
Jül - 4389

M
itg

lie
d

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

Zentralinstitut für Engineering, Elektronik und Analytik (ZEA)
Systeme der Elektronik (ZEA-2)

Raspberry Pi Based IEEE 1451.1
Network for Distributed Actuation
Control

Lileesha Mulpuri

Berichte des Forschungszentrums Jülich 4389

Raspberry Pi Based IEEE 1451.1
Network for Distributed Actuation
Control

Lileesha Mulpuri

Berichte des Forschungszentrums Jülich; 4389
ISSN 0944-2952
Zentralinstitut für Engineering, Elektronik und Analytik (ZEA)
Systeme der Elektronik (ZEA-2)
Jül-4389

(Master, Hochschule Bremen, 2015)

Vollständig frei verfügbar über das Publikationsportal des Forschungszentrums Jülich (JuSER)
unter www.fz-juelich.de/zb/openaccess

Forschungszentrum Jülich GmbH
Zentralbibliothek, Verlag
52425 Jülich
Tel.: +49 2461 61-5220
Fax: +49 2461 61-6103
E-Mail: zb-publikation@fz-juelich.de
 www.fz-juelich.de/zb

I

ABSTRACT

The DFG funded project FOR 1779 titled “active drag reduction via transversal surface

waves”, investigates robust methods to reduce the friction drag by influencing the turbulent

boundary layer. The Central Institute of Engineering, Electronics and Analytics, ZEA-2:

Electronic Systems, Forschungszentrum Jülich GmbH, works on the subproject “development

of a real-time actuator and sensor network” for closed loop controlled transversal surface

waves. For application on transportation vehicles like airplanes a large scale real-time actuator

and sensor network is needed. To investigate the configuration of such a network a model

based on Simulink and TrueTime is established. A Raspberry Pi based test bed is then used

for parameter verification of the model.

The aim of the thesis is to steer an actuator and to record values from a sensor in a small scale

distributed actuator and sensor network with the help of IEEE 1451.1 Smart Transducer

Interface Standard Protocol. For this purpose Raspberry Pi network consists of three

Raspberry Pi nodes is established in order to send actuation signal, to gather sensor

parameters and to provide actuation parameters. The benefit for the model will be to get the

propagation time through IEEE1451.1 layer out of this real world test bed.

