary mixtures
with three spatially varying concentration fields ρo(r), ρw(r), and ρs(r) for oil, water, and
surfactant, respectively. Such a description has been used extensively for near-critical binary
mixtures. For incompressible of, say, oil and water, ρo(r) + ρw(r) =const., so that only the
local concentration difference φ(r) ≡ ρo(r)− ρw(r), which is denoted “order parameter field”,
has to be considered. The model is then defined by the free energy functional

F [φ] =
1

2

∫
d3r

[
b0(∇φ(r))2 + f(φ)

]
(17)

Here, the free energy density of homogeneous order parameter fields has two minima below
the critical temperature Tc, corresponding to the order parameters of the coexisting oil-rich
and water-rich phases, and is usually written in an expansion for small order parameters as
f(φ) = τφ2 + gφ4, where τ = (T − Tc)/Tc < 0 measures the distance from the critical point.
Above Tc, where τ > 0, f(φ) has a single minimum at φ = 0 (completely mixed state). The first
term on the right-hand side of Eq. (17), with b0 > 0, penalizes inhomogeneous order-parameter
configurations, and is therefore closely related to the oil-water interface tension.
This approach can be generalized to ternary amphiphilic systems [37]. In the simplest case,
where the surfactant molecules are assumed to mostly populate the microscopic oil-water in-
terface, the surfactant density does not have to be taken into account as an additional order
parameter. Instead, it modifies only the structure of the free-energy functional, which now
becomes [37]

F [φ] =
1

2

∫
d3r

[
c0(∇2φ(r))2 + b(φ)(∇φ(r))2 + f(φ)

]
(18)

Here, the function f(φ) has now three minima, corresponding to the coexisting oil-rich, water-
rich and microemulsion phases. The function b(φ) has a single minimum in the microemulsion
phase, with b0 = b(0) < 0; this negative value of the gradient-term in Eq. (18) corresponds to
the fact that the system gains free energy by increasing the amount of oil-water interface area.
This growth is limited by the first term in Eq. (18), with c0 > 0, which is closely related to the
bending rigidity of the surfactant layer.
In the microemulsion phase, where 〈φ(r)〉 = 0, the free-energy functional (18) can be expanded
to quadratic order in the order-parameter fluctuations,

F [φ] =
1

2

∫
d3r

[
c0(∇2φ(r))2 + b0(∇φ(r))2 + a0φ

2
]

(19)

In this approximation, the scattering intensity can be calculated exactly, as explained in Ap-
pendix A, with the result [38]

I(q) =
1

c0q4 + b0q2 + a0
(20)

The negative value of b0 implies that there is a scattering peak at non-zero wave vector. It was
shown already more than 20 years ago by Teubner & Strey (1987) [38] that the functional form
of Eq. (20) indeed fits experimental scattering data very well, compare Fig. 10.
The correlation function in real space is obtained from the scattering intensity by Fourier trans-
formation, as explained in detail in Chap. A.5. Fortunately, the form of Eq. (20) is simple
enough that this Fourier transformation can be done analytically, so that [38, 4]

G(r) =

∫
d2q

(2π)2
I(q)e−iq·r ∼ 1

r
e−r/ξ sin k0r (21)
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Fig. 10: The scattering intensity I(q) of a balanced microemulsion in bulk contrast for two
different surfactants. The data are very well fitted by the functional form of Eq. (20) (Teubner
& Strey 1987) [38].

with characteristic wave vector k0 and correlation length ξ, where

k0 =
1

2

[
2
√

a0/c0 − b0/c0

]1/2
, ξ−1 =

1

2

[
2
√

a0/c0 + b0/c0

]1/2
(22)

3.4 Gaussian Random Fields

A description of microemulsions and sponge phases, which is closely related to the Ginzburg-
Landau approach, is to employ level surfaces of a scalar field Φ(r), with r ∈ R

3, which are
defined by

Φ(r) = α (23)

This implicitly defines a surface in three-dimensional space. An illustration of this concept is
shown in Fig. 11, where the level “surfaces” are shown for a scalar field in two dimensions.
Thermal fluctuations of the scalar field Φ(r) — according to a Boltzmann weight exp(−H0)
— then imply fluctuations of the level surfaces. The properties of the membranes are therefore
induced by the statistical mechanics of the scalar field Φ, as they are in the Ginzburg-Landau
model.
A particularly useful case are Gaussian random fields (GRF) , where the fluctuations of Φ are
controlled by a Boltzmann weight with a quadratic Hamiltonian

H0 =
1

2

∫
d3rΦ(r)ν−1(|r− r′|)Φ(r′) (24)

with spectral density ν(r− r′). Requirements on ν−1(|r− r′|) are that it decays sufficiently
fast for large |r− r′| so that the integral and the second and fourth moments are finite. The
normalization

〈Φ(r)〉 = 0 , 〈Φ(r)2〉 = 1 (25)
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Fig. 11: Level “surfaces” of a scalar field Φ(r), with 〈Φ(r)〉 = 0. For illustration purposes,
r ∈ R

2, so that the level “surfaces” are in fact lines in this case. Left: Level surface (red lines)
for α = 0, so that the surface has no preferred curvature, 〈H〉 = 0, and a sponge-like structure
can be envisaged. Right: Level surface (red lines) for α = 1, so that the level surface bends
preferentially to one side, and droplet-like structures can be seen.

is usually employed, where the first identity follows immediately from the Φ → −Φ symmetry
of the Hamiltonian, while the second identity implies the normalization

∫
d3k ν(k) = (2π)3.

