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The behavior of the magnetic currents in one-dimensional Heisenberg XXZ spin chains kept out of equilibrium

by boundary driving fields is investigated. In particular, the dependence of the spin currents on the anisotropy

parameter � and on the boundary fields is studied both analytically and numerically in the framework of the

Lindblad master equation formalism. We show that the spin current can be maximized with appropriate choices

of the boundary fields, and for odd system sizes, N , we demonstrate the existence of additional symmetries that

cause the current to be an odd function of �. From direct numerical integrations of the quantum master equation,

we find that for an arbitrary N the current Jz(N ) vanishes for � = 0, while for � negative it alternates its sign

with the system size. In the gapless critical region |�| < 1, the scaling of the current is shown to be Jz(N ) ∼ 1/N

while in the gapped region |�| > 1 we find that Jz(N ) ∼ exp(−αN ). A simple mean-field approach, which

predicts rather well the values of Jz(N ) for the gapped region and the values of the absolute current maxima in

the critical region, is developed. The existence of two different stationary solutions for the mean-field density

matrix in the whole parameter range is also demonstrated.
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I. INTRODUCTION

Recent advances in the experimental manipulation of

nanowires and quantum dots have made it possible to in-

vestigate quantum systems consisting of a few quantum dots

or quantum bits. On the other hand, manipulations of single

quantum bits (e.g., application of a quantum gate) form the

basis of the functioning of any elementary block of a quantum

computing device. However, a theoretical understanding of

microscopic quantum systems out of equilibrium (e.g., under

constant pumping or continuous measurement by a quantum

probe) is far from being complete, apart from the most simple

cases such as a single two-level system or a quantum harmonic

oscillator under external pumping or in contact with a reservoir.

In view of this, the role of simple but nevertheless spatially

extended systems, amenable to both analytic and numerical

investigation, becomes important. In particular, it is desirable

to understand the interplay between many-body bulk properties

in extended quantum systems (e.g., magnon excitations or

magnetization currents in quantum spin systems) and local
(e.g., applied to a small part of a system) pumping driving the

system constantly out of equilibrium.

To induce a nonequilibrium situation, one can couple the

system at both ends to magnetization reservoirs at different

potentials so to create magnetic gradients in the system. This

is frequently done in the framework of the Lindblad master

equation [1,2] with reservoirs modeled by means of Lindblad

operators acting at the system ends. A model of this type was

recently considered in Ref. [3], where an XXZ quantum chain

of finite size and constant effective pumping at the first and the

last site, which induces an effective gradient along the z axis,

was proposed and studied. In particular, a negative feedback of

the boundary pumping on a conserved magnetization current

beyond a certain amplitude of the gradient was observed.

We remark that transport of magnetization in the Heisen-

berg model has been extensively investigated during the past

years (for extended reviews, see Refs. [4,5]) using a range of

alternate methods, including Bethe-ansatz calculations [6,7],

Lagrange multipliers [8,9], exact diagonalizations [10,11], the

Lanczos method [12], quantum Monte Carlo [13], etc.

In the present study, we address the problem of how

the current in a quantum chain of the type considered in

Ref. [3], which we view as a generic string of quantum bits

manipulated at the ends through a stationary pumping, can

be maximized by a suitable choice of Lindblad operators.

The model is conceptually simple. It describes a system

of interacting two-level systems (quantum bits), and in

the absence of pumping it possesses remarkable properties

(integrability). In a nonequilibrium situation, the most natural

quantities to consider are the stationary currents, these being

the simplest many-body correlation functions and the simplest

indicators of how far the system is from equilibrium. Our first

objective is the study of the behavior of stationary conserved

magnetization currents Jz(N ) in a system of size N , and to

maximize their values with respect to the boundary pumping.

In particular, we will demonstrate the following:

(i) The current Jz(N ) can be made at least one order of

magnitude larger than in Ref. [3] with an appropriate choice

of boundary conditions.

(ii) The current scales as Jz(N ) ∼ 1/N in the critical region

−1 < � < 1 and as Jz(N ) ∼ exp(−αN ) in the gapped region.

