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I 

ABSTRACT 

The DFG funded project FOR 1779 titled “active drag reduction via transversal surface 

waves”, investigates robust methods to reduce the friction drag by influencing the turbulent 

boundary layer. The Central Institute of Engineering, Electronics and Analytics, ZEA-2: 

Electronic Systems, Forschungszentrum Jülich GmbH, works on the subproject “development 

of a real-time actuator and sensor network” for closed loop controlled transversal surface 

waves. For application on transportation vehicles like airplanes a large scale real-time actuator 

and sensor network is needed. To investigate the configuration of such a network a model 

based on Simulink and TrueTime is established. A Raspberry Pi based test bed is then used 

for parameter verification of the model. 

The aim of the thesis is to steer an actuator and to record values from a sensor in a small scale 

distributed actuator and sensor network with the help of IEEE 1451.1 Smart Transducer 

Interface Standard Protocol. For this purpose Raspberry Pi network consists of three 

Raspberry Pi nodes is established in order to send actuation signal, to gather sensor 

parameters and to provide actuation parameters. The benefit for the model will be to get the 

propagation time through IEEE1451.1 layer out of this real world test bed. 
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1 Introduction 

1.1 Motivation 
The drag of transportation systems such as airplanes, ships and trains is investigated with 

respect to the friction drag. This drag has a major contribution towards the fuel consumption 

in modern transportation systems, which in turn increases the cost. Cost reduction became the 

element of concentration in the present day contest. And apparently to reduce the cost, friction 

drag has to be reduced. The earlier approach to reduce the drag is by stabilizing the laminar 

state of the boundary layer flow, as the wall shear stress in a laminar is comparatively smaller 

than in the turbulent boundary layer [1]. The idea of the research project FOR1779 is to 

reduce the friction drag by decreasing the wall shear stress of turbulent boundary layer by 

damping the near wall coherent structures with minimum energy input into the flow. This 

approach requires additional weight in the transport system. So active drag reduction in high 

Reynolds numbers (>104 the typical range of airplanes), by span-wise transversal surface 

waves is investigated to reduce the fuel consumption and also noise.  

Later on flow control development based on wind tunnel and numerical studies in order to 

create a closed loop controlled transversal waves on a surface like an airplane wing, a large 

scale actuator and sensor network is needed. For the development of real-time actuator and 

sensor network a model based on Simulink and TrueTime has been established. To ensure the 

accuracy for the network development, the network parameters have to be verified in a real 

world test bed. For this purpose a Raspberry Pi based test bed is used in order to determine the 

network and transmission parameters for the distributed actuation control. With the help of 

this approach in later stages a link will be created between the large scale model and later 

microcontroller based real-time actuator and sensor network for distributed active turbulent 

flow control. 

1.2 Project description 
The FOR1779 develops robust methods to reduce the wall shear stress on the turbulent 

boundary layer. It is a DFG funded project, started with the aim of “Drag reduction via 

transversal surface waves”. It consists of seven subprojects, where each project works on a 

special aim. In later application for drag reduction large scale distributed actuator and sensor 

network is required to implement on air planes.  
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The Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and 

Analytics, ZEA-2: Electronic Systems is responsible to handle the sub-project TP4 titled as 

“Development of a Real Time Actuator and Sensor Network”. For the development of real-

time actuator and sensor network a model based on Simulink and TrueTime has been 

established. It provides interfaces to the central flow control and actuation control in a cascade 

control loop and can be used in the wind tunnel as model in the loop simulation [2]. In order 

to verify the network parameters in a real world a Raspberry Pi network based test bed is 

used.  The Raspberry Pi based test bed is proposed to steer the actuator and to calculate the 

timing parameters for a large scale distributed actuator and sensor network.  

1.3 Aim of the Thesis 
The main focus of the thesis is to implement IEEE 1451.1 Smart Transducer Interface 

Standard Protocol on the Raspberry Pi test bed network. As shown in the Figure 1.1 three 

Raspberry Pis will be used to communicate over a network and to send and receive signals 

through an analog interface. One Raspberry Pi acts as a controller and sends commands to the 

other two Raspberry Pis. All these Raspberry Pis communicate with each other using IEEE 

1451.1 protocol. The aoNCAP as shown in the Figure 1.1 is responsible to send an analog 

sine wave to steer the actuator and the aiNCAP is responsible to receive the sensor values 

from the sensor. A sound card as shown in the Figure 1.1 acts as a transducer interface module 

(TIM) between the Raspberry Pis and actuator and sensor. 

The aoNCAP receives a command from JNCAP and starts sending the analog sine wave to 

the actuator. Similarly, the aiNCAP receives the command from JNCAP and starts recording 

the sensor values from the sensor and then they are visualised on the JNCAP application 

window. 
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Figure 1.1 The communication process within the Raspberry Pi network test bed following the IEEE 
1451.1 protocol standard. The aiNCAP is supposed to record sensor values proportional to the actuator 

amplitude from analog input using a sound card. The aoNCAP is supposed to send an analog sine wave to 
drive the current within the coil of the electromagnetic actuator, i.e. to steer the actuator. This process 

should be initiated and monitored by JNCAP. 

After implementing the protocol, the final task is to measure the propagation time through the 

IEEE 1451.1 layer and to show that the loop for actuation control is closed by actuating and 

measuring in parallel.  
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2 Background 

This chapter focuses on the network model which has been proposed to use in the sub-project. 

The reason for calculating the propagation time through the IEEE layer is shortly described. 

2.1 Network model Protocol Stack 
The network protocol stack referring to the ISO-OSI layer, three layer architecture consists of 

physical layer, transport layer and application layer is used (see Figure 2.1). The 

communication takes place between NCAPs and JNCAP as shown in the Figure 2.1. The 

IEEE 1451.1 Smart Transducer Interface Standard protocol is implemented on the application 

layer. The Ethernet acts as a physical layer, ACE library acts like a Transport layer and on 

application layer IEEE 1451.1 is implemented. The timing values will be calculated through 

the IEEE 1451.1 application layer. 

Application Protocol IEEE 
1451.1

Transport Protocol

Ethernet

Three level modelling

Application Protocol IEEE 
1451.1

Transport Protocol

Ethernet

JNCAP  aoNCAP or aiNCAP

 

Figure 2.1 The network protocol stack explaining the communication flow. On the bottom layer a physical 
communication takes places, while on the upper layer a logical communication runs [3]. 

When JNCAP starts sending commands to NCAPs i.e. aiNCAP and aoNCAP, the application 

layer on which IEEE 1451.1 is implemented starts measuring the timing values. The measured 

timing values will be later imported to the Simulink and TrueTime model which is the overall 

sub project. 
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3 Development Environment 

The details of the hardware and software used in this project are elaborated in this chapter. To 

start with, the technical detail of the Raspberry Pi which is the most important element of the 

hardware is described. Then, in later sections a brief description about the sound card which is 

the external hardware of the setup is given. It acts as ADC and DAC in this whole setup. The 

process is explained in the later stages of the chapter. In the last section a brief description 

about the software platforms, programming environment, example implementation and about 

open source platform called Adaptive Communication Environment (ACE) is given. 

3.1 Raspberry Pi 
Raspberry Pi is a small, single board computer with I/O connectors for peripheral interfacing. 

It is basically a credit card sized computer, invented by the Raspberry Pi foundation which is 

an educational charity group headed by the United Kingdom (UK) [4]. They invented this 

Raspberry Pi with a motivation to advance the education for children in the field of computer 

sciences. Raspberry Pi works on the software called Raspbian, which is a free operating 

system based on Debian Linux. The Raspberry Pi provides multipurpose utility such as 

programming, controlling robots, used for modeling different working modules for various 

applications e.g. automation applications like home theatre. Different devices can be 

connected to a Raspberry Pi through USB ports and a HDMI port. A typical Raspberry Pi 

used in this project is shown in the Figure 3.1 [4].  

 

Figure 3.1 Raspberry Pi credit card sized computer with multiple I/O ports 
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3.2 DAQ ADC and DAC 
Raspberry Pi needs some external hardware to receive and send analog data to and from the 

actuator and sensor. It needs an external ADC (analog to digital converter) and DAC (digital 

to analog converter) to receive and send analog signals. It can be done using the GPIO pins 

but it is time consuming and complicated. The hardware used in the project as transducer 

interface module (TIM) is a sound card. Transducer interface module is a part of IEEE 1451.1 

standard and contains the signal conditioning, analog to digital conversion and control logic 

necessary to acquire a signal and convert it to data. The TIM holds the transducer electronic 

data sheet (TEDS) which represents the information about the sensors and actuators attached 

to a TIM [11]. It acts like an interfacing module between Raspberry Pis and Actuator and 

sensor. It uses the ALSA drivers to process the data which is explained more clearly in section 

3.3.1. By using a sound card the complexity and cost reduces. It is easy to interface the sound 

card to Raspberry Pi as it does not need any extra effort.   