The advantage of the Gaussian random field model is that all averages can be calculated exactly.
In particular, the average geometry of the level surfaces can be calculated for Gaussian random
fields (GRF), with the analytical results (Teubner 1991) [39]:

S/V =
2

π
exp[−α2/2]

√
1

3
〈q2〉ν (26)

〈K〉 = −1

6
〈q2〉ν(1− α2) , (27)

〈H〉 =
1

2
α

√
π

6
〈q2〉ν , (28)

〈H2〉 = 〈K〉+ 1

5

〈q4〉ν
〈q2〉ν (29)

where

〈qn〉ν ≡
∫

d3q

(2π)3
qnν(q) (30)

The calculation of the surface density S/V is sketched in Appendix B to illustrate the calculation
of geometrical averages for Gaussian random fields.
The results (26) to (29) imply some interesting conclusions for the symmetric case α = 0:

• Eq. (28) shows that mean curvature vanishes, 〈H〉 ≡ 0, so that α = 0 corresponds to a
balanced system, such as in sponge phases or balanced microemulsions. Compare Fig. 11.

• From Eq. (27), we find 〈K〉 = −1
6
〈q2〉ν < 0; this implies that the average geometry

of level surfaces in Gaussian random fields is saddle-shaped. Eqs. (27) and (26) can be
combined to give the dimensionless quantity 〈K〉(S/V )−2 = −π2/8 = −1.234, which
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characterizes the topology of a characteristic “unit cell” of the sponge phase. It is impor-
tant to note that this number is universal in the Gaussian random field model, since it is
completely independent of the spectral density ν.

3.5 Variational Approach

In Sec. 3.4, the spectral density ν has never been specified. The application of the Gaussian
random field model to sponge phases therefore remains qualitative on this level [40, 41, 39].
What is missing is a relation of the spectral density ν to the Hamiltonian which describes the
system under consideration. For a membrane ensemble controlled by the curvature energy, con-
siderable progress can be made by employing the Gaussian random field model in a variational
approach (Pieruschka & Safran 1993) [42].
The variational approach is based on the Gibbs-Bogoliubov-Feynman inequality [43, 44]. It
relates the energies and free energies of the system under consideration (in our case the mem-
brane ensemble with curvature energy) to a reference system, which can be treated more easily
(in our case the Gaussian random field model).
Let the full system be described by a Hamiltonian H and have free energy F , and the reference
system be described by Hamiltonian H0 and have free energy F0. The Gibbs-Bogoliubov-
Feynman inequality is based on the inequality 〈exp(f)〉 ≥ exp〈f〉 for any function f ∈ R [44].
This implies

F ≤ F0 + 〈H −H0〉0 (31)

The main idea of the variational approach is then to choose a reference system with free param-
eters, which can be used to find an optimal (i.e. lowest) upper bound for the free energy of the
full system.
The application of this approach to membrane ensembles requires the calculation of 〈H〉0 and
F0. The average curvature energy is

〈Hcurv〉0 = S
(
2κ〈H2〉0 + κ̄〈K〉0

)
(32)

which can be easily expressed as a functional of the spectral density with Eqs. (26)-(29). The
calculation of the free energy of a Gaussian model is a standard problem of statistical field
theory, as described for example in detail in Ref. [44], and has the result

F0 = −1

2

∫
d3k

(2π)3
ln(ν(k)) (33)

Functional differentiation of Eq. (31) with Eqs. (32) and (33) then gives the optimal spectral
density (Pieruschka & Safran 1995) [45]

ν(q) =
1

cq4 + bq2 + a
(34)

where a, b, and c are now functions of κ and S/V .
The spectral density (34) can be identified with the scattering intensity I(q) in bulk contrast of
ternary microemulsions, i.e. with scattering contrast between oil and water, in the same way as
discussed for the Ginzburg-Landau model in Sec. 3.3 above.
With the use of Eq. (22), the results of the variational approach then imply for the characteristic
length scales in the correlation function (for large κ/kBT ):

k0 ∼ S/V , ξ ∼ κ(S/V )−1 , k0ξ ∼ κ (35)
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Thus, the wave vector k0 increases linearly with the amphiphile concentration, while the corre-
lation length ξ decreases. However, the dimensionless ratio k0ξ of the two length scales, which
characterize a microemulsion or sponge phase, is predicted to be independent of the amphiphile
concentration, and only to depend on the bending rigidity. These are very specific predictions,
which can be tested experimentally and by simulations.