(iii) For arbitrary N , the current Jz(N ) always vanishes

for � = 0 while for � negative it alternates its sign with the

system size: sgn(Jz(N )) = (−1)N .

By neglecting nearest-neighbor correlations, we also de-

velop a simple semiclassical (mean-field) approach that pre-

dicts in an excellent manner the current Jz(N ) in the gapped

region |�| > 1 and gives a qualitatively good agreement for

the absolute current maxima in the critical region |�| < 1.

The existence of two different stationary solutions for the

mean-field density-matrix equation is demonstrated for the
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whole parameter range, and the possibility that multiple

stationary solutions can exist also in the quantum case is

suggested. This last possibility represents a very interesting

problem that deserves further investigations.

The plan of the paper is the following. In Sec. II, we

introduce the model equation for our open spin chain and

discuss the main properties of the master equation in the

Lindblad form. In particular, we discuss the action of Lindblad

operators at the chain boundaries and show how these operators

can be used to induce gradients and boundary magnetization

values along spatial directions. In Sec. III, we discuss and

analytically prove the existence of a nontrivial symmetry of

the Lindblad master equation with respect to the anisotropy

parameter � → −� interchange for the case of chains with

an odd number of spins. In Sec. IV, we present and discuss

numerical quantum results obtained from direct integrations

of the Lindblad master equation. Section V is devoted to the

semiclassical approach and its comparisons with the quantum

results. Finally, a brief summary of the main results of the

paper and future perspectives are given in the Conclusion.

II. MODEL EQUATIONS

We study the quantum master equation in the Lindblad form

for the XXZ model with a drive at the boundaries of the form

∂ρ

∂t
= −i[H,ρ] −

1

2

4
∑

m=1

{ρ,L†
mLm + V †

mVm + W †
mWm}

+
4

∑

m=1

(LmρL†
m + VmρV †

m + WmρW †
m) (1)

(here and below we set h̄ = 1 and denote with a dagger the

adjoint operator). In this approach [1], ρ is the reduced density

matrix and H is the Hamiltonian of the open XXZ chain,

H = JE

N−1
∑

k=1

σ x
k σ x

k+1 + σ
y

k σ
y

k+1 + �σ z
k σ z

k+1. (2)

The dissipative terms of the Lindblad master equation contain

three sets of the Lindblad operators Lm,Vm, and Wm, which

we choose to act locally at the open ends (the first and the

last site) of the quantum chain. The Lindblad operators acting

on the first site k = 1 carry subscripts m = 1,2 and are given

explicitly by

L1 = α
(

σ x
1 + iσ

y

1

)

, L2 = β
(

σ x
1 − iσ

y

1

)

,

V1 = p
(

σ
y

1 + iσ z
1

)

, V2 = q
(

σ
y

1 − iσ z
1

)

, (3)

W1 = u
(

σ z
1 + iσ x

1

)

, W2 = v
(

σ z
1 − iσ x

1

)

.

The Lindblad operators Lm,Vm, and Wm with m = 3,4 act

on the last site i = N and are given by the expressions

for Lm−2,Vm−2, and Wm−2, respectively, with α,β,p,q,u,v

substituted by α′,β ′,p′,q ′,u′,v′. We can always choose the

constants α,β, . . . ,v′ to be real and non-negative, since in

Eq. (1) all Lindblad operators appear in pairs. The operators

Lm,Vm, and Wm, taken alone, target polarization along the

axes z, x, and y, respectively, on the boundary sites. Notice that

even in the free-fermion case � = 0, this generalized Lindblad

dynamics is not integrable, as is the case in Ref. [14], because

the Lindblad operators are not all quadratic in fermionic

variables.