3.2.1 Sound card 

The sound card used in the project is Creative Sound Blaster Play [12]. It is compatible and 

easy to use. It can be just plugged into Raspberry Pi using the USB port. The sound card used 

in this project is shown in the Figure 3.2. From the figure it can be observed that there are two 

sockets for audio in and audio out.  

Figure 3.2  Creative USB sound card with analog in (Microphone) and analog out (Headphones) ports 

Specifications 

The specifications of the Creative sound card are as follows [13]: 

 Playback: USB 1.1 : Stereo/ Surround = 16-bit/48kHz
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 Signal to noise ratio: >90dB

 Recording: 16-bit/48kHz

 Microphone : 3.5mm mini jack located at the bottom of the USB card

 Compact plug and play

 PC USB bus-powered : 400mA required

 Full scale input level : 120m Vrms

 Input impedance : 2.2 kΩ

 Line out: 0.8 Vrms at 10kΩ

3.3 Software 
In this section a brief explanation about all the software applications, programming 

environments and software implementations is given.   

3.3.1 ALSA drivers 

ALSA means Advanced Linux Sound Architecture. It consists of a set of kernel drivers, an 

application programming interface (API) library and utility programs for supporting sound 

under Linux. Some of the functions of the ALSA project were automatic configuration of 

sound card hardware and handling of multiple sound devices in a system [14]. The library 

provides higher level and developer friendly programming interfaces. It also provides a 

logical naming of devices in order to give some information to developers about low-level 

details such as device files. The naming could be done using the format hw: i, j, where ‘i’ is 

the sound card number and ‘j’ is the device on the card. 

ALSA has a capability called plugins which allows extension to new devices including virtual 

devices implemented entirely in software. It provides multiple number of command-line 

utilities, including a mixer to control input and output volume, sound file player and tools for 

controlling special features of specific sound cards. 

ALSA Architecture 

The ALSA API has interfaces like Control interface, PCM interface, Raw-Midi interface, 

Timer interface, Sequencer interface and mixer interface [14]. The PCM interface is used for 

ALSA programming in this project. 

PCM interface: This is the interface used for the digital audio and capture. The PCM middle 

layer of ALSA is powerful. It is only necessary for each driver to implement the low-level 
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functions to access its hardware. In order to access the PCM layer, #include 

<sound/pcm.h> should be included in C-programming. 

In addition to this, include <sound/pcm_params.h> might be needed if the user 

access to some functions related to hw_param. Each card device can have up to four PCM 

instances A PCM instance corresponds to a PCM device file. The limitation of number of 

instances comes only from the available bit size of the Linux device numbers, when 64bit 

device number is used then there will be more PCM instances. A PCM instance consists of 

PCM playback and capture streams and each PCM stream consists of one or more PCM sub-

streams. Some sound cards support multiple playback functions.  

3.4 IEEE 1451 example implementation from source forge 
Theoretical, as well as practical investigations have been done to get knowledge in the IEEE 

1451 Smart Transducer Interface Standard. As the standard is open the Open Gaithersburg 

IEEE 1451 example implementation could be used [20], (see section 7.1). For practical 

investigations of the actuator and sensor network implementation, the example 

implementation from source forge called “an open implementation of IEEE 1451.1” is 

proposed to use. It contains various reference implementations for users. These open 

implementations are invented by the NIST organization [21].  

The recent reference implementation from NIST is IEEE 1451 Open Gaithersburg 

implementation. This is an implementation for smart transducer interfacing of sensors. It is 

based on NCAP (Network capable application processor) to NCAP communication. There is 

clear explanation about NCAP to NCAP communication in section 5.3. It can be tested on 

wired and wireless networks. 

IEEE 1451 open Gaithersburg implementation consists of NIST C++ and Java reference 

implementations. The C++ reference implementation uses the open source Adaptive 

Communication Environment (ACE) (see section 3.5). The entity class in the IEEE 1451.1 

inherits the properties from the ACE and helps in synchronization and TCP/IP communication 

of NCAPs. 

3.5 Adaptive Communication Environment (ACE) 
ACE is open source software available for object oriented framework to implement software 

portable real-time communication patterns. These communication software patterns are 
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implemented in C++. ACE provides reusable C++ wrappers and components which can be 

used to perform common communication tasks across many OS platforms [22].  

ACE is developed with a target of providing high performance, real-time communication 

services and applications. It has a special feature of automating the system configuration and 

reconfiguration by means of dynamically linking the services into applications. 

ACE provides many communication software tasks such as event de-multiplexing and event 

handler dispatching, signal handling, service initializations, interprocess communication, 

message routing, shared memory management. ACE library plays an important role in the 

development of IEEE 1451.1 communication patterns, concurrency and all core distribution, 

which can be done by NIST. 
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4 Concept 

This chapter gives an idea of dealing the project and assumptions that have been made before 

implementing the task. In the first section there is a description about the hardware setup of 

Raspberry Pi and in the later part about the IEEE 1451 standard. Then signal generation using 

the analog actuator and sensor connection is described. Data processing, Time measurement 

and Experimental validation are explained in the last sections 

4.1 Raspberry Pi Hardware setup 
The Raspberry Pi hardware setup as shown in the Figure 1.1, consists of three Raspberry’s. 

All these Raspberry Pis will be connected using a network switch [24] in order to create a 

closed network. This network switch can connect up to eight Raspberry Pis. When the 

connection is made user should be able to communicate between Raspberry Pi nodes, in order 

to do this a static IP address has to be created for each Raspberry Pi [25].  

One Raspberry Pi acts like a control unit and two Raspberry Pis follows the instructions from 

the main node. The control node in the setup is JNCAP and other two nodes are aiNCAP and 

aoNCAP. The aiNCAP and aoNCAP receives commands from JNCAP. The aoNCAP sends 

analog signal to actuator and the aiNCAP receives the sensor values from the sensor. For the 

loop as shown in Figure 1.1 sound card acts a medium between the Raspberry Pis and actuator 

and sensor network. An analog signal from aoNCAP will be send to actuator using the sound 

card and for aiNCAP sound card acts as a medium to receive sensor values from sensor.  

4.2 IEEE 1451 
IEEE 1451 is a standard for communication between actuators and sensors. In particular IEEE 

1451.1 standard is chosen as a protocol, as it works on NCAP communication for sensor and 

actuators. An example implementation of IEEE 1451 temperature program from NIST is also 

available, which will be used as a reference implementation. Based on the reference 

implementation communication will be implemented on Raspberry Pi network. The 

communication between NCAPs is implemented through the network interface as shown in 

Figure 4.1. The JNCAP and NCAP communicates through a network interface i.e. through 

Client/Server or Publish/Subscribe communication model as explained in section 5.3.3. The 

NCAP is acts like a card cage and all the blocks are plugged into the central part as shown in 

Figure 4.1. The function block application code is plugged into the NCAP and can be used 
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when ever needed. The NCAP and the JNCAP communicates over a network interface or over 

network ports as depicted in the Figure 4.1. 

Network ports

Transducer Block

Function Block

Function Block

Physical 
Transducer

Transducer
Interface

Communication Interface
Client/Server and Publish/Subscribe

JNCAP

NCAP

Parameters, Files,
Actions and other

objects

 

Figure 4.1 NCAP communication paradigm showing the blocks and interfacing between the transducer 
and function blocks.  The Transducer block receives information from the physical transducer and the 

function block below contains the files which are needed for the NCAP communication [4] 

The transducer block as shown receives the data from physical transducer or Transducer 

interface module (TIM). 

4.3 Analog actuator and sensor connection 
This is a hardware implementation part where signal generation and receiving is explained. 

An analog signal is used to steer the actuator. In order to do this a sine wave will be generated 

and sent to the actuator using a sound card. Similarly with the help of sound card Raspberry 

Pi will be recording the sensor values from the sensor.   

The data processing will be done using the software module in order to extract the amplitude 

values from the signal. When aiNCAP receives sensor values from the sensor, it tries to 

extract the amplitude values from the sensor values. 

4.4 Time measurement 
Time measurement will be taken in order to measure the propagation time through IEEE 

layer. It is assumed to measure the time during discovering the NCAPs, before and after send 

and during publishing.  

4.5 Experimental Validation
The experimental validation for implemented model will be done by using the signal 

generator and MacLab. The aoNCAP which gives an analog output signal will be measured 
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on MacLab. When it puts out the analog sinewave it can be visualized by connecting the 

sound card to the MacLab. The aiNCAP upon receiving the command from JNCAP, it 

displays the sensor values on JNCAP application window. It can be validated by connecting 

the sound card to the function generator and there by checking the values by changing the 

peak to peak voltage values on function generator. Then the change in the values can be 

visualized on the output Java application window. 

Time measurement validation will be done by finding the places where the command enters 

and leaves the IEEE 1451 routines by executing the program line by line. Statistical analysis 

will be done afterwards offline.  
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5 IEEE 1451 standard protocol family 

This chapter gives an overview of the IEEE 1451 smart transducer standard protocol family. 

