000020484 001__ 20484
000020484 005__ 20240610120948.0
000020484 0247_ $$2DOI$$a10.1103/PhysRevE.85.031137
000020484 0247_ $$2WOS$$aWOS:000301849600004
000020484 0247_ $$2Handle$$a2128/9267
000020484 037__ $$aPreJuSER-20484
000020484 041__ $$aeng
000020484 082__ $$a530
000020484 084__ $$2WoS$$aPhysics, Fluids & Plasmas
000020484 084__ $$2WoS$$aPhysics, Mathematical
000020484 1001_ $$0P:(DE-Juel1)VDB1278$$aPopkov, V.$$b0$$uFZJ
000020484 245__ $$aBehavior of magnetic currents in anisotropic Heisenberg spin chains out of equilibrium
000020484 260__ $$aCollege Park, Md.$$bAPS$$c2012
000020484 264_1 $$2Crossref$$3online$$bAmerican Physical Society (APS)$$c2012-03-22
000020484 264_1 $$2Crossref$$3print$$bAmerican Physical Society (APS)$$c2012-03-01
000020484 300__ $$a031137
000020484 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020484 3367_ $$2DataCite$$aOutput Types/Journal article
000020484 3367_ $$00$$2EndNote$$aJournal Article
000020484 3367_ $$2BibTeX$$aARTICLE
000020484 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020484 3367_ $$2DRIVER$$aarticle
000020484 440_0 $$04924$$aPhysical Review E$$v85$$x1539-3755$$y3
000020484 500__ $$aV.P. acknowledges the University of Salerno for a research grant to support this work. M. S. acknowledges support from the Ministero dell' Istruzione, dell' Universita e della Ricerca (MIUR) through a Programma di Ricerca Scientifica di Rilevante Interesse Nazionale (PRIN) initiative.
000020484 520__ $$aThe behavior of the magnetic currents in one-dimensional Heisenberg XXZ spin chains kept out of equilibrium by boundary driving fields is investigated. In particular, the dependence of the spin currents on the anisotropy parameter Delta and on the boundary fields is studied both analytically and numerically in the framework of the Lindblad master equation formalism. We show that the spin current can be maximized with appropriate choices of the boundary fields, and for odd system sizes, N, we demonstrate the existence of additional symmetries that cause the current to be an odd function of Delta. From direct numerical integrations of the quantum master equation, we find that for an arbitrary N the current J(z)(N) vanishes for Delta = 0, while for Delta negative it alternates its sign with the system size. In the gapless critical region |Delta| < 1, the scaling of the current is shown to be J(z)(N) similar to 1/N while in the gapped region |Delta| > 1 we find that J(z) (N) similar to exp(-alpha N). A simple mean-field approach, which predicts rather well the values of J(z) (N) for the gapped region and the values of the absolute current maxima in the critical region, is developed. The existence of two different stationary solutions for the mean-field density matrix in the whole parameter range is also demonstrated.
000020484 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000020484 542__ $$2Crossref$$i2012-03-22$$uhttp://link.aps.org/licenses/aps-default-license
000020484 588__ $$aDataset connected to Web of Science
000020484 650_7 $$2WoSType$$aJ
000020484 7001_ $$0P:(DE-Juel1)VDB31818$$aSalerno, M.$$b1$$uFZJ
000020484 7001_ $$0P:(DE-Juel1)130966$$aSchütz, G.M.$$b2$$uFZJ
000020484 77318 $$2Crossref$$3journal-article$$a10.1103/physreve.85.031137$$bAmerican Physical Society (APS)$$d2012-03-22$$n3$$p031137$$tPhysical Review E$$v85$$x1539-3755$$y2012
000020484 773__ $$0PERI:(DE-600)2844562-4$$a10.1103/PhysRevE.85.031137$$gVol. 85, p. 031137$$n3$$p031137$$q85<031137$$tPhysical review / E$$v85$$x1539-3755$$y2012
000020484 8567_ $$uhttp://dx.doi.org/10.1103/PhysRevE.85.031137
000020484 8564_ $$uhttps://juser.fz-juelich.de/record/20484/files/PhysRevE.85.031137.pdf$$yOpenAccess
000020484 8564_ $$uhttps://juser.fz-juelich.de/record/20484/files/PhysRevE.85.031137.gif?subformat=icon$$xicon$$yOpenAccess
000020484 8564_ $$uhttps://juser.fz-juelich.de/record/20484/files/PhysRevE.85.031137.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000020484 8564_ $$uhttps://juser.fz-juelich.de/record/20484/files/PhysRevE.85.031137.jpg?subformat=icon-700$$xicon-700$$yOpenAccess
000020484 8564_ $$uhttps://juser.fz-juelich.de/record/20484/files/PhysRevE.85.031137.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000020484 909CO $$ooai:juser.fz-juelich.de:20484$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000020484 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000020484 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft  Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000020484 9141_ $$y2012
000020484 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020484 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020484 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020484 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020484 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020484 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020484 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020484 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020484 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020484 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000020484 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000020484 915__ $$0LIC:(DE-HGF)APS-112012$$2HGFVOC$$aAmerican Physical Society Transfer of Copyright Agreement
000020484 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000020484 970__ $$aVDB:(DE-Juel1)136032
000020484 9801_ $$aFullTexts
000020484 980__ $$aVDB
000020484 980__ $$aConvertedRecord
000020484 980__ $$ajournal
000020484 980__ $$aI:(DE-Juel1)ICS-2-20110106
000020484 980__ $$aUNRESTRICTED
000020484 981__ $$aI:(DE-Juel1)IBI-5-20200312
000020484 981__ $$aI:(DE-Juel1)IAS-2-20090406
000020484 999C5 $$1H.-P. Breuer$$2Crossref$$oH.-P. Breuer The Theory of Open Quantum Systems 2002$$tThe Theory of Open Quantum Systems$$y2002
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/RevModPhys.70.101
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/85/37001
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1140/epjst/e2007-00369-2
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJS.74S.173
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.65.243
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.82.1764
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1143/JPSJS.74S.181
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.78.167
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.57.5184
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.53.983
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.58.R2921
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.70.205129
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.88.077203
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1367-2630/10/4/043026
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.71.012301
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.72.032327
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1209/0295-5075/84/30007
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.82.011142
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1007/s10440-010-9585-3
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.103.100502
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.020401
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevA.82.012108
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevB.55.11029
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/0305-4470/35/9/307
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.106.220601
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1742-5468/2010/05/L05002
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1088/1751-8113/43/41/415004
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.102.207207
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevLett.105.060603
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.59.4912
000020484 999C5 $$2Crossref$$9-- missing cx lookup --$$a10.1103/PhysRevE.71.036102