It is easy to verify from (1) that ∂
∂t

Tr(ρ) = 0,ρ† = ρ,
∂
∂t

Tr(ρ2) �= 0. The first two relations are necessary for inter-

preting ρ as a density matrix with Tr(ρ) = 1, while the latter

means that we have an open system: an initially pure state

ρ = |φ〉〈φ| will not remain pure over the course of time. In

contrast to reduced density matrices of isotropic ferromagnetic

Heisenberg chains or many-body systems on complete graphs,

which can be fully characterized (see Refs. [15,16]), stationary

density matrices of an open quantum system out of equilibrium

[in this context, solutions of Eq. (1)] are largely unknown (see

Ref. [1] for a review). The action of the Lindblad operators

acting on the first site (Lm,Vm, and Wm with m = 1,2) becomes

clear if we write down the equations of motion for the

expectation values of boundary operators σ x
1 ,σ

y

1 ,σ z
1 . Using

the master equation and the properties of the Pauli matrices

σ kσ jσ k = −σ j for j �= k and σ iσ j = iεijkσ
k for i �= j , one

obtains after some algebra

d
〈

σ z
1

〉

dt
= H z

part − Ŵz

(〈

σ z
1

〉

− σ z
L

)

,

d
〈

σ x
1

〉

dt
= H x

part − Ŵx

(〈

σ x
1

〉

− σ x
L

)

, (4)

d
〈

σ
y

1

〉

dt
= H

y
part − Ŵy

(〈

σ
y

1

〉

− σ
y

L

)

,

where H k
part denotes the term −i Tr(σ k

1 [H,ρ]) with k = x,y,z

and

Ŵz = K + (2α2 + 2β2), σ z
L =

4α2 − 4β2

Ŵz

;

Ŵx = K + (2p2 + 2q2), σ x
L =

4p2 − 4q2

Ŵx

; (5)

Ŵy = K + (2u2 + 2v2), σ
y

L =
4u2 − 4v2

Ŵy

;

K = 2(p2 + q2 + u2 + v2 + α2 + β2).

If Ŵx,Ŵy,Ŵz are sufficiently large with respect to the exchange

constant JE of the Heisenberg Hamiltonian, the Hamiltonian

part, Hpart, in the above equations is negligible and we expect

the averages 〈σ i
1(t)〉 to relax to their “left boundary” values σ i

L,
〈

σ i
1(t)

〉

= σ i
L +

〈

σ i
1(0) − σ i

L

〉

e−Ŵi t , (6)

after a relaxation time of order 1/Ŵi . Notice that |σ i
L| � 1

for any choice of p,q,u,v,α,β. For the right boundary, we

will obtain the equations of motion for expectation values

〈σ i
k=N 〉 by substituting α,β → α′,β ′, etc., in (4), from which

we see that the right boundary values σ i
R are given by the ratios

of the Lindblad operator amplitudes for m = 3,4. Thus, by

choosing a specific set of Linblad operators Lm,Vm, and Wm,

we may induce gradients and boundary magnetization values

along the axes x, y, and z, respectively. We remark, however,

that not all sets of possible boundary values σ x
L,σ

y

L , and σ z
L

are accessible. For instance, if Ŵx > 2p2 + 2q2, meaning that
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some of the constants u,v,α,β are nonzero, the maximal value

of σ x
L (attained by the choice q = 0) is σ x

L = 4p2/ Ŵx < 1.

Note that the condition (σ x
L)2 + (σ

y

L)2 + (σ z
L)2 � 1 guarantees

the positiveness of the steady-state reduced density matrix

ρ1 = Tr2,3,...,Nρ of the left boundary site i = 1 in the case

of infinitely large coupling constants Ŵα , the equality sign

corresponding to a pure one-site state Tr(ρ1)2 = 1.

For our study, we choose the following set of the Lindblad

operators: only three operators V1, V4, and W4 = v′(σ z
N − iσ x

N )

are nonzero and have the following amplitudes:

p =
√

Ŵ, q ′ =
√

0.5Ŵ, v′ =
√

Ŵ, (7)

while all the remaining constants α,β, . . . ,u′ are set to zero.