To start with, the introduction of the standard protocol family is briefed and in later sections a 

detailed description of IEEE 1451.1 blocks such as NCAP, transducer block, and functional 

block are given. The communication path between NCAPs is also explained at the end of this 

chapter. 

5.1   Introduction  
The IEEE 1451 family of standard is developed by the Institute of Electrical and Electronics 

Engineers. This standard specially describes the set of common, network-independent 

communication interfaces for connecting sensors and actuators to microprocessors, 

instrumentation systems and networks [26]. 

There are various applications of the IEEE 1451 standard. The main applications are based on 

the advantages of IEEE 1451 such as plug and play capability, wide area data collection 

ability, multiple sensors on one network, automatic testing and many more. Having the ability 

to support multiple networks and transducer families in a cost effective way IEEE 1451 serves 

a wide range of industrial needs. It has many operating modes and also it is compatible with 

both wired and wireless sensor buses and networks. It simplifies the connectivity and 

maintenance of transducers via TEDS to device networks. It has extensive units, linearization 

and calibration options and also it has an efficient binary protocol which is most suitable for 

wireless networks. It is capable of handling multiple timing and data block size constraints 

[26]. 

There are seven different standards which are included in the IEEE 1451 family. Each 

standard is application specific. The standard includes [26]: 

1451.0(2007) - IEEE standard for smart transducer interface for sensors and actuators which 

includes common functions, communication protocols, and Transducer Electronic Data Sheet 

(TEDS) Formats. 

1451.1(1999) - IEEE standard for Smart Transducer Interface for Sensors and Actuators 

which includes Network Capable Application Processor Information Model. 

1451.2(1997) - IEEE standard for Smart Transducer Interface for Sensors and Actuators 

which includes Transducer to Microprocessor Communication Protocols & TEDS formats. 
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1451.3(2003) - IEEE standard for Smart Transducer Interface for Sensors and Actuators 

which includes Digital Communications & TEDS formats for Distributed Multidrop Systems. 

1451.4(2004) - IEEE standard for Smart Transducer Interface for Sensors and Actuators 

which includes Mixed mode Communication Protocols & TEDS formats. 

1451.5(2007) - IEEE standard for Smart Transducer Interface for Sensors and Actuators 

which includes Wireless Communication Protocols & Transducer Electronic Data Sheet 

(TEDS) formats. 

1451.7(2010) - IEEE standard for smart transducer interface for sensors and actuators which 

includes transducers to Radio Frequency Identification(RFID) Systems Communication 

Protocols and Transducer Electronic Data Sheet Formats. 

After the intensive research work, it is decided to use IEEE 1451.1 standard, as it is usable for 

NCAP to NCAP communication which are represented by Raspberry Pi nodes in the network. 

This part of the IEEE 1451 standard is described in detail in the following chapter. 

5.2 IEEE 1451.1 
The IEEE 1451.1 standard provides Network Capable Application Processor (NCAP) Object 

Model for smart transducer interfacing of sensors and actuators in an Ethernet based actuator 

and sensor network [11]. IEEE 1451.1 standard is developed to provide a network-neutral 

application model which reduces the effort in interfacing sensors and actuators to a network. 

This standard defines an interface which connects the Network Capable Application 

Processors to control networks. This has been done with the development of a common 

control network information model for sensors and actuators.  

There are several advantages in using this standard. The standard has a feature called 

interoperability, which makes the systems work together or to exchange information for all 

communication modes. It possess uniform design model for system implementation and also a 

network independent set of operations for system configuration. It defines network 

independent models for communication and for implementing application functionality. It 

also has portable application models. It has a network-independent layer, a uniform 

information model, and uniform models for managing event data, representing time, 

intranodes concurrency management, and for memory management. 
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5.3 NCAP: Network Capable Application Processor  
The NCAP is defined by the hardware and software blocks. It acts like a bridge between 

transducers and communication network as shown in the figure 5.1. 

 In IEEE 1451.1 implementation, NCAP consists of three layers namely network layer, 

application layer and transducer layer. The network layer consists of the hardware required 

for the network library and also the 1451.1 API [11] and the application layer consists of 

software blocks which include the standard defined blocks and also application specific code. 

The transducer layer includes the hardware needed to communicate with the Transducer 

interface module (TIM), it also consists of the T-Block API. 

The NCAP’s hardware block should be designed in such a way that they meet the electrical 

and timing specifications of the network. Also the software blocks shall be designed using the 

formats and methods specified in the IEEE 1451.1 standard.  

Transducer
Communication 

network
NCAP

 

Figure 5.1 The Network Capable Application Processor (NCAP) connects the transducer module 

and communication network. The NCAP acts as a bridge between transducer and network [23] 

The software architecture (Figure 5.2) of IEEE 1451.1 is classified into three models 

 An Object model 

 A Data model  

 A Network communication model 

IEEE 1451.1 Software 
Architecture

 

 
Object Model

 

 
Data Model

 

 
Network 

Communication 
Model

   

Figure 5.2 Software architecture of IEEE 1451.1 which is divided into three models such as 

object model, data model and network communication model concerning classes, data types 

and communication paradigms 
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5.3.1 An Object Model  

The IEEE 1451.1 defines object model which defines the classes or abstract models with 

methods, attributes and its state behavior [27]. This is also known as Information model. The 

objects in the IEEE 1451.1 looks similar to other object oriented class definitions. It consists 

of instance data, other classes, code for implementing internal operations or methods, and 

state machine behavior. The Figure 5.3 shows how the object interfaces and the state behavior 

implemented using Object Model. It shows the interfacing between the distributed smart 

devices. The Object Model performs the functions like object discovery, invocation and 

synchronization using the attribute access and invocation operation [23]. 

Class Data

Contained 
Objects

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Algorithm code

State behavior

Interface

Class attribute access and 
invocation operations

Subscriptions

Publications

Client invocation

Server response

Implementation

 

Figure 5.3 The Communication paradigm of Object class showing the functionality of the Object Model 

[23] 

The Object Model consists of sub-classes, called block classes, component classes and service 

classes. As shown in the Figure 5.4, Block classes are used to perform processing, component 

classes are used to encapsulate data whereas service classes take care of inter-NCAP 

communications and system-wide synchronization. All these classes share common 

characteristics and entities like object tag, object ID, object name, dispatch address. Among 

all these classes block classes plays a key role. A brief description of the block classes can be 

seen in below sections. 
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Figure 5.4 Classification of the Object Model with different classes and its subclasses in IEEE 1451.1 

standard 

Block classes 

The block class is the root hierarchy for all the block objects and they are core for the APIs 

defined for the NCAP. Block classes are sub-divided into three different blocks named as 

NCAP block, function block and transducer block. These three blocks plays major role in 

NCAP communication. They work together to communicate to the physical world consisting 

of networks and transducers.  

For network communication, these objects can be either network visible or independent. If the 

objects are network visible, they can be directly accessed by a network and in independent 

case the blocks can only be accessed by the other objects within the local NCAP.  To make 

the object visible, it should be registered with its local NCAP block.  

The behavior of the block class is controlled by a state machine with three different states 

namely BL_UNITIALIZED, BL_INACTIVE and BL_ACTIVE. The BL_UNINITIALIZED state 

is reserved for local activities such as bringing the block object into existence and performing 

local preparations needed for the block function [11]. The BL_INACTIVE state is reserved for 

activities such as the configuration of network communication properties of the block, for 

initialization, diagnosis and the maintenance of the block object. The BL_ACTIVE state is for 

the activities related to the normal application function of the block [11].  
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NCAP Block class 

The NCAP Block has a standard software interface which supports network communication 

and system configuration. It keeps the information about network visible owned objects. It 

provides operations within an NCAP process to support block, service and component 

management. It also includes support for registration, deregistration, initialization, startup and 

shutdown.  

In the Table 5.1 below a clear description of the important operations and their functionality 

of the NCAP block class is given [11].  

Table 5.1 Table showing NCAP Block operations and its functionalities [11] 

Operation Functionality 

GetNCAPBlockState It is used to obtain the current state of the 

state machine 

GetNCAPManufacturerID It is used to identify the manufacturer of the 

NCAP 

GetNCAPModelNumber It returns an identifier which distinguishes 

different NCAP implementations. 

GetNCAPSerialNumber It distinguishes different instances of NCAP 

implementations. 

GetNCAPOSVersion It is used to specify the operating system 

that is in use. 

GetClientPortProperties It is used to get the ObjectTag of the NCAP 

and also the client port information 

SetClientPortPropertiesBinidngs It is used to initialize or modify the 

ObjectTag of the NCAP Block as well as 

the client port information. 

IgnoreRequestNCAPBlockAnnouncement It is used to ignore a publication that 

provides a notification of the existence of an 

NCAP Block object within the system. 

RespondToRequestNCAPBlockAnnouncement It is used to respond to a publication that 

provides a notification of the existence of an 

NCAP Block within the system. 

RebootNCAPBlock It is used to place the NCAP block and all 
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the objects to their default power-on state. 

ResetOwnedBlocks It makes all the objects of NCAP block class 

to behave as if they received a rest 

operation. 

