TY  - CONF
AU  - Dai, Yang
AU  - Schubert, Jürgen
AU  - Hollmann, Eugen
AU  - Wördenweber, Roger
TI  - Engineering the ferroelectric and resistivity Properties of Oxide Films via Compressive and Tensile Strain
M1  - FZJ-2015-05540
PY  - 2015
AB  - Strain can strongly modify the electronic characteristics of oxide materials. For instance the phase transition from the ferroelectric to the dielectric state can be shifted by up to 300 K in either directions. As a result, room temperature permittivity can be enhanced significantly, e.g. for SrTiO3 from εRT≈600 to εRT≈25000. Moreover the resulting ferroelectrics are highly anisotropic and show a number of properties that are extremely interesting for various applications. In this work we try to perform a systematic study of the impact of strain on the system BaxSr(1-x)TiO3. Films with different stoichiometric and thickness are epitaxially grown on DyScO3, TbScO3 and GdScO3 substrates. The lattice mismatch between substrate and film leads to different in-plane compressive and tensile strain within -1.5% to 1.5% in these systems. Tensile strain causes an increase of the in-plane ferroelectric dielectric phase transition temperature, while compressive strain decreases the transition temperature. The films show a metal-insulator transition and an extremely large tunability, they represent relaxor-type ferroelectrics and the ferroelectric properties are highly anisotropic. The data are discussed in terms of existing model for relaxor-type ferroelectrics. The potential of these films for sensors (e.g. surface or bulk acoustic wave devices) is examined.
T2  - International School of Oxide Electronics
CY  - 12 Oct 2015 - 24 Oct 2015, Cargèse (France)
Y2  - 12 Oct 2015 - 24 Oct 2015
M2  - Cargèse, France
LB  - PUB:(DE-HGF)24
UR  - https://juser.fz-juelich.de/record/205036
ER  -