001     20462
005     20200423203213.0
024 7 _ |a 10.1103/PhysRevLett.108.116101
|2 DOI
024 7 _ |a WOS:000301345000014
|2 WOS
024 7 _ |a 2128/7442
|2 Handle
024 7 _ |a altmetric:646092
|2 altmetric
037 _ _ |a PreJuSER-20462
041 _ _ |a eng
082 _ _ |a 550
084 _ _ |2 WoS
|a Physics, Multidisciplinary
100 1 _ |a Korte, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)138943
245 _ _ |a Selective Adsorption of C60 on Ge/Si Nanostructures
260 _ _ |a College Park, Md.
|b APS
|c 2012
300 _ _ |a 116101
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Physical Review Letters
|x 0031-9007
|0 4925
|y 11
|v 108
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a Selective adsorption of C-60 on nanoscale Ge areas can be achieved, while neighboring Si(111) areas remain uncovered, if the whole surface is initially terminated by Bi. Fullerene chemisorption is found at Bi vacancies which form due to partial thermal desorption of the Bi surfactant. The growth rate and temperature dependence of the C-60 adsorption were measured using scanning tunneling microscopy and are described consistently by a rate equation model. The selectivity of the C-60 adsorption can be traced back to an easier vacancy formation in the Bi layer on top of the Ge areas compared to the Si areas. Furthermore, it is also possible to desorb C-60 from Ge areas, allowing the use of C-60 as a resist on the nanoscale.
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Romanyuk, K.
|b 1
|u FZJ
|0 P:(DE-Juel1)VDB71268
700 1 _ |a Schnitzler, B.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB102170
700 1 _ |a Cherepanov, V.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB10516
700 1 _ |a Voigtländer, B.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB5601
700 1 _ |a Filimonov, S.N.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB105823
773 _ _ |a 10.1103/PhysRevLett.108.116101
|g Vol. 108, p. 116101
|p 116101
|q 108<116101
|0 PERI:(DE-600)1472655-5
|t Physical review letters
|v 108
|y 2012
|x 0031-9007
856 7 _ |u http://dx.doi.org/10.1103/PhysRevLett.108.116101
856 4 _ |u https://juser.fz-juelich.de/record/20462/files/FZJ-20462.pdf
|y OpenAccess
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/20462/files/FZJ-20462.jpg?subformat=icon-1440
|x icon-1440
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20462/files/FZJ-20462.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20462/files/FZJ-20462.jpg?subformat=icon-640
|x icon-640
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:20462
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|1 G:(DE-HGF)POF2-420
|0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)POF2-400
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2012
915 _ _ |a American Physical Society Transfer of Copyright Agreement
|0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1020
|2 StatID
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|g PGI
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
970 _ _ |a VDB:(DE-Juel1)135986
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21