With the choice (7), we set “desirable” boundary magneti-

zation values to σ
y

L = 0,σ z
L = 0,σ x

L = 1 at the left boundary

and σ
y

L = −0.8,σ z
L = 0,σ x

L = −0.5 at the right boundary, as

can be verified straightforwardly from (5). The coupling

constant Ŵ will be set to Ŵ = 4JE in most cases, so that

the amplitudes of the Lindblad operators and the Heisenberg

exchange interaction are comparable. The choice (7) can be

argued to be a “minimal” favorable choice in order to produce

the largest possible stationary current along the the anisotropy

axis z,

Jz = σ y
n σ x

n+1 − σ x
n σ

y

n+1 (8)

(as a conserved quantity, it does not depend on n). It is

worth remarking that for our choice of Lindblad operators,

the averaged energies per site of nonequilibrium steady states

are very small, this corresponding to a very high (practically

infinite) temperature.

Notice that from a physical point of view, our choice of

Lindblad operators corresponds to magnetic reservoirs with

easy-plane magnetizations at the boundaries. This could be

realized by means of twisted magnetic fields at the boundary

with the twist angle fixed by the parameters in Eq. (7). This

setting is “orthogonal” to the choice made in Ref. [3], where

the boundary gradient with the help of Lindblad operators Lm

was set along the anisotropy axis. In our case, we have no

gradient along the conserved direction, σ z
L = σ z

R = 0, while

strong gradients 1 → −0.5 and 0 → −0.8 are set along the

perpendicular directions. Note that an increase of a gradient

in one (say, X) component has the expense of decreasing a

gradient in the other component; see (5). For example, it is not

possible, by keeping nonzero V1, V4, and W4 with arbitrary

(but nonzero) amplitudes (3), to realize the maximal gradients

1 → −1 in both the y and x directions.

III. SYMMETRY RELATIONS FOR ODD N

For odd N , the master equation in the Lindblad form

(1) has a nontrivial symmetry with respect to � → −�

interchange, described below. By a unitary transformation,

U = σ z
2 σ z

4 · · · σ z
N−1 = U †, the Hamiltonian H transforms as

UH (�)U † = −H (−�), while the Lindblad operators do not

transform since they are acting on the boundary sites i = 1,N .

Applying U · · · U † to the master equation (1), and taking

the complex conjugate, we obtain Eq. (1) for the transformed

density matrix ρ ′ = Uρ∗(−�)U † and Lindblad operators

L∗
i ,V

∗
i ,W ∗

i . In the basis where σ x is diagonal, we obtain

L∗
i = L

†
i , V ∗

i = Vi , and W ∗
i = −Wi . For our choice of the

Lindblad operators (7) not containing operators L, the resulting

Lindblad equation for ρ ′ is identical to the original one, with

a replacement � → −�, yielding the symmetry

ρ(�,t) = Uρ∗(−�,t)U. (9)

This symmetry implies, in particular, the sign change for

one-point functions along the anisotropy axis 〈σ z
n (−�)〉 =

−〈σ z
n (�)〉, and site-to-site alternations along the other axes

〈σ y
n (−�)〉 = (−1)n+1〈σ y

n (�)〉, σ x
n (−�)〉 = (−1)n+1〈σ x

n (�)〉.
Conserved current expectation 〈Jz(n)〉 = 〈σ y

n σ x
n+1 − σ

y
n σ x

n+1〉
changes sign under � sign reversal,

〈Jz(n)〉(N,�) = −〈Jz(n)〉(N, − �) for odd N. (10)

The sign alternation produces interesting conse-

quences for the static structure factors Sαβ(k,�) =
∑

n<m eik(m−n)〈σ α
n σ

β

n+1〉. Such structure factors can be used

as entanglement witnesses [17,18] and are experimentally

accessible via neutron scattering. Using (9), we obtain

Szz(k,�) = Szz(k, −�),

Sαα(0,�) = Sαα(π, −�) for α = y,x.

IV. NUMERICAL RESULTS

We integrate numerically in time the full set of equations

for the reduced density-matrix elements (1), starting from

the maximally mixed initial state. Once the convergence

to the stationary state has been reached, we measure the

current 〈Jz(n)〉 = 〈σ y
n σ x

n+1 − σ
y
n σ x

n+1〉 = Tr(ρJz(n)) and sta-

tionary magnetization profiles 〈σ i
n〉 = Tr(ρσ i

n). These show

the expected behavior, namely a tendency to approach the

expected boundary spin values at chain ends, e.g., 〈σ y

N 〉 →
σ

y

L = −0.8 etc. (data not shown).