3.6 Comparison of Theoretical Approaches

We have now predictions by two different theoretical models, which we abbreviate by the names
‘Fluctuating Membranes” and “Gaussian Random Fields”. It is instructive to summarize the
main points discussed above:

• “Fluctuating Membranes” and “Gaussian Random Fields” are complementary models

• The variational approach provides a link between these models

• A direct comparison is possible for the free energy:
Fluctuating Membranes —

f = F/V ∼ [κR(Ψ) + κ̄R(Ψ)]Ψ3

= [A+B ln(Ψ)]Ψ3 (36)

as shown in Refs. [46, 47, 32, 3].
Gaussian Random Fields —

f = F/V = A′Ψ3 +B′ ln(Ψ) (37)

as derived in Ref. [45]. It is obvious from the comparison of these two equations that
although the results look similar they do not agree!

4 Monte Carlo Simulations of Dynamically Triangulated Sur-
faces

As in all entropically dominated, strongly fluctuating systems, simulation methods provide a
very important tool to obtain information about the system properties, which are not easily
accessible by purely analytical approaches. For sufficiently small systems, thermal averages
can be calculated by simulation techniques with very high precision. The extrapolation to large
system sizes is sometimes difficult, but often possible with good reliability.

Motivation — What are the particular reasons to apply simulations to membrane ensembles:

• Clarify the discrepancy between functional forms of the free energies of the “Fluctuating
Membranes” and the “Gaussian Random Field” approaches, Eqs. (36) and (37).

• Different results have been obtained for the universal values of the prefactors α and ᾱ of
the logarithmic renormalization of κ and κ̄ — compare Eqs. (11) and (12), respectively:
α = +3, ᾱ = 10/3 (Peliti & Leibler 1985; Cai et al. 1994) [33, 34];
α = +1, ᾱ = 0 (Helfrich 1985) [48]
α = −1, ᾱ = 0 (Helfrich 1998) [49]
The phase diagram of Fig. 9 has been calculated for α = +3, ᾱ = 10/3. It looks very
different for the other values given above.
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Dynamically triangulated surfaces

Hard-core diameter  σ
Tether length L: σ < L < √3 σ

-->  self-avoidance

Dynamic triangulation:

Fig. 12: A triangulated network model of a fluctuating surface. Top: Hard spheres connected
by bonds of maximum extension 
 are used to describe self-avoiding membranes. Bottom: The
Monte Carlo step, which makes the triangulation dynamic, is required to model fluid mem-
branes.

• The instability argument for the position of the phase transitions, as well as the other
calculations which lead to the phase diagram of Fig. 9 apply for κ � kBT . However, mi-
croemulsions and sponge phases typically occur in systems with small bending rigidities
of κ � kBT .

• Sponge phases with random geometry and bicontinuous cubic phases with minimal sur-
face structure cannot be distinguished in the “Fluctuating Membranes” approach. There-
fore, few predictions are available from this approach for the structure of the bicontinuous
phases.

Simulation method — The simulation of highly dilute sponge phases, with characteristic do-
main sizes on the order of 10-100nm is impossible on the basis of a molecular model, since it
would require an enormous number of “solvent molecules”. Therefore, the most appropriate
model is again the random surface model discussed above. In order to make this model suit-
able for simulations, the continuous surface has to be approximated by a network of vertices
and bonds, see Fig. 12. A triangular network is usually used because it provides the most ho-
mogeneous and isotropic discretization of the surface. A Monte Carlo step then consists of a
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(a) (b)

Fig. 13: Schematic representation of the Monte Carlo step, which is used to change the topology
of a randomly triangulated surface. For details see text.

random displacement of a randomly selected vertex. This step is accepted with the probabil-
ity determined by the Boltzmann weight, as long as the vertices remain within the maximum
bond lengths with their neighbors. The energy, which appears in the Boltzmann weight is the
curvature energy, which can be discretized in the form [50, 51]

Eb = λb

∑
<ij>

(1− ni · nj) (38)

where ni and nj are the normal vectors of neighboring triangles, and the sum runs over all pairs
of neighboring triangles. The coupling constant λb in Eq. (38) is related to the bending rigidity
and saddle-splay modulus by κ =

√
3λb/2 and κ̄ = −4κ/3 [52]. Other discretizations are

discussed in Ref. [53].
Such a model has first been suggested and simulated for polymerized membranes by Kantor
& Nelson (1987) [50, 51]. When hard spheres of diameter σ0 are placed on the vertices, and
the bond lengths 
 are restricted to be 
 ≤ √

3σ0, the surface is self-avoiding, since an arbitrary
sphere does not fit through the holes of the network, so that no interpenetration of different parts
of the network is possible.
For a study of fluid membranes, the connectivity of the membrane cannot remain fixed during
the simulation, because otherwise a diffusion of vertices within the membrane is not possible.
Therefore, dynamically triangulated surfaces [11, 54] have to be used in this case. The essential
step of the dynamic triangulation procedure is shown at the bottom of Fig. 12. Among the
four vertices of two neighboring triangles, the “diagonal” bond is switched from one of the
two possible positions to the other. This bond-switching is only allowed if the vertices remain
connected to at least three neighbors after the switch. Also, the distance between the newly
connected vertices has to be smaller than the maximum bond length. This Monte Carlo step has
the advantages that

• is is local, i.e. only the vertices of two neighboring triangles are involved, and

• it guarantees that the network retains its two-dimensional connectivity during the whole
simulation run.
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Fig. 14: A typical conformation of the membrane in a sponge phase, as obtained from Monte
Carlo simulations of randomly triangulated surfaces (Gompper & Kroll 1998) [55]. The two
sides of the membrane are colored differently to emphasize the bicontinuous structure.