III

TABLE OF CONTENTS

1 Introduction ‐‐‐ 1

1.1 MOTIVATION ‐‐ 1

1.2 PROJECT DESCRIPTION ‐‐ 1

1.3 AIM OF THE THESIS ‐‐ 2

2 Background ‐‐ 4

2.1 NETWORK MODEL PROTOCOL STACK ‐‐‐ 4

3 Development Environment ‐‐ 5

3.1 RASPBERRY PI ‐‐‐ 5

3.2 DAQ ADC AND DAC ‐‐‐ 6

3.2.1 SOUND CARD ‐‐‐ 6

3.3 SOFTWARE ‐‐‐ 7

3.3.1 ALSA DRIVERS ‐‐ 7

3.4 IEEE 1451 EXAMPLE IMPLEMENTATION FROM SOURCE FORGE ‐‐ 8

3.5 ADAPTIVE COMMUNICATION ENVIRONMENT (ACE) ‐‐ 8

4 Concept ‐‐‐ 10

4.1 RASPBERRY PI HARDWARE SETUP ‐‐ 10

4.2 IEEE 1451 ‐‐ 10

4.3 ANALOG ACTUATOR AND SENSOR CONNECTION ‐‐‐ 11

4.4 TIME MEASUREMENT ‐‐‐ 11

4.5 EXPERIMENTAL VALIDATION ‐‐ 11

5 IEEE 1451 standard protocol family ‐‐‐ 13

5.1 INTRODUCTION ‐‐ 13

5.2 IEEE 1451.1 ‐‐ 14

5.3 NCAP: NETWORK CAPABLE APPLICATION PROCESSOR ‐‐‐ 15

5.3.1 AN OBJECT MODEL ‐‐ 16

5.3.2 DATA MODEL ‐‐‐ 21

5.3.3 NETWORK COMMUNICATION MODEL (NCAP – NCAP COMMUNICATION) ‐‐‐ 23

6 Analog input and analog output using Raspberry Pi ‐‐‐ 27

6.1 SINE WAVE GENERATION ‐‐‐ 27

6.1.1 ANALOG OUTPUT FROM RASPBERRY PI ‐‐‐ 27

6.2 CAPTURING SENSOR VALUES ‐‐ 29

6.2.1 ANALOG INPUT TO RASPBERRY PI ‐‐‐ 30

7 IEEE 1451.1 Implementation ‐‐ 33

7.1 EXAMPLE IMPLEMENTATION OF A TEMPERATURE MEASUREMENT USING IEEE 1451.1 ‐‐‐ 33

7.2 THE AONCAP IMPLEMENTATION ‐‐ 35

7.2.1 PURPOSE OF AONCAP ‐‐‐ 35

7.2.2 AONCAP DESCRIPTION ‐‐ 36

IV

7.3 THE AINCAP IMPLEMENTATION ‐‐‐ 41

7.3.1 THE AINCAP DESCRIPTION ‐‐ 41

7.4 JAVA NETWORK CAPABLE APPLICATION PROCESSOR (JNCAP) ‐‐‐ 45

7.5 CONTROLLING AONCAP AND AINCAP USING JNCAP ‐‐ 47

8 Time Measurement ‐‐ 50

8.1 TIME MEASUREMENT IN AINCAP AND AONCAP ‐‐ 50

9 Experimental setup and validation ‐‐ 53

9.1 EXPERIMENTAL SETUP ‐‐‐ 53

9.2 EXPERIMENT VALIDATION ‐‐‐ 53

10 Conclusion and Outlook ‐‐ 56

10.1 CONCLUSION ‐‐ 56

10.2 FUTURE WORK ‐‐‐ 56

11 References ‐‐‐ 59

V

LIST OF FIGURES

FIGURE 1.1 BLOCK DIAGRAM SHOWING THE COMMUNICATION PROCESS WITHIN THE RASPBERRY PI 3

FIGURE 2.1 THE NETWORK PROTOCOL STACK EXPLAINING THE COMMUNICATION FLOW. 4

FIGURE 3.1 RASPBERRY PI CREDIT CARD SIZED COMPUTER WITH MULTIPLE I/O PORTS... 5

FIGURE 3.2 CREATIVE USB SOUND CARD WITH ANALOG IN (MICROPHONE) ... 6

FIGURE 4.1 NCAP COMMUNICATION PARADIGM SHOWING THE BLOCKS .. 11

FIGURE 5.1 THE NETWORK CAPABLE APPLICATION PROCESSOR (NCAP) CONNECTS .. 15

FIGURE 5.2 SOFTWARE ARCHITECTURE OF IEEE 1451.1 WHICH IS DIVIDED INTO ... 15

FIGURE 5.3 THE COMMUNICATION PARADIGM OF OBJECT CLASS SHOWING THE FUNCTIONALITY 16

FIGURE 5.4 CLASSIFICATION OF THE OBJECT MODEL WITH DIFFERENT CLASSES AND ITS SUBCLASSES 17

FIGURE 5.5 CLIENT‐ SERVER COMMUNICATION MODEL COMPONENTS ... 24

FIGURE 5.6 PUBLISH/SUBSCRIBE COMMUNICATION MODEL COMPONENTS ... 25

FIGURE 6.1 SAMPLE CODE FROM THE SINE WAVE GENERATION CODE SHOWING PCM DEVICE OPENING 28

FIGURE 6.2 SAMPLE CODE SHOWING THE SINE WAVE GENERATION FUNCTION .. 29

FIGURE 6.3 SAMPLE CODE TO SHOW THE CLOSING FUNCTION ... 29

FIGURE 6.4 SAMPLE CODE TO OPEN THE HANDLE FUNCTION ... 30

FIGURE 6.5 SETTING PARAMETERS REQUIRED TO CAPTURE THE SENSOR READINGS ... 31

FIGURE 6.6 FUNCTION SHOWING THE BUFFER CAPTURING THE VALUES ... 31

FIGURE 7.1 JAVA JNCAP SCREEN WHEN IT STARTS INITIALLY SHOWING THE OPTIONS LIKE DISCOVER 34

FIGURE 7.2 THE OUTPUT WINDOWS OF JAVA NCAP (JNCAP) .. 34

FIGURE 7.3 DIAGRAM SHOWING CONNECTION BETWEEN AONCAP AND .. 35

FIGURE 7.4 DIAGRAM SHOWING THE BLOCKS INSIDE AONCAP MODULE THROUGH WHICH COMMUNICATION 36

FIGURE 7.5 FUNCTIONS PERFORMED BY THE AONCAP BLOCK IN AONCAP IMPLEMENTATION IN STEP WISE 36

FIGURE 7.6 FUNCTIONS PERFORMED BY TBLOCK IN AONCAP BLOCK IN PICTORIAL REPRESENTATION 38

FIGURE 7.7 THE SAMPLE CODE OF THE TRANSDUCER BLOCK SHOWING SINE WAVE GENERATING FUNCTION 38

FIGURE 7.8 FUNCTIONS PERFORMED BY FBLOCK IN AONCAP BLOCK IN PICTORIAL REPRESENTATION 39

FIGURE 7.9 SAMPLE CODE OF THE FBLOCK SHOWING THE USE OF THE ANALOG OUTPUT INTERFACE IOWRITE .. 40

FIGURE 7.10 FUNCTIONS PERFORMED BY THE MAIN BLOCK IN AONCAP IN PICTORIAL REPRESENTATION 40

FIGURE 7.11 DIAGRAM SHOWING THE CONNECTION ... 41

FIGURE 7.12 FIGURE SHOWING THE BLOCKS INSIDE AINCAP THROUGH WHICH COMMUNICATION OCCURS 42

FIGURE 7.13 THE FIGURE SHOWING THE PROGRAM FLOW O ... 42

FIGURE 7.14 A SAMPLE CODE SHOWING THE CAPTURE FUNCTION ... 43

FIGURE 7.15 THE FIGURE SHOWING THE PROGRAM FLOW OF THE FUNCTION BLOCK IN AINCAP 44

FIGURE 7.16 A SAMPLE CODE SHOWING THE DATA PROCESS ... 44

FIGURE 7.17 JNCAP OUTPUT WINDOW WITH ALL THE COMMANDS .. 45

FIGURE 7.18 ALGORITHM EXPLAINING THE CONTROL MECHANISM OF JNCAP WITH AINCAP AND AONCAP 48

FIGURE 7.19 DIAGRAM SHOWING THE CONNECTIONS BETWEEN THE RASPBERRY PI .. 49

FIGURE 8.1 THE TIME MEASUREMENT FUNCTION IMPLEMENTED ... 50

VI

FIGURE 8.2 TIME MEASUREMENT BEFORE AND AFTER SEND COMMAND .. 51

FIGURE 8.3 THE TIME MEASUREMENT FOR AINCAP WHEN IT PUBLISHES THE DATA ... 51

FIGURE 8.4 ARBITRARY TIME HAS BEEN SET TO SEND DATA FROM AINCAP .. 52

FIGURE 9.1 AN ANALOG SIGNAL OBTAINED FROM THE AONCAP WHEN IT RECEIVES SEND COMMAND 53

FIGURE 9.2 THE VALIDATION REPORT OF THE ANALOG SINE WAVE OBTAINED FROM AONCAP 54

FIGURE 9.3 A FUNCTION GENERATOR IS SUED TO GENERATE A SINUSOIDAL SIGNAL ... 54

FIGURE 9.4 THE RESULT OBTAINED FROM FUNCTION GENERATOR CAN BE VISUALIZED ON JNCAP 55

VII

LIST OF TABLES

TABLE 5.1 TABLE SHOWING NCAP BLOCK OPERATIONS AND ITS FUNCTIONALITIES 18

TABLE 5.2 TABLE SHOWING THE TRANSDUCER BLOCK OPERATIONS AND FUNCTIONALITIES 20

TABLE 5.3 TABLE SHOWING FUNCTIONAL BLOCK CLASS OPERATIONS AND FUNCTIONALITIES 21

TABLE 5.4 THE SIMPLE PRIMITIVE DATA TYPES [11] USED IN IEEE 1451.1 STANDARD 22

TABLE 8.1 THE MEAN VALUES OF THE TIME THROUGH IEEE LAYER AND THE TIME 52

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

1

1 Introduction

1.1 Motivation
The drag of transportation systems such as airplanes, ships and trains is investigated with

respect to the friction drag. This drag has a major contribution towards the fuel consumption