The current dependence on � for different sizes N � 10

is shown in Fig. 1. First, we see the antisymmetry of Jz(�)

with respect to � for odd N , in accordance with (10). Second,

we note that the flux Jz(0) = 0 for all N > 2 in the free-

fermion case � = 0. In this respect, we remark that (i) the

above property is not true for the other current components,

and (ii) the vanishing of the Jz current is very likely to be

due to the absence of σz gradient induced from boundaries

(due to our choice of Lindblad operators) and to the lack of

corresponding interaction terms in the Hamiltonian. Moreover,

for the case of odd N , the vanishing of Jz is rigorously proved,

being a direct consequence of Eq. (10). We also note that the

gradients of ∂Jz(�)/∂� at � = 0 seem to depend only on

parity of N , apart from the nongeneric cases N = 2,3, i.e.,

(Jz)
′(0) = α− < 0 for even N and (Jz)

′(0) = α+ > 0 for odd

N , where α± (at least numerically) is independent of N .

At large anisotropy values � → ±∞, the flux Jz tends

to zero. This can be demonstrated in the following way: For

infinitely large �, the system evolution is described essentially

by Heisenberg equations of motion for an Ising Hamiltonian

HI =
∑

n σ z
nσ z

n+1, i.e., ∂ρ

∂t
= − i

h̄
[HI ,ρ], the general time-

independent solution of which is given by ρI =
∑

αk|k〉〈k|,
where |k〉 are eigenstates of the HI , i.e., the set of all diagonal

matrices in the representation where σ z is diagonal. The flux
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FIG. 1. (Color online) Stationary spin currents Jz vs � for the

HXXZ chain of different lengths N � 10 with Ŵ = 4. Symbols refer

to numerical results obtained from direct integrations of the Lindblad

master equation, while joining lines are drawn only as a guide for the

eyes.

Jz in this representation is a difference of the two off-diagonal

elements of ρI and is therefore trivially 0. For large but finite

�, it is tempting to relate the exponentially small current to the

phenomenon of “edge-locking” [19] observed in the quantum

evolution of the XXZ chain without Lindblad operators. In that

case, there are blocks of spins pointing in the z direction that

are almost immobile in the vicinity of the boundary and hence

suppress a magnetization current. Apparently, the coupling to

an environment described by the Lindblad operators is not

sufficient to significantly overcome edge-locking.

Another sign of an intrinsic interplay between the local

action of Lindblad operators and bulk behavior governed by

the Hamiltonian H is seen if we look at the scaling of the

current Jz with system size N . In the region |�| � 1, the Jz

decreases as Jz ∼ exp(−γN ) for fixed �, while in the region

|�| � 1 the flux decreases algebraically as max Jz ∼ 1/N ,

Jz(N ) ∼
{

exp(−γN ) for |�| > 1,

1/N for |�| < 1.
(11)

Notice that in this case we look at the absolute maxima of the

current; see Fig. 2. Since in the infinite system N = ∞ the

region |�| < 1 (|�| > 1) corresponds to the critical gapless

phase with algebraically decaying correlations (gapped phase

with exponentially decaying correlations), it is natural to

suppose that the behavior of the current Jz induced by the

local pumping is influenced by the critical properties of the

Hamiltonian. It is quite remarkable that one can see the signs

of the bulk behavior already at small system sizes N � 10.