GetBlockCookie It is used to get the information of the Block 

cookie of the particular object that is being 

accessed. 

PSK_NCAPBLOCK_GO_ACTIVE It is used for the transitions within the state 

machine and the transition occurs from 

active to the initialized state. 

RegisterObject and DeRegisterObject These two operations are optional and will 

not be implemented 

GoInactive It is used for the transitions within the state 

machine. 
 

The NCAP block divides the BL_INACTIVE state into two states called as NB_INITILIAZED 

and NB_ERROR. After implementing specific mechanisms in the NCAP block, the initial 

transition happens from the BL_UNINITIALIZED state to the NB_INITIALIZED state. 

When there is any failure message in the state machine internally, then NB_INITIALIZED 

changes to NB_ERROR sub-state. The GoInactive operation causes the transition to the 

NB_ERROR sub-state if the NCAP detects any error. 

Transducer Block class 

The Transducer Block interfaces the transducers and application functions. It is the root for 

the class hierarchy of all transducer block objects in the family of transducers specified by 

IEEE 1451.1 standard. It establishes the mapping between the individual channels of the TIM 

transducers and the public transducers of the Transducer Block in the NCAP.  

In the below Table 5.2 the important operations and their functionality has been described 

[11]. 
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Table 5.2 Table showing the Transducer block operations and functionalities [11] 

Operation Functionality 

GetCorrectionMode It is used to obtain the current state of the 

state machine. 

GetNumberOfTransducerChannels It is used to access the Meta-TEDS such that 

it returns the number of transducers that are 

implemented in the TIM that is physically 

connected to NCAP. 

GetMinimumSamplingPeriod It is used to access the Meta-TEDS and then 

it returns the time in seconds of the minimum 

sampling rate of the TIM as a whole. 

GetChannelParameterObjectChannelNumbers It is used to return the physical interface 

channel numbers for the implemented 

physical interface channels. 

GetUnrepresentedChannelNumber This is used to return an array of numbers 

with each array representing a channel 

present at the physical interface. 

UpdateAll This causes a global trigger to be applied to 

the system. 

EnableCorrections This is used for the transition from the 

uncorrected to corrected state within the state 

machine 

DisableCorrections This is used for the transition from the 

corrected state to uncorrected state within the 

state machine. 

GetLAstUpdateTimestamp and 

GetUpdateTimestampUncertainity 

These are optional and will not be 

implemented. 

  

The behaviour of the transducer block is controlled by the basic state machine defined for the 

block objects. The transducer block sub-states this state machine so that it can apply 

corrections to the transducer data [11]. The sub-states consist of TB_CORRECTED and 

TB_UNCORRECTED both in BL_ACTIVE and BL_INACTIVE states. 
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The Function Block class 

 The Function block class is root for the class hierarchy of the function block objects. It helps 

for the abstractions and packaging of application functionality and therefore the application 

specific objects are owned and controlled by the function block. Similarly, the function block 

allows the interaction between the application’s objects and other standard defined objects. 

In the Table 5.3, the operations and functionality of the functional block class has been 

mentioned [11]. 

Table 5.3 Table showing Functional block class operations and functionalities [11] 

Operation Functionality 

GetFunctionBlockState This is used to obtain the current state of the state machine 

for this object. 

Start This is used for transitions within the state machine for this 

block. It will be from the idle to the running state. 

Clear This is used for transitions within the state machine. The 

transition will be from the running to the idle state. 

Pause This is used for the transitions within the state machine of 

the block. The transition will be from the running to stopped 

state. 

Resume This is used for the transitions within the state machine for 

this block. This transition will be from the stopped to the 

running state. 
 

The functional block’s behavior is controlled by the inherited state machine of the block class. 

The BL_ACTIVE state is sub-stated to FB_STOPPED, FB_RUNNING, and FB_IDLE. 

5.3.2 Data model 

The Data model of IEEE 1451.1 defines various data types that are used for the object classes. 

It is a collection of primitive datatypes and structure datatypes. Whereas primitive data types 

are mapped to the programming language that will be used and the derived datatypes will be 

derived from the primitive data types [11]. 
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Primitive data types  

The primitive data types usually consist of various data types and arrays, few of them are 

mentioned below: 

 A Boolean type  

 An octet type 

 Integer type 

 Floating point type 

 String type  

Table 5.4 The simple primitive data types [11] used in IEEE 1451.1 standard 

Data type Default Value Definition 

Boolean FALSE TRUE or FALSE 

Integer8 0 8-bit signed integer 

UInteger8 0 8-bit unsigned integer 

Integer16 0 16-bit integer 

UInteger16 0 16-bit unsigned integer 

Integer32 0 32-bit signed integer 

UInteger32 0 32-bit unsigned integer 

Integer64 0 64-bit signed integer 

UInteger64 0 64-bit unsigned integer 

Float32 +0.0 IEEE Std 754-1985 single-precision floating point 

number 

Float64 +0.0 IEEE Std 754-1985 double-precision floating point 

number 

Octet All Bits set to 0 8-bit quantity not interpreted as a number 

There is a brief description about the primitive data types in the Table 5.4. The string type is 

represented by a structure, in which it contains four fields which represent the character set, 

character code, language and the string data. 

Derived data types 

The derived data types are based on primitive data types. They are used in communication 

networks. An example of derived data type is argument array data type. Its application is 
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explained in section 7.2. Most of the application data in network communication theory of 

IEEE 1451.1 will be carried in arrays of argument [11]. 

5.3.3 Network communication model (NCAP – NCAP communication) 

A Network Communication model is a paradigm for communicating information between 

NCAPs. It is an inter NCAP communication model. It supports two different models known 

as Client/Server network communication model and Publish/Subscribe network 

communication model. These models define the syntax and the semantics of the software 

interfaces between application objects and a communications network. The libraries consist of 

routines which allow the calls between the communication operations and interfaces. These 

libraries include marshalling and demarshaling routines for transforming the IEEE 1451.1 

formats to and from their wire format [11]. Marshalling is the process of converting the data 

or objects into the format suitable for transmission and demarshaling is converting back to the 

original format. It is similar to serialization, which simplifies the complex communication. 

Client/Server communication model 

Client/Server communication model is a tightly coupled communication model which is used 

for one-to-one communication. It supports mainly two application level operations. They are 

 Execute on client side, client port objects 

 Perform on all Network visible, server side objects. 

As mentioned, client objects Execute() or invoke operation on the network, whereas the 

server objects performs the operations based on the ID and the results to client using the 

function Perform() as shown in below Figure 5.5. 
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Client object

Client port Attributes:
ServerDispatchAddress
Operations:
Execute        (execute_mode,
              Server_operation_id,

Server_input_arguments,
Server_output_arguments)

Server Object operations:
Operation corresponding to 
Server_operation_id

Internal:
Perform     (   server_operation_id,

server_input_arguments,
server_output_arguments)

Process Process

Network

1st  step

2nd step 2nd  step

3rd  step

 

Figure 5.5 Client- Server communication model components and the process of communication in three 
steps [11] 

As shown in the figure both Execute() and the Perform() operations work together to 

provide a remote object operation invocation. Invoking is basically done in a series of steps: 

Step 1: The serverDispatchAddress attribute of a client port object in client objects process is 

attached to the server object dispatch address value during the system process. 

The client object is provided with a client port object as reference for the initialization of the 

system. 

As shown in the Figure 5.5, the client object invokes the execute operation on the client port 

attributes. This allows the remote server object to choose the operation that has to be 

executed. It also provides its operation’s input arguments and references to its output 

arguments. 

Step 2: Through the network infrastructure shown in the Figure 5.5, the invocation of the 

Perform() operation on the server side by the invocation of Execute() operation will be 

done.  

Step 3: The Perform() operation invokes the necessary operations on the server object. 

After the completion of server objects operation again through the network infrastructure the 

clients object operations will be invoked. 
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Finally the Execute() operation sends an invocation to client object with the output 

argument array’s argument bounds [11]. 

Publish/Subscribe communication model 

The Publish/Subscribe communication model is loosely coupled for many-to-many and one-

to-many communication. It is mainly used for broadcasting or multicasting measurement data 

and configuration management information. It contains two objects called publisher and 

subscriber, where publisher acts as a sender and subscriber acts as a receiver. Publishing and 

subscription are done using the operations Publish() and AddSubscribe(). The 

publisher does not need to be aware of any receiving object whereas the subscriber sends a 

response when something sends a request of subscription. 

The IEEE 1451.1 publication has following principles with it [11]: 

 A publication domain defines a distribution scope for publication. 

 A publication key identifies the application-independent syntax and semantics of the 

publication. 

 A publication topic can be used to identify the application specific syntax and 

semantics for the publication contents. 

