000205080 001__ 205080
000205080 005__ 20240712084528.0
000205080 0247_ $$2Handle$$a2128/10361
000205080 0247_ $$2ISSN$$a1866-1793
000205080 020__ $$a978-3-89336-895-2
000205080 037__ $$aFZJ-2015-05556
000205080 041__ $$aEnglish
000205080 1001_ $$0P:(DE-Juel1)130282$$aPaetzold, Ulrich Wilhelm$$b0$$eCorresponding author$$gmale$$ufzj
000205080 245__ $$aLight Trapping with Plasmonic Back Contacts in Thin-Film Silicon Solar Cells$$f- 2013-02-08
000205080 260__ $$aJülich$$bForschungszentrum Jülich GmbH Zentralbibliothek, Verlag$$c2013
000205080 300__ $$aX, 175 S.
000205080 3367_ $$0PUB:(DE-HGF)3$$2PUB:(DE-HGF)$$aBook$$mbook
000205080 3367_ $$0PUB:(DE-HGF)11$$2PUB:(DE-HGF)$$aDissertation / PhD Thesis$$bphd$$mphd$$s1461576576_12064
000205080 3367_ $$02$$2EndNote$$aThesis
000205080 3367_ $$2DRIVER$$adoctoralThesis
000205080 3367_ $$2BibTeX$$aPHDTHESIS
000205080 3367_ $$2DataCite$$aOutput Types/Dissertation
000205080 3367_ $$2ORCID$$aDISSERTATION
000205080 4900_ $$aSchriften des Forschungszentrums Jülich Reihe Energie & Umwelt / Energy & Environment$$v185
000205080 502__ $$aRWTH Aachen, Diss., 2013$$bDr.$$cRWTH Aachen$$d2013
000205080 520__ $$aTrapping light in silicon solar cells is essential as it allows an increase in the absorptionof incident sunlight in optically thin silicon absorber layers. This way, the costsof the solar cells can be reduced by lowering the material consumption and decreasingthe physical constraints on the material quality. In this work, plasmonic light trappingwith Ag back contacts in thin-film silicon solar cells is studied. Solar cell prototypeswith plasmonic back contacts are presented along with optical simulations of thesedevices and general design considerations of plasmonic back contacts.Based on three-dimensional electromagnetic simulations, the conceptual design ofplasmonic nanostructures on Ag back contacts in thin-film silicon solar cells is studiedin this work. Optimizations of the nanostructures regarding their ability to scatterincident light at low optical losses into large angles in the silicon absorber layers ofthe thin-film silicon solar cells are presented. Geometrical parameters as well as theembedding dielectric layer stack of the nanostructures on Ag layers are varied. Periodicas well as isolated hemispherical Ag nanostructures of dimensions above 200 nmare found to scatter incident light at high efficiencies and low optical losses. Hence,these nanostructures are of interest for light trapping in solar cells. In contrast, smallAg nanostructures of dimension below 100 nm are found to induce optical losses.At the surface of randomly textured Ag back contacts small Ag nanostructures existwhich induce optical losses. In this work, the relevance of these localized plasmoninduced optical losses as well as optical losses caused by propagating plasmons areinvestigated with regard to the reflectance of the textured back contacts. In state-ofthe-art solar cells, the plasmon-induced optical losses are shifted out of the relevantwavelength range by incorporating a ZnO:Al interlayer of low refractive index at theback contact. The additional but small potential for increasing the reflection at theback contact with dielectric interlayers of even lower refractive index, such as SiO$_{2}$ and air, is demonstrated.
000205080 536__ $$0G:(DE-HGF)POF3-121$$a121 - Solar cells of the next generation (POF3-121)$$cPOF3-121$$fPOF III$$x0
000205080 650_7 $$xDiss.
000205080 8564_ $$uhttps://juser.fz-juelich.de/record/205080/files/PhD%20thesis%20Ulrich%20Wilhelm%20Paetzold.pdf$$yOpenAccess
000205080 8564_ $$uhttps://juser.fz-juelich.de/record/205080/files/PhD%20thesis%20Ulrich%20Wilhelm%20Paetzold.gif?subformat=icon$$xicon$$yOpenAccess
000205080 8564_ $$uhttps://juser.fz-juelich.de/record/205080/files/PhD%20thesis%20Ulrich%20Wilhelm%20Paetzold.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000205080 8564_ $$uhttps://juser.fz-juelich.de/record/205080/files/PhD%20thesis%20Ulrich%20Wilhelm%20Paetzold.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000205080 8564_ $$uhttps://juser.fz-juelich.de/record/205080/files/PhD%20thesis%20Ulrich%20Wilhelm%20Paetzold.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000205080 909CO $$ooai:juser.fz-juelich.de:205080$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000205080 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000205080 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)130282$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000205080 9131_ $$0G:(DE-HGF)POF3-121$$1G:(DE-HGF)POF3-120$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lErneuerbare Energien$$vSolar cells of the next generation$$x0
000205080 920__ $$lyes
000205080 9201_ $$0I:(DE-Juel1)IEK-5-20101013$$kIEK-5$$lPhotovoltaik$$x0
000205080 9801_ $$aUNRESTRICTED
000205080 9801_ $$aFullTexts
000205080 980__ $$aphd
000205080 980__ $$aVDB
000205080 980__ $$aUNRESTRICTED
000205080 980__ $$abook
000205080 980__ $$aI:(DE-Juel1)IEK-5-20101013
000205080 981__ $$aI:(DE-Juel1)IMD-3-20101013