in modern transportation systems, which in turn increases the cost. Cost reduction became the

element of concentration in the present day contest. And apparently to reduce the cost, friction

drag has to be reduced. The earlier approach to reduce the drag is by stabilizing the laminar

state of the boundary layer flow, as the wall shear stress in a laminar is comparatively smaller

than in the turbulent boundary layer [1]. The idea of the research project FOR1779 is to

reduce the friction drag by decreasing the wall shear stress of turbulent boundary layer by

damping the near wall coherent structures with minimum energy input into the flow. This

approach requires additional weight in the transport system. So active drag reduction in high

Reynolds numbers (>104 the typical range of airplanes), by span-wise transversal surface

waves is investigated to reduce the fuel consumption and also noise.

Later on flow control development based on wind tunnel and numerical studies in order to

create a closed loop controlled transversal waves on a surface like an airplane wing, a large

scale actuator and sensor network is needed. For the development of real-time actuator and

sensor network a model based on Simulink and TrueTime has been established. To ensure the

accuracy for the network development, the network parameters have to be verified in a real

world test bed. For this purpose a Raspberry Pi based test bed is used in order to determine the

network and transmission parameters for the distributed actuation control. With the help of

this approach in later stages a link will be created between the large scale model and later

microcontroller based real-time actuator and sensor network for distributed active turbulent

flow control.

1.2 Project description
The FOR1779 develops robust methods to reduce the wall shear stress on the turbulent

boundary layer. It is a DFG funded project, started with the aim of “Drag reduction via

transversal surface waves”. It consists of seven subprojects, where each project works on a

special aim. In later application for drag reduction large scale distributed actuator and sensor

network is required to implement on air planes.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

2

The Forschungszentrum Jülich GmbH, Central Institute for Engineering, Electronics and

Analytics, ZEA-2: Electronic Systems is responsible to handle the sub-project TP4 titled as

“Development of a Real Time Actuator and Sensor Network”. For the development of real-

time actuator and sensor network a model based on Simulink and TrueTime has been

established. It provides interfaces to the central flow control and actuation control in a cascade

control loop and can be used in the wind tunnel as model in the loop simulation [2]. In order

to verify the network parameters in a real world a Raspberry Pi network based test bed is

used. The Raspberry Pi based test bed is proposed to steer the actuator and to calculate the

timing parameters for a large scale distributed actuator and sensor network.

1.3 Aim of the Thesis
The main focus of the thesis is to implement IEEE 1451.1 Smart Transducer Interface

Standard Protocol on the Raspberry Pi test bed network. As shown in the Figure 1.1 three

Raspberry Pis will be used to communicate over a network and to send and receive signals

through an analog interface. One Raspberry Pi acts as a controller and sends commands to the

other two Raspberry Pis. All these Raspberry Pis communicate with each other using IEEE

1451.1 protocol. The aoNCAP as shown in the Figure 1.1 is responsible to send an analog

sine wave to steer the actuator and the aiNCAP is responsible to receive the sensor values

from the sensor. A sound card as shown in the Figure 1.1 acts as a transducer interface module

(TIM) between the Raspberry Pis and actuator and sensor.

The aoNCAP receives a command from JNCAP and starts sending the analog sine wave to

the actuator. Similarly, the aiNCAP receives the command from JNCAP and starts recording

the sensor values from the sensor and then they are visualised on the JNCAP application

window.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

3

Raspberry Pi
(aoNCAP)

Sound Card
(TIM)

Raspberry Pi
(aiNCAP)

Sound Card
(TIM)

Sensor

Raspberry Pi
(JNCAP)

N NNS SS

S SSN NN

1

2

3

3

1. Actuator signal
2. Sensor signal
3. IEEE 1451.1 Implementation
4. Magnets
5. Coil

4

5

Figure 1.1 The communication process within the Raspberry Pi network test bed following the IEEE
1451.1 protocol standard. The aiNCAP is supposed to record sensor values proportional to the actuator

amplitude from analog input using a sound card. The aoNCAP is supposed to send an analog sine wave to
drive the current within the coil of the electromagnetic actuator, i.e. to steer the actuator. This process

should be initiated and monitored by JNCAP.

After implementing the protocol, the final task is to measure the propagation time through the

IEEE 1451.1 layer and to show that the loop for actuation control is closed by actuating and

measuring in parallel.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

4

2 Background

This chapter focuses on the network model which has been proposed to use in the sub-project.

The reason for calculating the propagation time through the IEEE layer is shortly described.

2.1 Network model Protocol Stack
The network protocol stack referring to the ISO-OSI layer, three layer architecture consists of

physical layer, transport layer and application layer is used (see Figure 2.1). The

communication takes place between NCAPs and JNCAP as shown in the Figure 2.1. The

IEEE 1451.1 Smart Transducer Interface Standard protocol is implemented on the application

layer. The Ethernet acts as a physical layer, ACE library acts like a Transport layer and on

application layer IEEE 1451.1 is implemented. The timing values will be calculated through

the IEEE 1451.1 application layer.

Application Protocol IEEE
1451.1

Transport Protocol

Ethernet

Three level modelling

Application Protocol IEEE
1451.1

Transport Protocol

Ethernet

JNCAP aoNCAP or aiNCAP

Figure 2.1 The network protocol stack explaining the communication flow. On the bottom layer a physical
communication takes places, while on the upper layer a logical communication runs [3].