Finally, in order to study membrane ensembles with fluctuating topology, a Monte Carlo step
is required which changes the topology. Such a step is shown schematically in Fig. 13. It
consists of removing two triangles from the network, which are located sufficiently closely
in the embedding space that a prism of six new triangles can be inserted without exceeding
the maximum bond lengths to form a passage-like connection between the previously disjoint
membrane patches [55, 54]. Obviously, the inverse step is also possible, where a passage is
removed and two triangles are inserted to close the holes in the network.

Simulation Results — A typical conformation of the membrane in the region of the parameter
space, where the sponge phase is stable, is shown in Fig. 14. This configuration shows all
the characteristic features of a sponge phase, which have been discussed above, such as the
bicontinuous structure and the local saddle-like shape of the membrane.

A more quantitative analysis is possible by calculating thermal averages for many different
values of the parameters, and then constructing a phase diagram, as shown in Fig. 15. The
Monte Carlo data [55] for the phase boundaries are found to follow the logarithmic dependence
expected from Eq. (16). Furthermore, the slopes of these phase boundaries in a semi-logarithmic
plot are quite consistent with the ᾱ = 10/3, while ᾱ = 0 can clearly be ruled out. Thus, the
Monte Carlo results strongly support the “Fluctuating Membranes” predictions, with the value
of ᾱ predicted in Refs. [33, 34].

Another quantity, which can be obtained from the simulations and compared directly with the
analytical predictions is the osmotic pressure p . In the analytical approaches, it is obtained
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Fig. 15: Phase diagram of random surfaces controlled by curvature elasticity, as obtained from
Monte Carlo simulations of randomly triangulated surfaces with κ � 1.7kBT (Gompper &
Kroll 1998) [55]. The dashed line shows the theoretical prediction (16), with ᾱ = 10/3.

from the free-energy density f by differentiation,

p

kBT
= Ψ

∂f

∂Ψ
− f

= [A′′ +B′′ ln(Ψ)]Ψ3 (fluctuating membranes) (39)

and in the case of the free-energy density (36) has the same functional form as f itself. The
simulation results (Gompper & Kroll 1998) [55] are compared with this prediction in Fig. 16.
Again, the simulation results are in very good agreement with the “Fluctuating Membranes”
prediction.
Bulk scattering curves for three different membrane volume fractions Ψ are shown in Fig. 17.
The peak position k0 moves out and the peak broadens, roughly linearly with the membrane vol-
ume fractions Ψ, as expected from the variational GRF model, compare Eq. (35). However, the
dimensionless length-scale rate k0ξ is not independent of Ψ, in contrast to the GRF prediction.

5 Experimental Results

Phase behavior of binary systems — The elastic properties of an amphiphilic bilayer can
be rather easily related to the elastic properties of the two monolayers of which the bilayer is
composed (Petrov et al. 1978, Porte 1989) [57, 58]. This is done by writing the bilayer energy
of a spherical cap as

Eb =

∫
dS

{[
2κ

(
1

R + ε
+ c0

)2

+ κ̄
1

(R + ε)2

]
(R + ε)2

R2

+

[
2κ

(
1

R− ε
− c0

)2

+ κ̄
1

(R− ε)2

]
(R− ε)2

R2

}
(40)
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Fig. 16: Scaled osmotic pressure (pa3/kBT )Ψ
−3 of random surfaces controlled by curvature

elasticity, as obtained from Monte Carlo simulations of randomly triangulated surfaces for
κ � 1.0kBT (Gompper & Kroll 1998) [55]. Here, a is the membrane thickness. Data sets from
right to left correspond to κ̄ = −0.4kBT , κ̄ = −0.5kBT , κ̄ = −0.6kBT and κ̄ = −0.7kBT .
The solid red lines indicate the theoretical prediction (36).
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Fig. 17: Bulk scattering intensity for three membrane volume fractions Ψ = aS/V (see legend),
as obtained Monte Carlo simulations for κ � 3.5kBT and κ̄ = −0.6kBT . The inset shows the
length-scale ratio k0ξ as a function of S/V . From Peltomäki et al. (2012) [56].
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Fig. 18: Experimental results for the film scattering intensity I(q) in the limit of zero wave
vector q in the system AOT–water–NaCl (Skouri et al. 1991) [60].

where R is the radius of curvature of the bilayer midsurface, ε is the thickness of a monolayer,
and the integral extends over the surface of the midplane. The expansion of this expression in
powers of 1/R, together with a similar expansion of the energy of a cylindrical or saddle-shaped
surface, gives again the form of the curvature energy, but now with

c
(bi)
0 = 0 , κ(bi) = 2κ , κ̄(bi) = 2κ̄+ 8κc0ε (41)

Thus, the spontaneous curvature of a bilayer vanishes due to symmetry, but its saddle-splay
modulus is related to the spontaneous curvature of the monolayers.
Now, the spontaneous curvature of monolayer has been shown experimentally (Strey 1994) [59]
in ternary microemulsions to follow a linear temperature dependence

c
(mono)
0 ∼ (T − T̄ ) (42)

over a wide range of temperatures, where T̄ is the hydrophobic-hydrophilic-balance tempera-
ture, which corresponds to balanced microemulsions. Therefore, κ̄(bi) ∼ (T − T ∗), where T ∗ is
a constant, and we expect the lamellar-to-sponge and the emulsification failure phase transitions
to follow the relation

ln(Ψ) ∼ (T − T ∗) (43)

which corresponds to a straight line in a semi-logarithmic representation of the phase diagram.
The experimental phase diagram is indeed consistent with such a behavior, as can be seen from
Fig. 3.

