000204910 001__ 204910 000204910 005__ 20240619083513.0 000204910 0247_ $$2Handle$$a2128/9151 000204910 037__ $$aFZJ-2015-05494 000204910 041__ $$aEnglish 000204910 1001_ $$0P:(DE-Juel1)131034$$aWiegand, Simone$$b0$$eCorresponding author$$ufzj 000204910 1112_ $$aInternational Symposium on Fluctuation and Structure out of Equilibrium 2015$$cKyoto$$d2015-08-20 - 2015-08-23$$gSFS2015$$wJapan 000204910 245__ $$aThermophoresis of charged colloidal spheres and rods 000204910 260__ $$c2015 000204910 3367_ $$0PUB:(DE-HGF)24$$2PUB:(DE-HGF)$$aPoster$$bposter$$mposter$$s1441718544_16206 000204910 3367_ $$033$$2EndNote$$aConference Paper 000204910 3367_ $$2DataCite$$aOutput Types/Conference Poster 000204910 3367_ $$2DRIVER$$aconferenceObject 000204910 3367_ $$2ORCID$$aCONFERENCE_POSTER 000204910 3367_ $$2BibTeX$$aINPROCEEDINGS 000204910 520__ $$aRecently Dhont and Briels [1] calculated the double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness. In this approach three forces are taken into account, which contribute to the total thermophoretic force on a charged colloidal sphere due its double layer: This concept has successfully been used to describe the Soret coefficient of Ludox particles as function of the Debye length [2]. A good agreement between experiment and theory was found with only one adjustable parameter, the intercept at zero Debye length, which measures the contribution of the solvation layer and possibly the colloid core material to the Soret coefficient.Later the concept was extended for charged colloidal rods [3]. As model system we used the charged, rod-like fd-virus. The Soret coefficient of the fd-viruses increases monotonically with increasing Debye length, while there is a relatively weak dependence on the rod-concentration when the ionic strength is kept constant. Additionally to the intercept at zero Debye length we used the surface charge density as an adjustable parameter. Applying the theoretical model to the experimental data we found a surface charge density, which compares well the one determined by electrophoresis measurements taking into account the ion condensation. Additionally we studied the interplay between steric and charge contribution by grafting polyethylene glycol chains to the fd-virus. For short Debye lengths we find a clear contribution of the polymer chains to the thermodiffusion coefficient, which fades out for longer Debye lengths, when the polymer chains fit into the electrostatic layer. On the other hand it turns out that the diffusion coefficient is less sensitive to the grafting and the theoretical expression of the second virial coefficient of rods can be applied to the bare and the grafted fd-virus. REFERENCES1. J.K.G. Dhont and W.J. Briels, Eur. Phys. J. E 25, 61(2008).2. H. Ning, J.K.G. Dhont, and S. Wiegand, Langmuir, 24, 2426(2008).3. Z. Wang, H. Kriegs, J. Buitenhuis, J.K.G. Dhont, and S. Wiegand, Soft Matter, 9, 8697(2013). 000204910 536__ $$0G:(DE-HGF)POF3-551$$a551 - Functional Macromolecules and Complexes (POF3-551)$$cPOF3-551$$fPOF III$$x0 000204910 7001_ $$0P:(DE-Juel1)144087$$aWang, Zilin$$b1$$ufzj 000204910 7001_ $$0P:(DE-Juel1)130577$$aBuitenhuis, Johan$$b2$$ufzj 000204910 7001_ $$0P:(DE-Juel1)130616$$aDhont, Jan K.G.$$b3$$ufzj 000204910 8564_ $$uhttps://juser.fz-juelich.de/record/204910/files/SFS2015Wiegandnew.doc$$yOpenAccess 000204910 909CO $$ooai:juser.fz-juelich.de:204910$$pdriver$$pVDB$$popen_access$$popenaire 000204910 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess 000204910 9141_ $$y2015 000204910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)131034$$aForschungszentrum Jülich GmbH$$b0$$kFZJ 000204910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)144087$$aForschungszentrum Jülich GmbH$$b1$$kFZJ 000204910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130577$$aForschungszentrum Jülich GmbH$$b2$$kFZJ 000204910 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130616$$aForschungszentrum Jülich GmbH$$b3$$kFZJ 000204910 9131_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lBioSoft – Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0 000204910 920__ $$lyes 000204910 9201_ $$0I:(DE-Juel1)ICS-3-20110106$$kICS-3$$lWeiche Materie$$x0 000204910 9801_ $$aFullTexts 000204910 980__ $$aposter 000204910 980__ $$aVDB 000204910 980__ $$aUNRESTRICTED 000204910 980__ $$aI:(DE-Juel1)ICS-3-20110106