When JNCAP starts sending commands to NCAPs i.e. aiNCAP and aoNCAP, the application

layer on which IEEE 1451.1 is implemented starts measuring the timing values. The measured

timing values will be later imported to the Simulink and TrueTime model which is the overall

sub project.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

5

3 Development Environment

The details of the hardware and software used in this project are elaborated in this chapter. To

start with, the technical detail of the Raspberry Pi which is the most important element of the

hardware is described. Then, in later sections a brief description about the sound card which is

the external hardware of the setup is given. It acts as ADC and DAC in this whole setup. The

process is explained in the later stages of the chapter. In the last section a brief description

about the software platforms, programming environment, example implementation and about

open source platform called Adaptive Communication Environment (ACE) is given.

3.1 Raspberry Pi
Raspberry Pi is a small, single board computer with I/O connectors for peripheral interfacing.

It is basically a credit card sized computer, invented by the Raspberry Pi foundation which is

an educational charity group headed by the United Kingdom (UK) [4]. They invented this

Raspberry Pi with a motivation to advance the education for children in the field of computer

sciences. Raspberry Pi works on the software called Raspbian, which is a free operating

system based on Debian Linux. The Raspberry Pi provides multipurpose utility such as

programming, controlling robots, used for modeling different working modules for various

applications e.g. automation applications like home theatre. Different devices can be

connected to a Raspberry Pi through USB ports and a HDMI port. A typical Raspberry Pi

used in this project is shown in the Figure 3.1 [4].

Figure 3.1 Raspberry Pi credit card sized computer with multiple I/O ports

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

6

3.2 DAQ ADC and DAC
Raspberry Pi needs some external hardware to receive and send analog data to and from the

actuator and sensor. It needs an external ADC (analog to digital converter) and DAC (digital

to analog converter) to receive and send analog signals. It can be done using the GPIO pins

but it is time consuming and complicated. The hardware used in the project as transducer

interface module (TIM) is a sound card. Transducer interface module is a part of IEEE 1451.1

standard and contains the signal conditioning, analog to digital conversion and control logic

necessary to acquire a signal and convert it to data. The TIM holds the transducer electronic

data sheet (TEDS) which represents the information about the sensors and actuators attached

to a TIM [11]. It acts like an interfacing module between Raspberry Pis and Actuator and

sensor. It uses the ALSA drivers to process the data which is explained more clearly in section

3.3.1. By using a sound card the complexity and cost reduces. It is easy to interface the sound

card to Raspberry Pi as it does not need any extra effort.

3.2.1 Sound card

The sound card used in the project is Creative Sound Blaster Play [12]. It is compatible and

easy to use. It can be just plugged into Raspberry Pi using the USB port. The sound card used

in this project is shown in the Figure 3.2. From the figure it can be observed that there are two

sockets for audio in and audio out.

Figure 3.2 Creative USB sound card with analog in (Microphone) and analog out (Headphones) ports

Specifications

The specifications of the Creative sound card are as follows [13]:

 Playback: USB 1.1 : Stereo/ Surround = 16-bit/48kHz

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

7

 Signal to noise ratio: >90dB

 Recording: 16-bit/48kHz

 Microphone : 3.5mm mini jack located at the bottom of the USB card

 Compact plug and play

 PC USB bus-powered : 400mA required

 Full scale input level : 120m Vrms

 Input impedance : 2.2 kΩ

 Line out: 0.8 Vrms at 10kΩ

3.3 Software
In this section a brief explanation about all the software applications, programming

environments and software implementations is given.

3.3.1 ALSA drivers

ALSA means Advanced Linux Sound Architecture. It consists of a set of kernel drivers, an

application programming interface (API) library and utility programs for supporting sound

under Linux. Some of the functions of the ALSA project were automatic configuration of

sound card hardware and handling of multiple sound devices in a system [14]. The library

provides higher level and developer friendly programming interfaces. It also provides a

logical naming of devices in order to give some information to developers about low-level

details such as device files. The naming could be done using the format hw: i, j, where ‘i’ is

the sound card number and ‘j’ is the device on the card.

ALSA has a capability called plugins which allows extension to new devices including virtual

devices implemented entirely in software. It provides multiple number of command-line

utilities, including a mixer to control input and output volume, sound file player and tools for

controlling special features of specific sound cards.

ALSA Architecture

The ALSA API has interfaces like Control interface, PCM interface, Raw-Midi interface,

Timer interface, Sequencer interface and mixer interface [14]. The PCM interface is used for

ALSA programming in this project.

PCM interface: This is the interface used for the digital audio and capture. The PCM middle

layer of ALSA is powerful. It is only necessary for each driver to implement the low-level

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

8

functions to access its hardware. In order to access the PCM layer, #include

<sound/pcm.h> should be included in C-programming.

In addition to this, include <sound/pcm_params.h> might be needed if the user

access to some functions related to hw_param. Each card device can have up to four PCM

instances A PCM instance corresponds to a PCM device file. The limitation of number of

instances comes only from the available bit size of the Linux device numbers, when 64bit

device number is used then there will be more PCM instances. A PCM instance consists of

PCM playback and capture streams and each PCM stream consists of one or more PCM sub-

streams. Some sound cards support multiple playback functions.

3.4 IEEE 1451 example implementation from source forge
Theoretical, as well as practical investigations have been done to get knowledge in the IEEE

1451 Smart Transducer Interface Standard. As the standard is open the Open Gaithersburg

IEEE 1451 example implementation could be used [20], (see section 7.1). For practical

investigations of the actuator and sensor network implementation, the example

implementation from source forge called “an open implementation of IEEE 1451.1” is

proposed to use. It contains various reference implementations for users. These open

implementations are invented by the NIST organization [21].

The recent reference implementation from NIST is IEEE 1451 Open Gaithersburg

implementation. This is an implementation for smart transducer interfacing of sensors. It is

based on NCAP (Network capable application processor) to NCAP communication. There is

clear explanation about NCAP to NCAP communication in section 5.3. It can be tested on

wired and wireless networks.

IEEE 1451 open Gaithersburg implementation consists of NIST C++ and Java reference

implementations. The C++ reference implementation uses the open source Adaptive

Communication Environment (ACE) (see section 3.5). The entity class in the IEEE 1451.1

inherits the properties from the ACE and helps in synchronization and TCP/IP communication

of NCAPs.