Small-Angle Scattering — In the limit of very small wave vectors q, the scattering intensity in
film contrast is determined by the osmotic compressibility, so that [32]

I(q → 0) = Ψ

(
∂p

∂Ψ

)−1

∼ Ψ−1[A′′′ +B′′′ ln(Ψ)]−1 (fluctuating membranes) (44)

This expression is compared to experimental data [32, 60] for the system AOT–water–NaCl
in Fig. 18. The data nicely agree with the behavior predicted behavior for “Fluctuating Mem-
branes”.
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6 Beyond ”Simple” Amphiphilic Systems

6.1 Amphiphilic Block Copolymers in Ternary Mixtures

Fig. 19: Effect of small amounts of amphiphilic block copolymer PEP-PEO (compare Fig. 21
below) on the phase behavior of balanced microemulsions. Far left: oil-water coexistence. Left:
7 weight % surfactant C10E4 produce a three-phase coexistence with a microemulsion phase
in the center. Right: 0.5 weight % of PEP5-PEO5 increase the microemulsion volume two-
fold. Far right: 1.0 weight % of PEP5-PEO5 increases the microemulsion volume three-fold
(preparation and photo: J. Allgaier).

It has been found very recently that the addition of small amounts of amphiphilic block copoly-
mers to balanced microemulsions has a dramatic effect on the phase behavior (Jakobs et al.
1999) [61]. As shown in Fig. 19, the ability of a short-chain surfactant to solubilize oil and water
into a macroscopically homogeneous and isotropic microemulsion phase increases dramatically
when a small percentage of the total surfactant weight is added as amphiphilic block copolymer.
The block copolymer used in this study is polyethyleneoxide–polyethylenepropylene PEOx-
PEPy, where x and y denote the molecular weights of each block in kg/mol. The chemical
structure of the polymers mimics the structure of the non-ionic CiEj surfactant, and PEP10-
PEO10 corresponds roughly to C715E230. Note that while the microemulsion is completely
transparent without block copolymer, it becomes more and more opaque with increasing block-
copolymer concentration. This indicates that the scale of the oil- and water domains is increas-
ing with increasing block-copolymer concentration, and it approaches the wavelength of light
at the highest polymer concentrations in Fig. 19.
A typical conformation of a polymer-decorated membrane is shown in Fig. 20 on the meso-
scopic scale. The block copolymers are incorporated into the surfactant-monolayer membrane,
such that the hydrophilic block is located in the water domains, while the hydrophobic block is
in the oil domains.
The dramatic effect of amphiphilic block copolymers on the microemulsion can be understood
on the basis of the membrane-curvature model [63, 64, 65]. Polymer chains anchored to a
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Fig. 20: Typical conformation of a polymer-decorated membrane (Auth & Gompper 2003) [62].
For details see text.

membrane modify the curvature elasticity such that (Hiergeist & Lipowsky 1996, Eisenriegler
et al. 1996, Auth & Gompper 2003) [66, 67, 62]

κeff = κ+
kBT

12

(
1 +

π

2

)
σ(R2

w +R2
o) (45)

κ̄eff = κ̄− kBT

6
σ(R2

w +R2
o) (46)

where σ is the grafting density of the polymer, i.e. the number of polymer anchoring points per
unit membrane area, and R2

w and R2
o are the mean-squared end-to-end distances of the polymer

blocks in the water- and oil-domains, respectively (compare Fig. 21). Eqs. (45) and (46) apply
in the so-called mushroom regime, where the polymer density on the membrane is so small that
the polymer coils do not interact directly with each other. Thus, the bending rigidity and the
saddle-splay modulus increase linearly with the scaled polymer grafting density σ(R2

o + R2
w)

in this regime. It should be noticed that this is a very small effect, since even at the overlap
concentration, where σ(R2

o + R2
w) = 2 for a symmetric block copolymer, the increment of κ

and |κ̄| is only a fraction of kBT . The results (45) and (46) can be compared, for example, with
the elastic properties of solid elastic sheets, where the bending rigidity scales with the sheet
thickness 
0 as κ ∼ 
30 [68].
The increase of the effective bending rigidity κeff in Eq. (45) and of the magnitude of κ̄eff in
Eq. (46) can be understood from the entropy loss of each polymer coil in a confined geome-
try due to the restriction of the number of accessible configurations. This entropic repulsion
suppresses membrane fluctuations and disfavors saddle-like conformations near the anchoring
points. A simple, heuristic argument for the suppression of saddle-like conformations has been
given by Milner & Witten (1988) [69] for polymers in the brush regime, where there is a strong
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Fig. 21: Phase diagram of a microemulsion of water–decane–C10E4 with amphiphilic block
copolymer. The membrane volume fraction Ψ of the microemulsion at three-phase coexistence
is shown as a function of the scaled polymer grafting density on the membrane (Endo et al.
2000) [63]. The different symbols correspond to different molecular weights (in kg/mol) of the
four different PEP-PEO block copolymers. Average end-to-end distances of the two blocks in
the water and oil subphase are denoted by Rw and Ro, respectively.