Publisher object

Subscriber Object

Publisher Port:
Attribute:

publication_key
publication_domain
publication_topic

Operations:
Publish()

Subscriber Port

Attributes:
subscription_key
subscription_domain
subscription_qualifier

Operations:
AddSubscriber()
Callback()

Process

Process

Network

1st step

1st step

2nd step 3rd step

4th step

 

Figure 5.6 Publish/Subscribe Communication model components and the process of communication 
described in four steps [11] 

The process of Publish/Subscribe communication model is shown below [11]: 
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Step 1: In the first step system initialization will be done near the publisher port and as well as 

at subscriber port side. The publication key attribute of a publisher port object in the publisher 

object’s process will be bound. Similarly, the subscription key attribute of a subscriber port 

object in the subscriber object’s process will be bound to value matching the publication key 

of publications of interest. 

Then the publisher and subscriber objects will be provided with a local reference to their 

respective port objects. 

Step 2: The publisher object invokes the Publish() operation on the publisher objects port 

and an input argument publication contents will be released. 

Using the network infrastructure, the invocated publisher port delivers the publication to 

subscriber ports in the publication domain. 

Step 3: The subscription qualifier is used to determine which publications will be accepted by 

the port. The GetSubscriptionKey operation will be used to obtain the current value of the 

port’s subscription key and the GetSusbscriptionDomain will be used to obtain the current 

value of the subscription domain defining the set of candidate publications to be accepted by 

the port. 

The subscriber object uses the subscriber port objects AddSubscriber() operation to register 

with the port to receive the publications from the selected port.  

The receiving subscriber port uses the values from subscription key, subscription domain and 

the subscription qualifier to filter the incoming messages. 

Step 4: Once the publication passes the subscription filter, then the port invokes all the 

registered callback() operations. Then the port provides an input argument the 

publication contents. 

The Publish/Subscribe model communicates the NCAPs by following the above steps stated. 

The publish/Subscribe model is used in JNCAP and NCAP communication (see section 7.5). 
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6 Analog input and analog output using Raspberry Pi 

This chapter focuses on the analog signal generation using ALSA programming to steer the 

actuator. It includes the working and program flow of sine wave generation and in details the 

capturing program to record the sensor input signals.      

6.1 Sine wave Generation 
As described in section 4.3, the strategy is to drive the actuators by an analog sine wave 

signal. For this purpose Raspberry Pi is using a sound card as ADC and DAC (see section 

3.2.1). The sine wave will be generated using the ALSA drivers. 

The implementation of an analog sine wave generation module for later use is described in the 

following section. 

6.1.1 Analog Output from Raspberry Pi 

A C module for sine wave generation with a specific frequency has been created in Geany. 

 The access to the drivers is obtained by including the header files #include 

<alsa/asoundlib.h> and #include <alsa/pcm.h>. These are very 

essential for opening the ALSA sound drivers. They include all the definitions of 

ALSA functions (see section 3.3.1). 

 To open a PCM device, certain functions have to be included. The function call 

snd_pcm_open opens the default PCM device and sets the access mode to 

PLAYBACK. It also sets some parameters and then displays the values of the hardware 

parameters as shown in Figure 6.1. 
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Figure 6.1 Sample code from the sine wave generation code showing PCM device opening 

 Buffer size is set to 44,100 using the macro BUFFER_SIZE 44100. 

 The hardware parameters were activated using the function snd_pcm_hw_params. 

The desired hardware parameters can be set using API call, which includes the PCM 

stream handle, the hardware parameters structure and the parameter value. Then, the 

stream is set to interleaved mode, 2 channels and sampling rate to 44,100 bps.   

The function to generate and put out the analog sine wave value is depicted in the Figure 6.2. 

By using the ‘sin’ function (from the math library) a buffer can be filled with signal values 

regarding sampling rate ‘FS’ and at given frequency ‘f’. A sample code is attached as 

Figure 6.2for detailing the implementation process. 

The function snd_pcm_writei, sends the data to PCM device to control the number of 

output frames is returned.  
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Figure 6.2 Sample code showing the sine wave generation function 

The opened handle has to be closed using close_handle function as shown in the Figure 

6.3 

 

Figure 6.3 Sample code to show the closing function 

The program must be compiled with the linking console –lportaudio and –lasound. Then the 

module can be used to generate a sine wave at the given frequency which is required to drive 

analog signal to actuator. The module has been tested with an example program and can be 

reused for project purpose. 

6.2 Capturing sensor values 
Raspberry Pi cannot read analog signals directly. Some external hardware is required to read 

the data. In order to read the sensor data an external sound card is used as a medium. The 

signals generated from a sensor are converted to sound samples using ALSA drivers with the 
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help of this sound card. In order to observe the values there is a need of a software module 

through which the signals can be recorded.  

6.2.1 Analog input to Raspberry Pi 

The module has been generated using Geany. To capture analog signals. 

The header files #include <stdlib.h> and #include <alsa/asoundlib.h>, 

which allows the program to open the important audio drives are included. 

In order to open a PCM device several functions have to be executed in the function routine. 

The function call snd_pcm_open opens the PCM stream and sets the access mode to 

CAPTURE. A sample code showing the open handle function is depicted in the Figure 6.4. 

 

Figure 6.4 Sample code to open the handle function 

After initialising the access mode, the other required parameters for the capture module have 

to be initialised. The hardware parameters, channels, rate, format, access etc. needed for 

capturing are set. The Figure 6.5 shows the function sequence in detail 
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Figure 6.5 Setting parameters required to capture the sensor readings 

A function called Capture() is implemented to capture the analog signal as samples.  All 

the values will be stored in a buffer as shown in the Figure 6.6. 

 

Figure 6.6 Function showing the buffer capturing the values 

Similar to sine generation, a close_capture function is used  to close the handle.The 

module must be compiled with the linking console with either –lportaudio or –lasound. 
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This interfacing can be included in an arbitrary program. The returned buffer contains the set 

of analog input samples over approximately one second. 
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7 IEEE 1451.1 Implementation 
This chapter provides a detailed description about the IEEE 1451.1 NIST open Gaithersburg 

implementation in this project. A brief description about the example implementation of 

temperature program is also given in this chapter which is downloaded from the source forge 

[20].  In the later sections, the exact implementation of aoNCAP and aiNCAP is discussed. 

This chapter also covers the detail description of program flow of IEEE 1451.1 and control 

mechanism of aiNCAP and aoNCAP by JNCAP.   

7.1 Example implementation of a temperature measurement using IEEE 

1451.1 
An example implementation from IEEE 1451.1 is used as mentioned in the chapter 3. 

Temperature NCAP (tempNCAP) and Java NCAP (JNCAP) are two different programs 

through which communication takes place in the reference model. The tempNCAP uses IEEE 

1451 library to communicate with JNCAP. The IEEE 1451 library consists of several files 

which acts like a base for all functions in the tempNCAP. It provides all the functionalities 

required for the tempNCAP, which inherits the properties from the IEEE 1451 library as 

mentioned in the IEEE 1451.1 (see chapter 5) standard [11]. 

 NCAP consists of transducer, functional and NCAP block as mentioned in the chapter 5, 

Figure 5.4. It uses the data model for the data formats like Float32 which is required for the 

communication paradigm and an object model for discovering, invoking synchronizing and 

many such.  It uses the communication models like publish/subscribe and client/server models 

for the communication between JNCAP and tempNCAP. All these blocks deduce their 

functionality from the IEEE 1451 library while communicating with JNCAP.  

As mentioned in the section IEEE 1451 example implementation from source forge, this 

temperature program consists of C++ and JAVA files, in which the C++ program uses the 

ACE wrappers. The tempNCAP is controlled by the JNCAP which is a Java application. 

Initially the reference program sends some temperature values of a sensor through the 

network. The simulated temp TIM get values from the transducer block. The Float32 data 

array is used in the temperature program and the argument array consists of all the 

temperature data. The used data architecture was described in the section 5.3.2. 

The output from the temperature program consists of the temperature values. When JNCAP 

starts, various options are displayed as shown in the Figure 7.1. In order to discover the 
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tempNCAP, user have to push discover button and the IP address of the remote tempNCAP is 

displayed on the screen. 

 

Figure 7.1 JAVA JNCAP screen when it starts initially showing the options like discover, connect and send 
command on the window 

In the next step, in order to connect JNCAP and tempNCAP, "connect" option has to be 

selected as shown in the Figure 7.1. If the tempNCAP receives the command it triggers all the 

blocks in tempNCAP. Then tempNCAP sends an acknowledgment to JNCAP and connects 

with JNCAP. When the user wants to receive some temperature values from tempNCAP, 

"Send" command has to be selected.  

 

Figure 7.2 The output windows of JAVA NCAP (JNCAP) and tempNCAP showing the fictional 
temperature values when JNCAP sends the send command. 

Once the command is received by the tempNCAP, it sends a request to the respective blocks 

inside the tempNCAP. The blocks inside the tempNCAP i.e. transducer and function blocks 
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which are responsible for the data processing are pushed into active state. As mentioned in the 

section 5.3.1, the BL_ACTIVE goes to active state. When BL_ACTIVE state goes to active 

state the transducer block is activated. This changes the state of the function block from 

FB_IDLE to FB_RUNNING. When the function block comes to running mode, it starts 

sending the temperature data to JNCAP as shown in the Figure 7.2. The temperature values 

are stored in Float32 array and are extracted from the transducer block using the IORead 

function in the functional block. The function block then publishes the data using the 

publish/subscribe mode of communication and JNCAP subscribes the data. And apparently, 

the temperature data can be visualized on the JNCAP screen. 