3.5 Adaptive Communication Environment (ACE)
ACE is open source software available for object oriented framework to implement software

portable real-time communication patterns. These communication software patterns are

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

9

implemented in C++. ACE provides reusable C++ wrappers and components which can be

used to perform common communication tasks across many OS platforms [22].

ACE is developed with a target of providing high performance, real-time communication

services and applications. It has a special feature of automating the system configuration and

reconfiguration by means of dynamically linking the services into applications.

ACE provides many communication software tasks such as event de-multiplexing and event

handler dispatching, signal handling, service initializations, interprocess communication,

message routing, shared memory management. ACE library plays an important role in the

development of IEEE 1451.1 communication patterns, concurrency and all core distribution,

which can be done by NIST.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

10

4 Concept

This chapter gives an idea of dealing the project and assumptions that have been made before

implementing the task. In the first section there is a description about the hardware setup of

Raspberry Pi and in the later part about the IEEE 1451 standard. Then signal generation using

the analog actuator and sensor connection is described. Data processing, Time measurement

and Experimental validation are explained in the last sections

4.1 Raspberry Pi Hardware setup
The Raspberry Pi hardware setup as shown in the Figure 1.1, consists of three Raspberry’s.

All these Raspberry Pis will be connected using a network switch [24] in order to create a

closed network. This network switch can connect up to eight Raspberry Pis. When the

connection is made user should be able to communicate between Raspberry Pi nodes, in order

to do this a static IP address has to be created for each Raspberry Pi [25].

One Raspberry Pi acts like a control unit and two Raspberry Pis follows the instructions from

the main node. The control node in the setup is JNCAP and other two nodes are aiNCAP and

aoNCAP. The aiNCAP and aoNCAP receives commands from JNCAP. The aoNCAP sends

analog signal to actuator and the aiNCAP receives the sensor values from the sensor. For the

loop as shown in Figure 1.1 sound card acts a medium between the Raspberry Pis and actuator

and sensor network. An analog signal from aoNCAP will be send to actuator using the sound

card and for aiNCAP sound card acts as a medium to receive sensor values from sensor.

4.2 IEEE 1451
IEEE 1451 is a standard for communication between actuators and sensors. In particular IEEE

1451.1 standard is chosen as a protocol, as it works on NCAP communication for sensor and

actuators. An example implementation of IEEE 1451 temperature program from NIST is also

available, which will be used as a reference implementation. Based on the reference

implementation communication will be implemented on Raspberry Pi network. The

communication between NCAPs is implemented through the network interface as shown in

Figure 4.1. The JNCAP and NCAP communicates through a network interface i.e. through

Client/Server or Publish/Subscribe communication model as explained in section 5.3.3. The

NCAP is acts like a card cage and all the blocks are plugged into the central part as shown in

Figure 4.1. The function block application code is plugged into the NCAP and can be used

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

11

when ever needed. The NCAP and the JNCAP communicates over a network interface or over

network ports as depicted in the Figure 4.1.

Network ports

Transducer Block

Function Block

Function Block

Physical
Transducer

Transducer
Interface

Communication Interface
Client/Server and Publish/Subscribe

JNCAP

NCAP

Parameters, Files,
Actions and other

objects

Figure 4.1 NCAP communication paradigm showing the blocks and interfacing between the transducer
and function blocks. The Transducer block receives information from the physical transducer and the

function block below contains the files which are needed for the NCAP communication [4]

The transducer block as shown receives the data from physical transducer or Transducer

interface module (TIM).

4.3 Analog actuator and sensor connection
This is a hardware implementation part where signal generation and receiving is explained.

An analog signal is used to steer the actuator. In order to do this a sine wave will be generated

and sent to the actuator using a sound card. Similarly with the help of sound card Raspberry

Pi will be recording the sensor values from the sensor.

The data processing will be done using the software module in order to extract the amplitude

values from the signal. When aiNCAP receives sensor values from the sensor, it tries to

extract the amplitude values from the sensor values.

4.4 Time measurement
Time measurement will be taken in order to measure the propagation time through IEEE

layer. It is assumed to measure the time during discovering the NCAPs, before and after send

and during publishing.

4.5 Experimental Validation
The experimental validation for implemented model will be done by using the signal

generator and MacLab. The aoNCAP which gives an analog output signal will be measured

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

12

on MacLab. When it puts out the analog sinewave it can be visualized by connecting the

sound card to the MacLab. The aiNCAP upon receiving the command from JNCAP, it

displays the sensor values on JNCAP application window. It can be validated by connecting

the sound card to the function generator and there by checking the values by changing the

peak to peak voltage values on function generator. Then the change in the values can be

visualized on the output Java application window.

Time measurement validation will be done by finding the places where the command enters

and leaves the IEEE 1451 routines by executing the program line by line. Statistical analysis

will be done afterwards offline.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

13

5 IEEE 1451 standard protocol family

This chapter gives an overview of the IEEE 1451 smart transducer standard protocol family.

To start with, the introduction of the standard protocol family is briefed and in later sections a

detailed description of IEEE 1451.1 blocks such as NCAP, transducer block, and functional

block are given. The communication path between NCAPs is also explained at the end of this

chapter.

5.1 Introduction
The IEEE 1451 family of standard is developed by the Institute of Electrical and Electronics

Engineers. This standard specially describes the set of common, network-independent

communication interfaces for connecting sensors and actuators to microprocessors,

instrumentation systems and networks [26].

There are various applications of the IEEE 1451 standard. The main applications are based on

the advantages of IEEE 1451 such as plug and play capability, wide area data collection

ability, multiple sensors on one network, automatic testing and many more. Having the ability

to support multiple networks and transducer families in a cost effective way IEEE 1451 serves

a wide range of industrial needs. It has many operating modes and also it is compatible with

both wired and wireless sensor buses and networks. It simplifies the connectivity and

maintenance of transducers via TEDS to device networks. It has extensive units, linearization

and calibration options and also it has an efficient binary protocol which is most suitable for

wireless networks. It is capable of handling multiple timing and data block size constraints

[26].