overlap between neighboring chains on the membrane. Consider the volume V of a thin shell of
thickness 
0 above a surface of area A bent with local curvatures c1 and c2. The ratio V/(A
0)
is the ratio of volume available for chains in a layer of thickness 
0 and grafting area A in the
bent and unbent geometries, and may be expanded as

V

A
0
= 1 +H
0 +

1

3
K
20 + ... (47)

where H and K are the mean and Gaussian curvatures, respectively. This relation can be
checked easily for a spherical and a cylindrical surface. Then for a saddle surface, H = 0
and K = −1/R2, so that V/(A
0) � 1 − 1

3
(
0/R)2; the bent thin shells have therefore less

space available for monomers than the unbent shells, and the polymer chains must stretch upon
bending, which costs free energy. The same argument should also apply to the mushroom
regime.
Thus, from the combination of Eqs. (16) and (46), the prediction

ln(Ψ/Ψ∗) =
4π

ᾱ

1

6
σ(R2

w +R2
o)

= −π

5
σ(R2

w +R2
o) (48)

for the dependence of the emulsification boundary on the scaled polymer density is obtained.
This result is compared with experimental data for a number of different block-copolymer
lengths in Fig. 21. The exponential dependence of the membrane volume fraction Ψ at three-
phase coexistence is very nicely confirmed. In fact, this exponential dependence is responsible
that the small increment in the magnitude of the saddle-splay modulus has the dramatic effects
on the phase behavior shown in Fig. 19. Also, the data for different polymer lengths scale ex-
actly as predicted by Eq. (48). A fit of the experimental data in Fig. 21 to the functional form
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Fig. 22: Dimensionless ratio k0ξ of the two characteristic length scales of a microemulsion, as
a function of the polymer content, φδ, in the mixture of both amphiphiles, which is proportional
to the polymer grafting density on the membrane (Gompper et al. 2001) [70]. The two data
sets marked by circles (◦) and diamonds (�) were obtained for PEP5-PEO5 at fixed membrane
volume fractions of Ψ = 0.12 and Ψ = 0.08, respectively. The data set marked by triangles
(�) were taken for PEP10-PEO10 along three-phase coexistence.

of Eq. (48) yields a prefactor Ξ = 1.54, which is a bit more than a factor two larger than the
theoretical result π/5 � 0.628. A possible reason for this discrepancy is the theoretical result
(45) has been obtained for ideal chains, while the polymer chains are self-avoiding in the real
system. This is one of the few examples, where a quantitative comparison of experimental data
and theoretical results has been achieved for these complex, disordered, and mesoscopically
structured fluid phases.
It is possible to go one step further and also investigate the scattering behavior [70]. In this case,
the Monte Carlo simulations of triangulated surfaces predicts (Peltomäki et al. 2012) [56],

k0ξ = 7.39(0.15κR + 0.85κ̄R) ∼ σ(R2
o +R2

w) (49)

where the later relation follows from Eqs. (45) and (46). The experimental data for this charac-
teristic number are shown in Fig. 22. The data for fixed surfactant concentration, i.e. for fixed
membrane area, follow precisely the behavior of Eq. (49). It is important to notice, however,
that although the lines have equal slope, as expected from Eq. (49), they are shifted relative to
each other. The data along the coexistence line still depend linearly on the polymer content φδ

in the mixture of both amphiphiles, but even the slope is different. This is due to the logarithmic
renormalization of the bending rigidity [70, 56].
The extraction of bending rigidities has been applied recently to other microemulsion systems,
in particular to microemulsions containing supercritical CO2 instead of oil [71, 72].

6.2 Interfaces and Walls

So far, we have focused on bulk phases. However, microemulsions can of course coexist with
other phases, such as a water-rich and an oil-rich phase, see Sec. 2. Particularly important is also
the behavior near wall, because microemulsions are used, for example, for cleaning processes.
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Fig. 23: Microemulsion near a planar wall (left). The wall induces a lamellar structure close
to it (Kerscher et al. 2011) [73].

Results of Monte Carlo simulations employing the Ginzburg-Landau model described in Sec. 3.3
for the microemulsion structure near a wall shown in Fig. 23. The planar wall induces a few
layers of the lamellar phase near the wall. The scattering intensity for a small angle neutron
scattering study under grazing incidence (GISANS) , which is predicted from this structure,
agrees very well the recent experimental results (Kerscher et al. 2011) [73]. An interesting
theoretical prediction is that the “transition” from perfect lamellae to the bicontinuous structure
occurs through a layer of perforated lamellae, where neighboring membranes are connected by
catenoid-like passages.
Another interesting interface occurs between different domains of the same phase of ordered
bicontinuous structure, which are well described by triply periodic minimal surfaces, compare
Sec. 3.2. As for any other crystalline material, different kind of interfaces can be distinguished,
in particular tilt and twist grain boundaries, where the two grains are rotated with respect to each
other with a rotation axis parallel and perpendicular to the interface, respectively. Results of a
free-energy minimization in the Ginzburg-Landau model are show in Fig. 24. The interface is
difficult to see, because the membrane structure adapts to the constraints very well. This makes
it plausible that also the interface energy (corresponding to the surface tension between fluid
interfaces) is very small, which is indeed the result of the calculation [74]. This implies that
grain boundaries should be easily excited by external forces.