With the help of the quasiclassical approximation presented

in the next section, which turns out to work qualitatively

well in the |�| � 1 region, we can arrive at much larger

system sizes and confirm our conclusions. Note that transport

properties of integrable systems are often anomalous, e.g.,

characterized by a ballistic spin and heat transport [20]. This

corresponds to finite Drude weights, which sometimes can

be computed analytically [6,21]. We remark that in our case

FIG. 2. Maxima of the |〈Jz〉| currents depicted in Fig. 1 vs N for

the range � > 0 (left panel) and � < 0 (right panel). Continuous

curves show that the scaling follows a law of the type a/N with

a = 2.285 for the left panel and a = 1.24 for the right panel. Other

parameters are fixed as in Fig. 1. The maxima of the current modulus

for odd-N values have not been displayed in the right panel because,

due to the symmetry relations discussed in Sec. III, they are the same

(and obviously follow the same scaling) as in the left panel.

the nonequilibrium steady states are characterized by at most

diffusive transport [see Eq. (11)], in contrast to what was

recently reported for the XXZ Heisenberg model with a

different realization of boundary reservoirs (two Lindblad

operators at each system end, not optimized for maximal

transport) [22]. In particular, from the data depicted in Fig. 1

it follows that the scaling at the isotropic point � = 1 follows

the same scaling in (11) for the critical (gapless) region (with a

prefactor a ≈ 2), in contrast with the scaling 1/
√

N obtained

in Ref. [22] (this being another example of the influence of

boundary reservoirs on bulk properties).

Another remarkable observation can be made if we look

at the signs of the flux Jz in the � < 0 region. This sign

respects the parity of N : sgn(Jz(N )) = (−1)N . An explanation

of this phenomenon is related to the alternating structure

of the stationary profiles 〈σ y
n 〉,〈σ z

n 〉, as illustrated in Fig. 3.

It is worth pointing out that a perturbation theory in the

small parameter ε = �−1 ≪ 1 around the point � = −∞,

which could in principle explain the phenomenon of flux

alternation, is difficult to build for the following reason: The

scaling Jz(N ) ∼ exp(−γN ) for fixed � implies a scaling

|Jz(�)| ∼ 1/|�|N−γ = εN−γ for fixed N . From the numerical

data, we estimate |Jz(�)| ≈ C/|�|N−3/2 = CεN−3/2. So the

first nonvanishing order of perturbation theory (at least for

the quantity Jz in which we are interested) is εN−3/2, where

the N is the system size. On the other hand, in the opposite

limit � → −0, the analytical treatment might be possible,

because at � = 0 the Hamiltonian H becomes a free-fermion

Hamiltonian. Several analytic results are available for the

Lindblad master equation at the free-fermion point [14,23–26];

however, these results are not applicable to our choice of the

Lindblad operators (7).

We have studied the dependence of the flux Jz on various

parameters, including the coupling strength Ŵ. At large

coupling strength, one expects an effective freezing of the

hoppings of the boundary spins due to the quantum Zeno effect.

However, unlike in the setting [3], where a quantum Zeno effect

suppresses the magnetization current, for our choice of the

Lindblad operators the current suppression is not observed; see

Fig. 4. The reason is that through large couplings we “freeze”
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FIG. 3. Comparison between quantum (dots joined by dotted

lines) and semiclassical (continuous lines) mean currents 〈Jz〉 vs �

for Ŵ = 4 and N = 6,7 (top left and right panels, respectively) and

N = 8,9 (corresponding bottom left and right panels).

the boundary σ y and σ x spin components, while hoppings in

the σ z component, contributing to the current Jz, may still

occur.

V. MEAN-FIELD APPROACH

Studies of the quantum system dynamics via solving the

full system (1) or by an appropriate Monte Carlo scheme

are inevitably restricted to small system sizes N due to

exponentially growing complexity. It is therefore desirable

to complement them with other approaches that might help

to study a given specific feature of the quantum system

and advance our understanding. It turns out that the simple

mean-field approach described below captures the quantities

we are interested in (one-point correlation functions and flux

Jz) with very good precision for large values of � and correctly

reproduces the alternation of the sign of the current with N .

Also, in spite of the very qualitative behavior found inside the

� < 1 region, the main Jz peaks in this region are predicted

reasonably well (see Fig. 3 and the discussion below).