There are seven different standards which are included in the IEEE 1451 family. Each

standard is application specific. The standard includes [26]:

1451.0(2007) - IEEE standard for smart transducer interface for sensors and actuators which

includes common functions, communication protocols, and Transducer Electronic Data Sheet

(TEDS) Formats.

1451.1(1999) - IEEE standard for Smart Transducer Interface for Sensors and Actuators

which includes Network Capable Application Processor Information Model.

1451.2(1997) - IEEE standard for Smart Transducer Interface for Sensors and Actuators

which includes Transducer to Microprocessor Communication Protocols & TEDS formats.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

14

1451.3(2003) - IEEE standard for Smart Transducer Interface for Sensors and Actuators

which includes Digital Communications & TEDS formats for Distributed Multidrop Systems.

1451.4(2004) - IEEE standard for Smart Transducer Interface for Sensors and Actuators

which includes Mixed mode Communication Protocols & TEDS formats.

1451.5(2007) - IEEE standard for Smart Transducer Interface for Sensors and Actuators

which includes Wireless Communication Protocols & Transducer Electronic Data Sheet

(TEDS) formats.

1451.7(2010) - IEEE standard for smart transducer interface for sensors and actuators which

includes transducers to Radio Frequency Identification(RFID) Systems Communication

Protocols and Transducer Electronic Data Sheet Formats.

After the intensive research work, it is decided to use IEEE 1451.1 standard, as it is usable for

NCAP to NCAP communication which are represented by Raspberry Pi nodes in the network.

This part of the IEEE 1451 standard is described in detail in the following chapter.

5.2 IEEE 1451.1
The IEEE 1451.1 standard provides Network Capable Application Processor (NCAP) Object

Model for smart transducer interfacing of sensors and actuators in an Ethernet based actuator

and sensor network [11]. IEEE 1451.1 standard is developed to provide a network-neutral

application model which reduces the effort in interfacing sensors and actuators to a network.

This standard defines an interface which connects the Network Capable Application

Processors to control networks. This has been done with the development of a common

control network information model for sensors and actuators.

There are several advantages in using this standard. The standard has a feature called

interoperability, which makes the systems work together or to exchange information for all

communication modes. It possess uniform design model for system implementation and also a

network independent set of operations for system configuration. It defines network

independent models for communication and for implementing application functionality. It

also has portable application models. It has a network-independent layer, a uniform

information model, and uniform models for managing event data, representing time,

intranodes concurrency management, and for memory management.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

15

5.3 NCAP: Network Capable Application Processor
The NCAP is defined by the hardware and software blocks. It acts like a bridge between

transducers and communication network as shown in the figure 5.1.

 In IEEE 1451.1 implementation, NCAP consists of three layers namely network layer,

application layer and transducer layer. The network layer consists of the hardware required

for the network library and also the 1451.1 API [11] and the application layer consists of

software blocks which include the standard defined blocks and also application specific code.

The transducer layer includes the hardware needed to communicate with the Transducer

interface module (TIM), it also consists of the T-Block API.

The NCAP’s hardware block should be designed in such a way that they meet the electrical

and timing specifications of the network. Also the software blocks shall be designed using the

formats and methods specified in the IEEE 1451.1 standard.

Transducer
Communication

network
NCAP

Figure 5.1 The Network Capable Application Processor (NCAP) connects the transducer module

and communication network. The NCAP acts as a bridge between transducer and network [23]

The software architecture (Figure 5.2) of IEEE 1451.1 is classified into three models

 An Object model

 A Data model

 A Network communication model

IEEE 1451.1 Software
Architecture

Object Model

Data Model

Network

Communication
Model

Figure 5.2 Software architecture of IEEE 1451.1 which is divided into three models such as

object model, data model and network communication model concerning classes, data types

and communication paradigms

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

16

5.3.1 An Object Model

The IEEE 1451.1 defines object model which defines the classes or abstract models with

methods, attributes and its state behavior [27]. This is also known as Information model. The

objects in the IEEE 1451.1 looks similar to other object oriented class definitions. It consists

of instance data, other classes, code for implementing internal operations or methods, and

state machine behavior. The Figure 5.3 shows how the object interfaces and the state behavior

implemented using Object Model. It shows the interfacing between the distributed smart

devices. The Object Model performs the functions like object discovery, invocation and

synchronization using the attribute access and invocation operation [23].

Class Data

Contained
Objects

‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐
‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐‐

Algorithm code

State behavior

Interface

Class attribute access and
invocation operations

Subscriptions

Publications

Client invocation

Server response

Implementation

Figure 5.3 The Communication paradigm of Object class showing the functionality of the Object Model

[23]

The Object Model consists of sub-classes, called block classes, component classes and service

classes. As shown in the Figure 5.4, Block classes are used to perform processing, component

classes are used to encapsulate data whereas service classes take care of inter-NCAP

communications and system-wide synchronization. All these classes share common

characteristics and entities like object tag, object ID, object name, dispatch address. Among

all these classes block classes plays a key role. A brief description of the block classes can be

seen in below sections.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

17

Object model

Block Classes

Component
classes

Service Classes

Non‐IEEE 1451.1

Classes

NCAP Block

 Parameter
 Action
 File
 Component group

 Client ports
 Publisher ports
 Subscriber ports
 Mutex/condition service

Function Block

Transducer
Block

Figure 5.4 Classification of the Object Model with different classes and its subclasses in IEEE 1451.1

standard

Block classes

The block class is the root hierarchy for all the block objects and they are core for the APIs

defined for the NCAP. Block classes are sub-divided into three different blocks named as

NCAP block, function block and transducer block. These three blocks plays major role in

NCAP communication. They work together to communicate to the physical world consisting

of networks and transducers.

For network communication, these objects can be either network visible or independent. If the

objects are network visible, they can be directly accessed by a network and in independent

case the blocks can only be accessed by the other objects within the local NCAP. To make

the object visible, it should be registered with its local NCAP block.