7.2 The aoNCAP Implementation 
As the objective of this project work is to send some amplitude values via analog output to 

steer the actuator and to receive analog signal values from the sensor in a distributed actuation 

control, interfacing has been done in such a way that it receives and sends data from raspberry 

pi from and to actuator and sensor. One NCAP is used for sending the analog signal to the 

actuator and the other NCAP receives the sensor reading from sensor. One JNCAP controls 

both the NCAPs using the NCAP to NCAP communication path. Therefore they are named as 

analog output NCAP (aoNCAP) and analog input NCAP (aiNCAP).  

7.2.1 Purpose of aoNCAP 

The aoNCAP is responsible for sending analog sine wave to actuator. It uses sound card as a 

DAC (digital to analog converter). This can be observed from the Figure 7.3. The aoNCAP is 

controlled by JNCAP which is Java NCAP, receiving commands from JNCAP, what it has to 

be performing.  

aoNCAP
(Raspberry Pi)

Sound card Actuator

 

Figure 7.3 Diagram showing connection between AONCAP and actuator using sound card as a transducer 
interface module (TIM) 

The aoNCAP communicates with JNCAP with the help of IEEE 1451 library.  
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7.2.2 AONCAP description 

The aoNCAP communicates with JNCAP through network interface. The major blocks in 

aoNCAP are transducer block, function block, aoNCAP block and aoMain block as shown in 

the Figure 7.4. Every block has an exclusive functionality in the NCAP communication. A 

brief description of each block can be seen in the following sections. 

aoNCAP
Implementation

IEEE 1451 
Library

aoNCAP aoTBlock aoFBlock aoMain

 

Figure 7.4 Diagram showing the blocks inside AONCAP module through which communication occurs 

The aoNCAP block 

The aoNCAP block brings all the blocks together and is responsible for communication 

housekeeping. The discover and publish operations are done by this aoNCAP block. The 

functionality of the NCAP block has been explained clearly in the section 5.3.1. In this 

section the main functionality of the NCAP in aoNCAP implementation has been depicted.  

aoNCAP
Creates NCAP 

Object
Creates a Tag

Builds Dispatch 
address

Starts the 
aoNCAP

Registers the 
dispatch address

Initializes the 
NCAP state

NCAP to Active 
state

 

Figure 7.5 Functions performed by the aoNCAP block in AONCAP implementation in step wise 

The NCAP block creates an NCAP object which defines the TCP server port and its 

assignment. Then it creates a tag, which can be used to identify the NCAP for others on 
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different networks. It builds a dispatch address for clients to connect to the JNCAP. There 

after it registers the dispatch address with the NCAP and tells NCAP to go active or to start 

running. The communication flow can be observed from the Figure 7.5 above.  

The aoTBlock  

This is responsible for interfacing the transducers and the application functions using software 

programming. The operations and their functionalities such as correction mode, sampling 

mode and others are discussed in the section 5.3.1in detail.  

The functionality of the TBlock is clearly depicted in the Figure 7.6. In the first step the 

transducer block starts defining a tag for the object, named as “aoNCAP-TBlock” in order to 

be recognised by the clients. The object tag defines a logical endpoint for the server side of 

client-server communication with a datatype ‘Object Tag’. It is usually assigned by the end 

user and is unique within a given system [11]. Then it creates a dispatch address additional to 

the one created in the NCAP block.  

As illustrated in the Figure 7.6, it defines a set of object properties which gives a special 

identity to the block. Then it registers the transducer block with the NCAP, such that it makes 

itself visible for the operations. In the next step it initiates the transducer block, followed by 

the registration of the transducer block with the NCAP. Then on receiving the appropriate 

trigger form the JNCAP it goes to active state. Then the state machine of the transducer block 

goes to TB_CORRECTED i.e. BL_ACTIVE as mentioned in section 5.3.1. 

The transducer block is also responsible for sending data to the function block on receiving 

the command from the JNCAP. As seen in the example implementation, the transducer block 

is responsible for holding the temperature values, and in the similar way, aoTBlock is 

responsible for sending analog signal to actuator. This is done by implementing the IOWrite 

function as shown in the Figure 7.7. 
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Figure 7.6 Functions performed by TBlock in aoNCAP Block in pictorial representation 

The IOWrite function extracts the data from the sinewave generation interface described in 

the section 6.1.1. The functionality of the sine wave generation has been implemented in the 

transducer block of aoNCAP, so that it generates a sine wave at particular frequency as given 

in the program.  

 

Figure 7.7 The sample code of the transducer block showing sine wave generating function 

As can be observed from the Figure 7.7 transducer block uses the argument array to store the 

frequency value through the io_input_arguments. It gets the functionality of the sine 

wave from sine wave generation interfacing i.e. sine(handle,(int) frequency) as 

shown in Figure 7.7, which is explained in chapter 6. The IOWrite operation sends the data 

to the functional block through which actuator gets the frequency upon JNCAP sending the 

‘send command’. 
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The aoFBlock 

This block is responsible for the abstraction and packaging of application functionality in the 

IEEE 1451.1 based program. All the application specific functionalities are owned and 

controlled by the functional block. The theoretical functionality of this block is described in 

section 5.3.1 

The program flow of the functional block in aoNCAP is clearly mentioned in the Figure 

7.8below. Firstly, a function block defines tag for the object as “aoNCAP-FBlock”. Then 

optional dispatch address will be created which contains the local host address of the function 

block. It creates a set of object properties including the ncap multicast address which gives a 

special identity to the block. It instantiates the function block with a new parameter to 

represent by an instance. After that, it registers the functional block with NCAP to make it 

visible to the network operations. Once the registration is done, it initializes the functional 

block and makes the transducer block active. Then finally it starts the application or 

invocation with the help of start () function. 

aoFBlock Defines a tag
Creates dispatch 

address

Defines object 
properties

Instantiate the 
Function block

Register the 
Function block

Initialize the 
functional block

Transducer block 
to active state

start

 

Figure 7.8 Functions performed by FBlock in aoNCAP block in pictorial representation 

As explained in the example implementation, functional block communicates with the JNCAP 

in order to send and receive data. In aoNCAP, it publishes the data to JNCAP upon receiving 

the send command from the JNCAP. This block is responsible to process the data which it 

obtains from the transducer block using the IOWrite function. The IOWrite function has been 

explained in the above section in aoTblock.  

A sample code from the FBlock where the sine wave function has been implemented is shown 

in the Figure 7.9. As observed from the Figure 7.9, it is clear that function block is calling the 

IOWrite function on tblock using input and output arguments called ao_arg_p_read and 
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ao_arg_p_write. These input and output arguments have been implemented in the IEEE 

1451 library, and whenever needed the functionality of these arguments will be called to 

aoNCAP block.  

 

Figure 7.9 Sample code of the Fblock showing the use of the analog output interface IOWrite 

When the functional block receives message it changes its state from FB_IDLE to 

FB_ACTIVE and it starts the functional block then it activates the transducer block as shown 

in the Figure 7.8.  

The aoMain block 

The aoMain block holds all the data functionality of the transducer and functional block. The 

functions implemented in the functional and transducer block are accessed from the main 

block.  

aoMain
Creates local 
clients server 

address

Creates object 
tag

Creates 
dispatch 
address

Sets object 
properties

Creates NIST 
NCAP

Creates 
transducer 

block

Creates 
Function block

Starts the 
aoNCAP

 

Figure 7.10 Functions performed by the main block in aoNCAP in pictorial representation 

The program flow of the main block has been depicted in the Figure 7.10. It creates the local 

client server address and port in order to be recognised by the JNCAP. Then it creates an 

object tag as mentioned in the TBlock and FBlock in previous sections, it also creates the 
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dispatch address for the NCAP. Then it sets the object properties as similar to TBlock and 

FBlock and then it creates the NIST NCAP, through which the JNCAP can discover the 

aoNCAP. Similarly it creates the transducer and functional block, all the properties of 

transducer, functional and NCAP blocks are available by the main block. It publishes the data 

using the functional and transducer block functions. 

7.3 The aiNCAP Implementation 
The aiNCAP is responsible for receiving the sensor readings from the sensor in distributed 

actuation control. The operation of aiNCAP is similar to aoNCAP, except the configuration in 

FBlock. It is connected to the JNCAP using the IP address and it will be controlled by JNCAP 

using the send command. When JNCAP sends command the output from the sensor will be 

displayed on the JNCAP screen. A clear description of the aiNCAP functionality will be 

explained in below sections. 

aiNCAP
(Raspberry Pi)

Sound card Sensor

 

Figure 7.11 Diagram showing the connection between the aiNCAP and the Sensor with a sound card as a 
transducer interface module (TIM) 

Figure 7.11 shows the connection between the aiNCAP and sensor and how the aiNCAP 

communicates the sensor using sound card. 