7 Summary and Conclusions

Research in the field of Soft Matter systems is an interdisciplinary endeavor. The work on ran-
dom surfaces and fluctuating membranes brings together mathematicians (minimal surfaces),
theoretical physicists (statistical physics, field theory), experimental physicists (neutron scat-
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Fig. 24: Interface between two different domains of the gyroid phase. The interface, a twist
grain boundary, is vertical, with the domains of the TPMS to the left and right, rotated by an
angle of 90o with respect to each other (Belushkin & Gompper 2009) [74].

tering, microscopy), chemists (synthesis, phase behavior), biologists (cell membranes), and
material scientists (nanoscale materials).
Over the last twenty years, the joint effort of researches from these different disciplines has lead
to significant progress in our understanding of amphiphilic systems. For the “simple” system
of an ensemble of membranes without internal structure, the qualitative behavior is reasonably
well understood. On the quantitative level, there remains still a lot of work to be done. As
the discussion of the previous sections has demonstrated, the results of different approximate
approaches do not always agree. Also, experiments are often done in rather complex systems,
where several different physical mechanisms are at work simultaneously, which make the inter-
pretation of the results difficult. Therefore, even the “simple” system will require much more
work before a satisfactory level of understanding has been reached.
The comparison of theoretical models, computer simulation results, and experimental data in-
dicates that the “fluctuating interfaces” approach works very well. The effect of the logarithmic
renormalization of the elastic curvature moduli now seems to be well established. Simulations
show that also scattering intensities of microemulsion or sponge phases can be predicted from
this approach. The results are predicted surprisingly well by the “Gaussian random field” ap-
proach, but show important qualitative and quantitative differences.
In the recent past, and undoubtedly in the future, the trend will go towards more complex
systems. With the increasing number of components, the system will become more flexible,
with properties which can be controlled and manipulated externally. Here, the contact with
biology will certainly intensify. For Statistical Physics, it will be a very interesting task to
predict the properties of such complex systems quantitatively.
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Appendices

A Correlation Functions of Gaussian Free-Energy Function-
als

The partition function Z for any free-energy functional F(Φ) is a functional integral over all
order parameter configurations Φ(r). This integral is written formally as

Z0 =

∫
DΦexp[−F ] (50)

By adding auxiliary fields H(r to the free-energy functional, correlation functions can be de-
rived from the (modified) partition function

Z{H} =

∫
DΦexp

[
−F +

∫
d3rH(r)Φ(r)

]
(51)

by functional differentiation. For example, the two-point order parameter correlation function
is obtained as

G(r− r′) =< Φ(r)Φ(r′) >=
1

Z0

δ2Z{H}
δH(r)δH(r′)

|H=0 . (52)

The exact evaluation of the functional integral (51) is, however, only possible in a few special
cases; in particular, this is possible for free-energy functionals of the quadratic form

F0 =

∫
d3r

∫
d3r′ w(|r− r′|)Φ(r)Φ(r′) (53)

=

∫
d3q w(|q|)Φ(q)Φ(−q) (54)

For the free-energy functional of Eq. (19), a Fourier transformation yields

w(q) =
1

2

(
c0q

4 + b0q
2 + a0

)
(55)

In all other cases of non-Gaussian functionals, one has to resort to a perturbative approach
[75, 44].
We want to focus here on the calculation of correlation functions. For the functional (53), the
partition function (51) is given by

Z{H} =

∫
DΦ exp

[∫
d3q [−w(|q|)Φ(q)Φ(−q) +H(q)Φ(−q)]

]
(56)

By completing the square in the exponent, we obtain

Z{H} =

∫
DΦ exp

[∫
d3q

[
−w(q)

∣∣∣∣
(
Φ(q)− H(q)

2w(q)

)∣∣∣∣
2

− H(q)H(−q)

4w(q)

]]
(57)

Here, we have used that the order parameter Φ(r) and the auxiliary fields H(r) are real numbers,
so that Φ(−q) = Φ(q)∗ and H(−q) = H(q)∗. By introducing the new integration variables
Φ̃(q) = Φ(q)−H(q)/2w(q), we obtain from Eq. (57)

Z{H} = exp

[
−H(q)H(−q)

4w(q)

] ∫
DΦ̃ exp

[
−
∫

d3q w(q)Φ̃(q)Φ̃(−q)

]
(58)
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r

Φ

0

+ε

2ε/ |   Φ|

−ε

Consider smeared-out δ−function

0 +ε−ε

1/2ε
δε(Φ):

Fig. 25: In order to calculate the surface area of level surfaces of Gaussian random fields, the
δ-function in Φ has to be corrected for the different local gradients of the order-parameter field.
For details see text.

