000205116 001__ 205116
000205116 005__ 20240625095122.0
000205116 0247_ $$2doi$$a10.1021/acs.jctc.5b00472
000205116 0247_ $$2ISSN$$a1549-9618
000205116 0247_ $$2ISSN$$a1549-9626
000205116 0247_ $$2WOS$$aWOS:000361087600046
000205116 0247_ $$2altmetric$$aaltmetric:4428537
000205116 0247_ $$2pmid$$apmid:26575934
000205116 037__ $$aFZJ-2015-05586
000205116 041__ $$aEnglish
000205116 082__ $$a540
000205116 1001_ $$0P:(DE-HGF)0$$aSandal, Massimo$$b0
000205116 245__ $$aEvidence for a Transient Additional Ligand Binding Site in the TAS2R46 Bitter Taste Receptor
000205116 260__ $$aWashington, DC$$bAmerican Chemical Society (ACS)$$c2015
000205116 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1441873869_16215
000205116 3367_ $$2DataCite$$aOutput Types/Journal article
000205116 3367_ $$00$$2EndNote$$aJournal Article
000205116 3367_ $$2BibTeX$$aARTICLE
000205116 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000205116 3367_ $$2DRIVER$$aarticle
000205116 520__ $$aMost human G protein coupled receptors (GPCRs) are activated by small molecules binding to their 7-transmembrane (7-TM) helix bundle. They belong to basally diverging branches: the 25 bitter taste 2 receptors and most members of the very large rhodopsin-like/class A GPCRs subfamily. Some members of the class A branch have been suggested to feature not only an orthosteric agonist-binding site but also a more extracellular or “vestibular” site, involved in the binding process. Here we use a hybrid molecular mechanics/coarse-grained (MM/CG) molecular dynamics approach on a widely studied bitter taste receptor (TAS2R46) receptor in complex with its agonist strychnine. Three ∼1 μs molecular simulation trajectories find two sites hosting the agonist, which together elucidate experimental data measured previously and in this work. This mechanism shares similarities with the one suggested for the evolutionarily distant class A GPCRs. It might be instrumental for the remarkably broad but specific spectrum of agonists of these chemosensory receptors.
000205116 536__ $$0G:(DE-HGF)POF3-574$$a574 - Theory, modelling and simulation (POF3-574)$$cPOF3-574$$fPOF III$$x0
000205116 588__ $$aDataset connected to CrossRef
000205116 7001_ $$0P:(DE-HGF)0$$aBehrens, Maik$$b1
000205116 7001_ $$0P:(DE-HGF)0$$aBrockhoff, Anne$$b2
000205116 7001_ $$0P:(DE-HGF)0$$aMusiani, Francesco$$b3
000205116 7001_ $$0P:(DE-HGF)0$$aGiorgetti, Alejandro$$b4$$eCorresponding author
000205116 7001_ $$0P:(DE-Juel1)145614$$aCarloni, Paolo$$b5$$eCorresponding author
000205116 7001_ $$aMeyerhof, Wolfgang$$b6
000205116 773__ $$0PERI:(DE-600)2166976-4$$a10.1021/acs.jctc.5b00472$$gVol. 11, no. 9, p. 4439 - 4449$$n9$$p4439 - 4449$$tJournal of chemical theory and computation$$v11$$x1549-9626$$y2015
000205116 8564_ $$uhttps://juser.fz-juelich.de/record/205116/files/acs.jctc.5b00472.pdf$$yRestricted
000205116 8564_ $$uhttps://juser.fz-juelich.de/record/205116/files/acs.jctc.5b00472.gif?subformat=icon$$xicon$$yRestricted
000205116 8564_ $$uhttps://juser.fz-juelich.de/record/205116/files/acs.jctc.5b00472.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000205116 8564_ $$uhttps://juser.fz-juelich.de/record/205116/files/acs.jctc.5b00472.jpg?subformat=icon-180$$xicon-180$$yRestricted
000205116 8564_ $$uhttps://juser.fz-juelich.de/record/205116/files/acs.jctc.5b00472.jpg?subformat=icon-640$$xicon-640$$yRestricted
000205116 8564_ $$uhttps://juser.fz-juelich.de/record/205116/files/acs.jctc.5b00472.pdf?subformat=pdfa$$xpdfa$$yRestricted
000205116 909CO $$ooai:juser.fz-juelich.de:205116$$pVDB
000205116 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000205116 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000205116 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ CHEM THEORY COMPUT : 2014
000205116 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000205116 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000205116 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000205116 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000205116 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000205116 915__ $$0StatID:(DE-HGF)9905$$2StatID$$aIF >= 5$$bJ CHEM THEORY COMPUT : 2014
000205116 9141_ $$y2015
000205116 9101_ $$0I:(DE-588b)1026307295$$6P:(DE-HGF)0$$aGerman Research School for Simulation Sciences$$b0$$kGRS Aachen
000205116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-HGF)0$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000205116 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)145614$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000205116 9131_ $$0G:(DE-HGF)POF3-574$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vTheory, modelling and simulation$$x0
000205116 920__ $$lyes
000205116 9201_ $$0I:(DE-Juel1)GRS-20100316$$kGRS$$lGRS$$x0
000205116 9201_ $$0I:(DE-Juel1)IAS-5-20120330$$kIAS-5$$lComputational Biomedicine$$x1
000205116 9201_ $$0I:(DE-Juel1)INM-9-20140121$$kINM-9$$lComputational Biomedicine$$x2
000205116 980__ $$ajournal
000205116 980__ $$aVDB
000205116 980__ $$aI:(DE-Juel1)GRS-20100316
000205116 980__ $$aI:(DE-Juel1)IAS-5-20120330
000205116 980__ $$aI:(DE-Juel1)INM-9-20140121
000205116 980__ $$aUNRESTRICTED
000205116 981__ $$aI:(DE-Juel1)IAS-5-20120330
000205116 981__ $$aI:(DE-Juel1)INM-9-20140121