Since the complexity in the mean-field approach grows

algebraically with the size (rather than exponentially), we can

easily handle much larger system sizes than in the quan-

tum case. Neglecting correlations, i.e., setting 〈σ x
n σ z

n+1〉 =
〈σ x

n 〉〈σ z
n+1〉, we write down the set of equations of motion

for spin operators 〈σ x
n 〉,〈σ y

n 〉,〈σ z
n 〉:

d

dt
σ y

n = �σ z
n−1σ

x
n − σ x

n−1σ
z
n + (n − 1 → n + 1),

d

dt
σ z

n = −σ
y

n−1σ
x
n + σ x

n−1σ
y
n + (n − 1 → n + 1),

d

dt
σ x

n = σ
y

n−1σ
z
n − �σ z

n−1σ
y
n + (n − 1 → n + 1)

0.1 0

-0.2

-0.1

0.0

0.1

0.2

J
z

Γ

FIG. 4. Mean-field (black dotted curves) and quantum (open

circles) numerical solutions vs the coupling parameter Ŵ for a chain

of N = 5 sites and for two opposite values of �: � = 1.5 (Jz > 0

curves) and � = −1.5 (Jz < 0 curves).

in the bulk n = 2,3, . . . ,N − 1, and at the boundaries (n = 1),

d

dt
σ y

n = �σ z
n+1σ

x
n − σ x

n+1σ
z
n − Ŵy

(

σ y
n − σ

y

L

)

,

d

dt
σ z

n = −σ
y

n+1σ
x
n + σ x

n+1σ
y
n − Ŵz

(

σ z
n − σ z

L

)

,

d

dt
σ x

n = σ
y

n+1σ
z
n − �σ z

n+1σ
y
n − Ŵx

(

σ x
n − σ x

L

)

,

where Ŵi and σ i
L are given by the expressions (5). Analogously,

we write down the mean-field equations for the right boundary

n = N . Solving them numerically for the stationary state, we

find qualitative agreement with the quantum problem at least

in part of the parameter range (see Fig. 3).

Note that for |�| > 1, we found also a qualitative agreement

for the flux Jz, which becomes more accurate as N or � grows.

To explain this agreement, we note that the current Jz can be

written as a sum of the disconnected and the connected part,

Jn,z =
〈

σ x
n

〉 〈

σ z
n+1

〉

−
〈

σ y
n

〉 〈

σ x
n+1

〉

+
〈

σ x
n σ z

n+1

〉

c
−

〈

σ y
n σ x

n+1

〉

c
,

the contribution of the latter being neglected in the mean-field

approach. In the full quantum system, one observes a drastic

decrease of the “weight” of the connected part outside the

critical region |�| < 1. Thus, outside the critical region,

the current Jz(�) is determined essentially by one-point

correlations, thus validating the mean-field assumption.

The alternation of the sign of the flux Jz(N ) with N within

the mean-field description is a consequence of the oscillatory

behavior of the one-point functions 〈σ z
n 〉 and 〈σ z

n 〉; see Fig. 5.

We expect, however, this oscillatory behavior to govern the

flux alternation also in the quantum case for � ≪ −1, where

the flux Jz is determined, essentially, by one-point correlations

(data not shown).

Quite remarkably, in the mean-field description we find

two different stationary solutions ρ for a given value of � and
in the whole parameter range (see the black dotted curves in

Fig. 4), which are characterized by different fluxes Jz and differ

by the sign of the average z magnetization Mz =
∑

n〈σ z
n 〉.

For positive �, these solutions can be associated with the
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-1
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1

<
σ

n

α

>

n

-1

0

1

<
σ

n

α

>

n

FIG. 5. Magnetization profiles 〈σ x
n 〉,〈σ y

n 〉,〈σ z
n 〉 shown with bro-

ken, solid, and dotted lines, respectively. The mean-field flux between

sites 1 and 2 is given by J z
1 = σ

y

1 σ x
2 − σ x

1 σ
y

2 ≈ −σ
y

2 , because

σ x
1 ≈ σ x

L = 1,σ
y

1 ≈ σ
y

L = 0. Note that σ y
n is alternating its sign with

n and tends to fixed (independent of N ) boundary values σ
y

L and

σ
y

R . Therefore, an increase of the system size N → N + 1 changes

the sign of σ
y

2 , which entails the change of the sign of the flux Jz;

compare the left panel (N = 6) and the right panel (N = 7). The

above arguments are valid also for the quantum (computed from the

Lindblad equation) case for � < −1, where the flux Jz is determined

essentially by one-point correlation functions.