The behavior of the block class is controlled by a state machine with three different states

namely BL_UNITIALIZED, BL_INACTIVE and BL_ACTIVE. The BL_UNINITIALIZED state

is reserved for local activities such as bringing the block object into existence and performing

local preparations needed for the block function [11]. The BL_INACTIVE state is reserved for

activities such as the configuration of network communication properties of the block, for

initialization, diagnosis and the maintenance of the block object. The BL_ACTIVE state is for

the activities related to the normal application function of the block [11].

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

18

NCAP Block class

The NCAP Block has a standard software interface which supports network communication

and system configuration. It keeps the information about network visible owned objects. It

provides operations within an NCAP process to support block, service and component

management. It also includes support for registration, deregistration, initialization, startup and

shutdown.

In the Table 5.1 below a clear description of the important operations and their functionality

of the NCAP block class is given [11].

Table 5.1 Table showing NCAP Block operations and its functionalities [11]

Operation Functionality

GetNCAPBlockState It is used to obtain the current state of the

state machine

GetNCAPManufacturerID It is used to identify the manufacturer of the

NCAP

GetNCAPModelNumber It returns an identifier which distinguishes

different NCAP implementations.

GetNCAPSerialNumber It distinguishes different instances of NCAP

implementations.

GetNCAPOSVersion It is used to specify the operating system

that is in use.

GetClientPortProperties It is used to get the ObjectTag of the NCAP

and also the client port information

SetClientPortPropertiesBinidngs It is used to initialize or modify the

ObjectTag of the NCAP Block as well as

the client port information.

IgnoreRequestNCAPBlockAnnouncement It is used to ignore a publication that

provides a notification of the existence of an

NCAP Block object within the system.

RespondToRequestNCAPBlockAnnouncement It is used to respond to a publication that

provides a notification of the existence of an

NCAP Block within the system.

RebootNCAPBlock It is used to place the NCAP block and all

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

19

the objects to their default power-on state.

ResetOwnedBlocks It makes all the objects of NCAP block class

to behave as if they received a rest

operation.

GetBlockCookie It is used to get the information of the Block

cookie of the particular object that is being

accessed.

PSK_NCAPBLOCK_GO_ACTIVE It is used for the transitions within the state

machine and the transition occurs from

active to the initialized state.

RegisterObject and DeRegisterObject These two operations are optional and will

not be implemented

GoInactive It is used for the transitions within the state

machine.

The NCAP block divides the BL_INACTIVE state into two states called as NB_INITILIAZED

and NB_ERROR. After implementing specific mechanisms in the NCAP block, the initial

transition happens from the BL_UNINITIALIZED state to the NB_INITIALIZED state.

When there is any failure message in the state machine internally, then NB_INITIALIZED

changes to NB_ERROR sub-state. The GoInactive operation causes the transition to the

NB_ERROR sub-state if the NCAP detects any error.

Transducer Block class

The Transducer Block interfaces the transducers and application functions. It is the root for

the class hierarchy of all transducer block objects in the family of transducers specified by

IEEE 1451.1 standard. It establishes the mapping between the individual channels of the TIM

transducers and the public transducers of the Transducer Block in the NCAP.

In the below Table 5.2 the important operations and their functionality has been described

[11].

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

20

Table 5.2 Table showing the Transducer block operations and functionalities [11]

Operation Functionality

GetCorrectionMode It is used to obtain the current state of the

state machine.

GetNumberOfTransducerChannels It is used to access the Meta-TEDS such that

it returns the number of transducers that are

implemented in the TIM that is physically

connected to NCAP.

GetMinimumSamplingPeriod It is used to access the Meta-TEDS and then

it returns the time in seconds of the minimum

sampling rate of the TIM as a whole.

GetChannelParameterObjectChannelNumbers It is used to return the physical interface

channel numbers for the implemented

physical interface channels.

GetUnrepresentedChannelNumber This is used to return an array of numbers

with each array representing a channel

present at the physical interface.

UpdateAll This causes a global trigger to be applied to

the system.

EnableCorrections This is used for the transition from the

uncorrected to corrected state within the state

machine

DisableCorrections This is used for the transition from the

corrected state to uncorrected state within the

state machine.

GetLAstUpdateTimestamp and

GetUpdateTimestampUncertainity

These are optional and will not be

implemented.

The behaviour of the transducer block is controlled by the basic state machine defined for the

block objects. The transducer block sub-states this state machine so that it can apply

corrections to the transducer data [11]. The sub-states consist of TB_CORRECTED and

TB_UNCORRECTED both in BL_ACTIVE and BL_INACTIVE states.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

21

The Function Block class

 The Function block class is root for the class hierarchy of the function block objects. It helps

for the abstractions and packaging of application functionality and therefore the application

specific objects are owned and controlled by the function block. Similarly, the function block

allows the interaction between the application’s objects and other standard defined objects.

In the Table 5.3, the operations and functionality of the functional block class has been

mentioned [11].

Table 5.3 Table showing Functional block class operations and functionalities [11]

Operation Functionality

GetFunctionBlockState This is used to obtain the current state of the state machine

for this object.

Start This is used for transitions within the state machine for this

block. It will be from the idle to the running state.

Clear This is used for transitions within the state machine. The

transition will be from the running to the idle state.

Pause This is used for the transitions within the state machine of

the block. The transition will be from the running to stopped

state.

Resume This is used for the transitions within the state machine for

this block. This transition will be from the stopped to the

running state.

The functional block’s behavior is controlled by the inherited state machine of the block class.

The BL_ACTIVE state is sub-stated to FB_STOPPED, FB_RUNNING, and FB_IDLE.

5.3.2 Data model

The Data model of IEEE 1451.1 defines various data types that are used for the object classes.

It is a collection of primitive datatypes and structure datatypes. Whereas primitive data types

are mapped to the programming language that will be used and the derived datatypes will be

derived from the primitive data types [11].