7.3.1 The aiNCAP description 

The aiNCAP communicates JNCAP through network interface. The blocks inside aiNCAP 

are transducer block, functional block, aiNCAP block and aiMain block as shown in the 

Figure 7.12. The functionality of the NCAP block and Main block in aiNCAP is similar to 

aoNCAP and aoMain block of aoNCAP implementation. For this reason, there will be clear 

description regarding the transducer and functional block in detail instead of concentrating on 

NCAP and main blocks in this section.  

The NCAP block is responsible to create the TCP server port which supports network 

communication. It helps for registration, deregistration, initialization, startup and many 

functions like this as mentioned in the aoNCAP block in 7.2.2. 
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aiNCAP
Implementation

IEEE 1451 
Library

aiNCAP aiTBlock aiFBlock aiMain

 

Figure 7.12 Figure showing the blocks inside aiNCAP through which communication occurs 

The aiMain block is responsible to hold the data functionality of the transducer block and 

functional block. There is a clear description about this block in aoMain block in 7.3.1. 

The aiTBlock 

The transducer block is responsible for interfacing the transducer and the application 

functions using software programming as mentioned in the aoTBlock section 7.2.2 above. The 

program flow is same as explained in the aoTBlock section except the functionality. The 

aiTBlock is designed to receive the sensor values using the IORead function. In aoTBlock 

IOWrite function has been used to generate analog signal.  

As shown in the Figure 7.13, the transducer block creates transducer block tag and then 

creates the set of object properties which gives special identity to the aiTBlock. In the next 

step it registers the transducer block with the NCAP as explained in the aoTBlock above.  

External trigger from 
JNCAP when it sends 
‘send command’

aiTBlock
Creates 

transducer 
block

Creates one 
more dispatch 

address

Creates set of 
object 

properties

Starts 
transducer 

block 

Registers with 
NCAP 

Initialize the 
TBlock

Brings TBlock to 
active state

 

Figure 7.13 The figure showing the program flow of the transducer block in aiNCAP implementation 
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The aiTBlock is initialized and brought to active state upon receiving the external command 

from the JNCAP. 

For data receiving it uses the capture interfacing program which is explained in the section 

6.2. The IORead function as shown in the Figure 7.14 consists of input and output argument 

arrays where the data will be stored. When JNCAP sends a command, it starts the TBlock and 

receives the sensor values using the sound card and ALSA programming interface. The values 

obtained from the sound card will be extracted by the IORead function.  From the Figure 7.14 

it can be observed that a capture function has been initialized to receive the sensor readings 

using capture(capture_handle, &buffer). 

 

Figure 7.14  A sample code showing the capture function which reads the sensor readings from the sensor 

As shown in the Figure 7.14, the sensorarray extracts the data from the buffer and 

then it hands it over to io_output_arguments. After receiving the sensor values, the 

io_output_arguments sends the data to functional block for data processing, which will be 

explained in the aiFBlock. 

The aiFBlock 

This block is responsible for data abstraction and controlling the application specific 

functionalities. The program flow of the analog input functional block is much similar to 

aoFBlock mentioned in the section 7.2.2. A brief description of the function block is depicted 

in the Figure 7.15. It starts defining a tag and then creates the dispatch address which contains 

the local host address of the function block. 
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Function block

Register the 
Function block

Initialize the 
function block

Transducer 
block to active 

state
start

 

Figure 7.15 The figure showing the program flow of the function block in aiNCAP implementation 

In the later stage it defines the object properties which give a special identity to the block and 

then it registers the function block and initializes the function block. When the function block 

receives a command from the JNCAP, it changes its state from FB_IDLE to FB_RUNNING. 

It activates the transducer block once it goes to running state and will be able to receive the 

data from the transducer block. 

 

Figure 7.16 A sample code showing the data processing functions in functional block of aiNCAP 
implementation 

As the functionality of the function block is to control the application functionalities, it is used 

for data processing. It sends the data processing to the data abstracted from the transducer 
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block. After it performs the data processing it sends the data to JNCAP and data can be 

visualized on the JNCAP screen. The data processing mechanism can be observed from the 

sample code given in the Figure 7.16. It extracts the sensor values from the 

‘ai_arg_array_p’ to analog input ‘ai’. Then the data array takes all the values 

from the analog input ai using ‘Get()’ function. Then the processed data after extracting 

the maximum value is sent to the output function. Once functional block receives send 

command from JNCAP it delivers the data it extracted from the transducer block. 

7.4 Java Network Capable Application Processor (JNCAP)  
Java NCAP implemented in the example implementation is responsible for controlling the 

tempNCAP as mentioned in section 7.1. To control the aoNCAP and aiNCAP JNCAP has 

been extended. It consists of different source files which are responsible for discovering, 

publishing, subscribing, disconnecting and many functions like this. The initial example 

implementation has been extended by a Disconnect command and a SendCommandsToAll 

functionality. These commands allow the user to perform a disconnect operation whenever it 

is needed, and allows the user to send commands to all NCAPs connected to the JNCAP in 

parallel. Once the send command is pushed on JNCAP, it starts sending the commands until 

we disconnect the aiNCAP and aoNCAP. 

 

Figure 7.17 JNCAP output window with all the commands like discover, connect, disconnect, Send 
command and send command to all functions in Real implementation 
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JNCAP controls the aiNCAP and aoNCAP using the buttons as shown in the Figure 7.17. The 

functionality has been included along with the buttons in the source files. When user starts 

JNCAP, a window will be opened as shown in the above Figure 7.17. 

Discover 

JNCAP searches for NCAPs by a multicast address using the ‘object-tag’, the JNCAP 

receives the information about the NCAP and establishes connection with it using its IP 

address. When it receives a tag name from the client, the number of discovered NCAPs will 

be displayed on the window as shown in the Figure 7.17. It displays the number in the box 

NCAP’s found and the IP address of the NCAP’s in a drop down menu besides. 

Connect 

Once JNCAP discovers the NCAP’s running in the network, then the user will be pushing 

“connect” button on the window. It makes a connection with NCAP using the IP address 

displayed on the IP address box, just beside the “NCAP’s found” box. Any number of 

NCAP’s can be connected with the JNCAP using the IP address.  

Disconnect 

The Disconnect button is used to disconnect the NCAP or terminate the connection. When 

disconnect button is pushed the NCAP stops running and terminates the connection with 

JNCAP. 

Send command  

When send command is selected, JNCAP sends a command to start the FBlock there by to 

receive the data from transducer block using appropriate functions. This includes the 

command choice and node choice. Command choice consists of commands like start FBlock, 

stop FBlock, Resume, Pause, Read FBlock through which user can select the desired option. 

The node choice includes the IP addresses of the NCAPs to which these commands should be 

sent. The send command can send command only upon selecting required IP address. It uses 

the publish/subscribe mode of communication to send and receive data as mentioned in the 

chapter 5. 
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SendCommandToAll 

The functionality of the SendCommandToAll is similar to Send command, it is used to send 

required commands to the connected NCAPs. The additional functionality with 

SendCommandToAll is to send commands to all NCAPS connected with JNCAP just on one 

click in parallel. So user doesn’t have to select each and every IP address of the connected 

NCAPs to send the commands. It also uses the publish/subscribe mode of communication to 

receive and send data. 

7.5 Controlling AONCAP and AINCAP using JNCAP 
As mentioned in the above section, any number of NCAPs can be connected and controlled 

by the JNCAP. In order to connect the JNCAP with aiNCAP and aoNCAP, they have to be 

started first. When the user starts both NCAP’s, the JNCAP program has to be started. When 

the JNCAP window will be opened, a series of steps have to be followed in order to send and 

receive data from aiNCAP and aoNCAP as shown in the Figure 7.18.  

When NCAPs and JNCAP are started, in order to make a connection between JNCAP and 

NCAPs, Discover command has to be pushed. The JNCAP then gets the multicast address 

through the publish mode of communication. The number of NCAPs found will be displayed 

in the box NCAPs found.  
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Figure 7.18 Algorithm explaining the control mechanism of JNCAP with aiNCAP and aoNCAP 

As shown in the Figure 7.18, once the JNCAP discovers NCAPS, then Connect command 

have to be selected in order to establish a connection. This connection will be done by 

selecting the desirable IP address of the NCAP from the drop down box beside the NCAPs 

found box as shown in Figure 7.18. Any number of NCAPs can be connected by selecting 

their IP address. 

In order to start the FBlock, send command should be selected. As there are two possibilities 

to start FBlock, either SendCommandsToAll or Send command option has to be selected. If 

send command is selected then user have to pick appropriate IP address of the NCAP which is 
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intended to start. As per the requirement of the project it is sufficient to select 

SendCommandsToAll in order to send commands to aoNCAP and aiNCAP in parallel. Once 

the JNCAP sends SendCommandsToAll command, aoNCAP starts sending analog sine data to 

actuator and aiNCAP starts receiving sensor values from sensor. As mentioned in the section 

4.3, the requirement has been fulfilled. 
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Sound Card
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4
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Figure 7.19 diagram showing the connections between the Raspberry Pis , actuator and sensor. 