The remaining functional integral is the partition function Z0, compare Eq. (50), which is in-
dependent of the fields H(q), and therefore is not required for the calculation of correlation
functions. The evaluation of the functional derivatives in Eq. (52) is now straightforward and
yields

G(q) =
1

2w(q)
(59)

Together with Eq. (55), this implies Eq. (20).

B Calculation of the Surface Density S/V for Gaussian Ran-
dom Fields

We briefly sketch the calculation of the surface density S/V for Gaussian random. It is clear that
the surface density must be related to the average of δ(Φ(r)−α). However, note that in contrast
to the particle density of molecules or colloidal particles, which is given by ρ(r) =

∑
i δ(r−ri),

the δ-function for the level surfaces acts on the Φ-variable, rather than the space variable r is in
the usual case. Therefore, we need the mathematical identity

δ(Φ(r)− α) =
1

|∇Φ(r)|δ(r− r0) (60)

where r0 is the location of the level surface. The surface density is therefore given by

S/V = 〈|∇Φ(r)| δ(Φ(r)− α)〉 (61)
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There is another, more intuitive way to arrive at the same conclusion. Let us consider a smeared-
out δ-function of width ε, as shown in Fig. 25 (upper part). The contribution to the average of
the function δε now clearly depends on the gradient of Φ; if the gradient is small (large), the
contribution is large (small), as shown in Fig. 25 (lower part). Since for the calculation of S/V
the contribution of all parts of the surface must be the same — independent of the local gradient
of Φ — this effect has to be divided out, which gives again Eq. (61).
In order to calculate the average (61), we need the joint probability distribution function

P [Φ(r) = α,∇Φ(r) = v] = 〈δ(Φ(r)− α) δ(∇Φ(r)− v)〉 (62)

It is shown in detail in Appendix C that

P [α,v] = P0 exp

[
−α2

2
− v2

2σ2
v

]
(63)

with

σv =
1

3

∫
d3q

(2π)3
q2ν(q) ≡ 1

3
〈q2〉ν (64)

and normalization
P0 = (2π)−2σ−3

v (65)

This implies

S/V =

∫
d3v|v|P (α,v)

= 4πP0

∫ ∞

0

dvv3 exp[−α2/2− v2/(2σ2
v)] (66)

=
2

π
exp[−α2/2]

√
1

3
〈q2〉ν

This is just the result (26).

C Joint Distribution of Gaussian Random Fields

Joint probability distribution functions are required for the calculation of geometrical averages
of level surfaces of Gaussian random fields, see Appendix B. First, the probability distribution

P [Φ(r) = α,∇Φ(r) = v] = 〈δ(Φ(r)− α) δ(∇Φ(r)− v)〉 (67)

has to be calculated [39, 6]. Since this probability distribution only contains a single spatial
variable, and the system is homogeneous on average, r = 0 can be chosen without loss of
generality. The representation

δ(x) =

∫ ∞

−∞

dk

2π
exp(ikx) (68)

can now be used to obtain

P [α,v] =

∫
dω

2π

∫
d3k

(2π)3
〈
eiω(Φ(r)−α)eik·(∇Φ(r)−v)

〉
(69)
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With the Fourier-representation

Φ(r) =

∫
d3k

(2π)3
Φ(q)eiq·r (70)

this becomes

P [α,v] =

∫
dω

2π

∫
d3k

(2π)3
e−iωα−ik·v

〈
exp

∫
d3q

(2π)3
[iωΦ(q)− k · qΦ(q)]

〉
(71)

at r = 0. The average in Eq. (71) has to be evaluated with the Boltzmann weight

exp[−H0] = exp

{
−1

2

∫
d3q

(2π)3
ν(q)−1|Φ(q)|2

}
(72)

which implies in particular

〈Φ(q)Φ(q′)〉 = ν(q)(2π)3δ(q+ q′) (73)

For a Gaussian-distributed variable x ∈ C, the relation

〈eikx〉 = exp(−1

2
k2〈x2〉) (74)

holds exactly. Therefore,〈
exp

∫
d3q

(2π)3
[iω − k · q]Φ(q)

〉

= exp

[
1

2

∫
d3q

(2π)3

∫
d3q′

(2π)3
(iω − k · q)(iω − k · q′)〈Φ(q)Φ(q′)〉

]

= exp

[
−1

2

∫
d3q

(2π)3
(ω2 + (k · q)2)ν(q)

]
(75)

so that

P [α,v] =

∫
dω

2π

∫
d3k

(2π)3
e−iωα−ik·v exp

∫
d3q

(2π)3

[
−1

2
ω2 − 1

2
(k · q)2

]
ν(q) (76)

The remaining integrals are now straightforward. In particular,∫
d3q

(2π)3
(k · q)2 ν(q) = 1

3
k2〈q2〉ν ≡ k2σ2

v (77)

with 〈...〉ν defined in Eq. (30), and∫
d3k

(2π)3
e−ik·v e−

1
6
k2〈q2〉 = (2π)−3/2σ−3

v exp

[
−1

2

v2

σ2
v

]
(78)
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