first λ1 ≈ N/2 and the second λ2 = λ1/2 harmonics in the

respective 〈σ y
n 〉,〈σ x

n 〉 density profiles (see Fig. 6). We remark

that the mean-field solutions with larger absolute Jz are more

difficult to obtain from random initial conditions due to smaller

attraction basins. Also, the specular symmetry of the mean-

field curves around the Jz = 0 axis clearly indicates that the

odd-N symmetry of the quantum problem extends to the mean-

field model as well.

It is also worth noting that the (apparently single) quantum

solution for a fixed value of � in Fig. 4 (open circles) closely

follows and partially overlaps the mean-field solution with

smaller flux Jz, while the (possibly) missing second quantum

solution is the one corresponding to the classical curve with

larger flux and a smaller basin of attraction (this last fact could

explain the failure of all our attempts to find this solution).

However, the possibility of the existence of multiple stationary

solutions in the quantum case cannot be excluded, and more

investigations are required to clarify the issue. In this respect,

we remark that, apart for the very special case of Lindblad

operators taken as eigenoperators of the Hamiltonian H (this

being not our case), there is no general proof, to the best

of our knowledge, of the uniqueness of the solution of the

Lindblad master equation (in the mentioned special case,

the evolution equations for the populations of the energetic

levels become the classical master equation with a stochastic

matrix, and the uniqueness of the solution follows from

the Perron-Frobenius theorem). Considering the very good

agreement observed between mean-field and quantum results

in the |�| > 1 region, the possibility that multiple stationary

solutions could exist also in the quantum case should not be

overlooked.

VI. CONCLUSION

In summary, we have studied the magnetization current

induced in the one-dimensional quantum XXZ spin chain by

magnetic boundary fields and showed that this current can be

controlled and maximized by appropriate boundary magnetic

3 6 9

-1

0

1

<
σ

n

α

>

n

<σ >

<σ >

<σ >

-1

0

1

<
σ

n

α

>

n

<σ >

<σ >

<σ >

FIG. 6. The left panel shows magnetization profiles of 〈σ α
n 〉 for

two stationary mean-field solutions. Parameters: N = 9,� = 0.52.

The solution shown in the right panel corresponds to negative Jz and

is “quantistically unstable.” The quantum stable solution (left panel)

carries positive flux Jz. The profile corresponds to positive Jz and

N = 9.

fields. The dependence of the current on the anisotropy

parameter � and on the boundary field strengths has been

characterized analytically and numerically both by means of

system symmetries and by the numerical evaluation of the

stationary density matrix in the framework of the Lindblad

master equation. We have shown that for odd system sizes N ,

the existence of additional symmetries in the system causes

the current to become an odd function of �. For arbitrary

sites and for � negative, the current was also shown to

alternate its sign with the system size, sgn(Jz(N )) = (−1)N .

The scaling properties of the current with the system size

have been characterized both in the critical and in the gapped

regions.

We found that in the critical region, −1 < � < 1, the

current scales as Jz(N ) ∼ 1/N while in the gapped re-

gion it scales as Jz(N ) ∼ exp(−αN ). The behavior of the

magnetization conductivity in the critical region shows a

nonmonotonic behavior with the existence of relative maxima

at intermediate values and with the current always vanishing

for � = 0. This behavior is notably different from the free

quantum evolution of an XXZ chain without boundary fields

but with a step initial state with opposite magnetizations

[27,28]. In that case, a nonequilibrium state with a current of

order 1 is attained even when � = 0. A simple mean-field

approach neglecting nearest-neighbor correlations predicts

qualitatively well the value of Jz(N ) for the gapped region

and the value of the absolute maximum in the critical

region.

The existence of two different stationary solutions for

the mean field ρ in the whole parameter range has been

demonstrated, and the possibility that multiple stationary

solutions could exist also in the quantum case has been

suggested. This last possibility represents a very interesting

problem that deserves further investigations.
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