The algorithm shown in Figure 7.18 can be compare to the block diagram of the project (see 

Figure 7.19). When JNCAP discovers the aiNCAP and the aoNCAP, it tries to connect with 

two NCAPS using IP address. Once the connection has been established, JNCAP is ready to 

control the aiNCAP and aoNCAP as shown in Figure 7.19. When JNCAP sends command to 

aiNCAP and aoNCAP to start the FBlock, aoNCAP starts sending the analog signal to 

actuator through sound card and aiNCAP starts receiving sensor values and sends them to 

JNCAP. Then the values can be visualized on the JNCAP application window. 

  



Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control 

50 

8 Time Measurement 
This chapter explains about the propagation time through IEEE 1451 layer. It explains about 

the time measurement parameters in the earlier sections and about the results in the last 

section. 

8.1 Time measurement in aiNCAP and aoNCAP 
The time measurement has been measured in IEEE 1451 layer for aiNCAP and aoNCAP 

during the process. The time measurement functions has been implemented in IEEE 1451 

library, aiNCAP and aoNCAP during the invocation , during dispatching the multicast address 

and during the publication of data. Each of the implemented functions in the IEEE 1451.1 

implementation is explained in the following. 

When JNCAP sends Discover command, a process is invoked on aiNCAP and aoNCAP. This 

time is taken as invocation time as shown in Figure 8.1. 

Figure 8.1 The time measurement function implemented in aiNCAP and aoNCAP during the invocation of 
NCAPs address discovering 

When the invocation is done, NCAPs will send the acknowledgement through IEEE 1451 

library. The time measurement has been done during sending the multicast address to JNCAP. 

The implemented function is shown in the Figure 8.2. A time measurement function has been 

implemented before and after the send function. 
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Figure 8.2 Time measurement before and after send command i.e. during sending the dispatch address of 
NCAPs for the request from JNCAP 

From the above measurements, the difference between the invoke time and time before send 

and the time difference between the invoke time and time after send will be considered as a 

propagation time for IEEE layer and for the whole communication stack. 

The time measurement for aiNCAP, when it publishes data upon receiving the send command 

from JNCAP is measured during the publishing of data. The implemented time measurement 

function for aiNCAP can be observed from the Figure 8.3.  

Figure 8.3  The time measurement for aiNCAP when it publishes the data upon receiving the send 
command from JNCAP 

For aiNCAP an arbitrary time is also used to publish the data. As shown in the Figure 8.4, 

aiNCAP publishes the data to JNCAP with a time span of 1 sec. It starts publishing data by 
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polling the appropriate process with a predefined time period (see time representation in 

Figure 8.4).  

Figure 8.4 Arbitrary time has been set to send data from aiNCAP to JNCAP when aiNCAP receives send 
command from JNCAP 

This time period can be changed as per the time required to publish data. If the time period is 

reduced to very less value, then aiNCAP starts publishing data frequently. The mean values of 

several measurements are shown in Table 8.1. 

Table 8.1 The mean values of the time through IEEE layer and the time for the whole communication 
process 

Mean value before send 

and invoke(Milliseconds) 

Mean value after send and 

invoke 

aiNCAP 2.8ms 3.5ms

aoNCAP 2.3ms 3.2ms

Considering the resulting values from Table 8.1 a general result of propagation time is less 

than 3ms through IEEE layer.  

The reduction of time representation to 1ms also delivers a result less than 3ms propagation 

time through IEEE communication layer. The minimum time seems to depend on calculation 

power and network capability as aiNCAP is flooding the network with data in this 

configuration.
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9 Experimental setup and validation 
This chapter explains about the experiments and results obtained from the setup. It also gives 

a description about the validation for the results obtained. 

9.1 Experimental setup 
The experimental setup has been made as shown in the Figure 1.1. The connections from the 

controlling node i.e. JNCAP to the aoNCAP and aiNCAP have been made according to the 

description given in the section 4.1. All the connections were made as per the requirement 

without any compromises.   

9.2 Experiment validation 
The validation has been done according to the mentioned theory in section 4.5. The output 

from the aoNCAP can be visualized using the MacLab by ADI instruments [28]. The analog 

output from the aoNCAP is given to the MacLab with the help of the sound card as mentioned 

in the section 4.5. When the aoNCAP receives send command from JNCAP, it starts sending 

the analog signal.  

Figure 9.1 An analog signal obtained from the aoNCAP when it receives send command from JNCAP 

The result obtained from the aoNCAP is shown in the Figure 9.1. An analog signal of 150 Hz 

frequency and 1Vp-p amplitude is sent from aoNCAP to MacLab using sound card.  

The result is visualized and validated using the MacLab. The validated result using MacLab is 

shown in the Figure 9.2. The analog sine wave obtained from the aoNCAP has a frequency of 

156.25 Hz instead of 150 Hz and amplitude of -1.15V to 1.18 V peak to peak. 
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Figure 9.2 The validation report of the analog sine wave obtained from aoNCAP using MacLab at 150 Hz 

This result is almost accurate. There is a slight change in the frequency and the difference is 

due to the capacitance problems obtained from the sound card. 

The result from the aiNCAP can be validated using the function generator. An analog sine 

wave at particular amplitude is sent to aiNCAP using sound card. When JNCAP sends send 

command, aiNCAP starts receiving the data from function generator using the sound card. A 

sample sine wave of amplitude 1.1 Vpp has been sent to aiNCAP through sound card from 

function generator (see Figure 9.3). 

Figure 9.3 A function generator is sued to generate a sinusoidal signal. The signal with amplitude of 1.1 V 
was sent to the aiNCAP using sound card upon receiving the send command from JNCAP to aiNCAP 
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Figure 9.4 The result obtained from function generator can be visualized on JNCAP application window, 
when aiNCAP publishes the data to JNCAP 

The data sent from function generator to aiNCAP can be visualized on JNCAP window. 

When aiNCAP receives data from function generator with the help of sound card, it starts 

publishing the data on JNCAP. As observed from the Figure 9.3 and Figure 9.4, the data sent 

and received are almost equal just with a minor difference. This difference has been occurred 

due the capacitance problems with the sound card. 

The results obtained from the testing environment are satisfactory. It can be assumed that the 

actuation and measurements will work properly with the actuator and sensors for the flat plate 

actuation in further experiments. 
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10 Conclusion and Outlook 

The last chapter of the report contains the conclusions of the thesis work, outlines and ideas 

concerning work.  

10.1 Conclusion 
The aim of the project is to create a Raspberry Pi Network based on IEEE 1451.1 Smart 

Transducer Standard Interface Protocol. A network consisting of three Raspberry Pi nodes 

allows steering actuator and recording sensor values. The example implementation IEEE 1451 

from NIST Open Gaithersburg is used as a reference model for IEEE 1451.1 implementation 

[20]. 

As described in section 4.1 three Raspberry Pis are connected using a network switch. One of 

the three Raspberry Pis acts as a Control node (JNCAP) and two other Raspberry Pis are used 

as analog output (aoNCAP) and analog input (aiNCAP) nodes respectively. These aiNCAP 

and aoNCAP are connected to actuator and sensor with the help of a sound card. The 

Raspberry Pi setup works properly and everything is done as per the initial requirement.   

The results obtained from the aiNCAP and aoNCAP are validated using the MacLab [28] and 

a function generator as described in the section 9.2. All the results obtained are as expected 

and show minimal variations. The mean of the timing values obtained from the validation for 

propagation time through IEEE 1451.1 layer are less than 3ms which are very promising. 

The Raspberry Pi Network which has been established using the IEEE 1451.1 Smart 

Transducer Interface Standard Protocol is now ready for implementation of a wave control as 

inner loop of the distributed cascade flow control.  

10.2 Future work 

The statistical timing results obtained from aoNCAP and aiNCAP using IEEE 1451.1 Smart 

Transducer Interface Standard Protocol will be imported into actuator and sensor network 

model to ensure realistic behavior of a large scale actuator and sensor network 

There are a few possible options for extending the Raspberry Pi based testbed for actuation 

control. 
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The modules can be improved to record a continuous measurement and exiting of the analog 

output data for aoNCAP. Now the analog output data is processed for every 5 seconds and in 

the future this may be extended as continuous flow of data.  

A closed loop for wave control to realize desired sinusoidal waveform on the surface will be 

created where the aiNCAP and aoNCAP can be implemented on one node and the 

combinational node can be controlled using the JNCAP. The combinational node is 

responsible to receive and use wave parameters. In addition to this, sensor and actuator node 

can be used to record and publish sensor data for flow control.  

The function setup on JNCAP to enter the amplitude and frequency values can be automated 

instead of hard coded values in the aoNCAP module.  

The minor differences occurred during the analog output generation and recording sensor 

values using sound card could be improved by using external ADC and DAC modules. 
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