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

22

Primitive data types

The primitive data types usually consist of various data types and arrays, few of them are

mentioned below:

 A Boolean type

 An octet type

 Integer type

 Floating point type

 String type

Table 5.4 The simple primitive data types [11] used in IEEE 1451.1 standard

Data type Default Value Definition

Boolean FALSE TRUE or FALSE

Integer8 0 8-bit signed integer

UInteger8 0 8-bit unsigned integer

Integer16 0 16-bit integer

UInteger16 0 16-bit unsigned integer

Integer32 0 32-bit signed integer

UInteger32 0 32-bit unsigned integer

Integer64 0 64-bit signed integer

UInteger64 0 64-bit unsigned integer

Float32 +0.0 IEEE Std 754-1985 single-precision floating point

number

Float64 +0.0 IEEE Std 754-1985 double-precision floating point

number

Octet All Bits set to 0 8-bit quantity not interpreted as a number

There is a brief description about the primitive data types in the Table 5.4. The string type is

represented by a structure, in which it contains four fields which represent the character set,

character code, language and the string data.

Derived data types

The derived data types are based on primitive data types. They are used in communication

networks. An example of derived data type is argument array data type. Its application is

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

23

explained in section 7.2. Most of the application data in network communication theory of

IEEE 1451.1 will be carried in arrays of argument [11].

5.3.3 Network communication model (NCAP – NCAP communication)

A Network Communication model is a paradigm for communicating information between

NCAPs. It is an inter NCAP communication model. It supports two different models known

as Client/Server network communication model and Publish/Subscribe network

communication model. These models define the syntax and the semantics of the software

interfaces between application objects and a communications network. The libraries consist of

routines which allow the calls between the communication operations and interfaces. These

libraries include marshalling and demarshaling routines for transforming the IEEE 1451.1

formats to and from their wire format [11]. Marshalling is the process of converting the data

or objects into the format suitable for transmission and demarshaling is converting back to the

original format. It is similar to serialization, which simplifies the complex communication.

Client/Server communication model

Client/Server communication model is a tightly coupled communication model which is used

for one-to-one communication. It supports mainly two application level operations. They are

 Execute on client side, client port objects

 Perform on all Network visible, server side objects.

As mentioned, client objects Execute() or invoke operation on the network, whereas the

server objects performs the operations based on the ID and the results to client using the

function Perform() as shown in below Figure 5.5.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

24

Client object

Client port Attributes:
ServerDispatchAddress
Operations:
Execute (execute_mode,
 Server_operation_id,

Server_input_arguments,
Server_output_arguments)

Server Object operations:
Operation corresponding to
Server_operation_id

Internal:
Perform (server_operation_id,

server_input_arguments,
server_output_arguments)

Process Process

Network

1st step

2nd step 2nd step

3rd step

Figure 5.5 Client- Server communication model components and the process of communication in three
steps [11]

As shown in the figure both Execute() and the Perform() operations work together to

provide a remote object operation invocation. Invoking is basically done in a series of steps:

Step 1: The serverDispatchAddress attribute of a client port object in client objects process is

attached to the server object dispatch address value during the system process.

The client object is provided with a client port object as reference for the initialization of the

system.

As shown in the Figure 5.5, the client object invokes the execute operation on the client port

attributes. This allows the remote server object to choose the operation that has to be

executed. It also provides its operation’s input arguments and references to its output

arguments.

Step 2: Through the network infrastructure shown in the Figure 5.5, the invocation of the

Perform() operation on the server side by the invocation of Execute() operation will be

done.

Step 3: The Perform() operation invokes the necessary operations on the server object.

After the completion of server objects operation again through the network infrastructure the

clients object operations will be invoked.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

25

Finally the Execute() operation sends an invocation to client object with the output

argument array’s argument bounds [11].

Publish/Subscribe communication model

The Publish/Subscribe communication model is loosely coupled for many-to-many and one-

to-many communication. It is mainly used for broadcasting or multicasting measurement data

and configuration management information. It contains two objects called publisher and

subscriber, where publisher acts as a sender and subscriber acts as a receiver. Publishing and

subscription are done using the operations Publish() and AddSubscribe(). The

publisher does not need to be aware of any receiving object whereas the subscriber sends a

response when something sends a request of subscription.

The IEEE 1451.1 publication has following principles with it [11]:

 A publication domain defines a distribution scope for publication.

 A publication key identifies the application-independent syntax and semantics of the

publication.

 A publication topic can be used to identify the application specific syntax and

semantics for the publication contents.

Publisher object

Subscriber Object

Publisher Port:
Attribute:

publication_key
publication_domain
publication_topic

Operations:
Publish()

Subscriber Port

Attributes:
subscription_key
subscription_domain
subscription_qualifier

Operations:
AddSubscriber()
Callback()

Process

Process

Network

1st step

1st step

2nd step 3rd step

4th step

Figure 5.6 Publish/Subscribe Communication model components and the process of communication
described in four steps [11]

The process of Publish/Subscribe communication model is shown below [11]:

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

26

Step 1: In the first step system initialization will be done near the publisher port and as well as

at subscriber port side. The publication key attribute of a publisher port object in the publisher

object’s process will be bound. Similarly, the subscription key attribute of a subscriber port

object in the subscriber object’s process will be bound to value matching the publication key

of publications of interest.

Then the publisher and subscriber objects will be provided with a local reference to their

respective port objects.

Step 2: The publisher object invokes the Publish() operation on the publisher objects port

and an input argument publication contents will be released.

Using the network infrastructure, the invocated publisher port delivers the publication to

subscriber ports in the publication domain.

Step 3: The subscription qualifier is used to determine which publications will be accepted by

the port. The GetSubscriptionKey operation will be used to obtain the current value of the

port’s subscription key and the GetSusbscriptionDomain will be used to obtain the current

value of the subscription domain defining the set of candidate publications to be accepted by

the port.

The subscriber object uses the subscriber port objects AddSubscriber() operation to register

with the port to receive the publications from the selected port.

The receiving subscriber port uses the values from subscription key, subscription domain and

the subscription qualifier to filter the incoming messages.

Step 4: Once the publication passes the subscription filter, then the port invokes all the

registered callback() operations. Then the port provides an input argument the

publication contents.

The Publish/Subscribe model communicates the NCAPs by following the above steps stated.

The publish/Subscribe model is used in JNCAP and NCAP communication (see section 7.5).

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

27

6 Analog input and analog output using Raspberry Pi

This chapter focuses on the analog signal generation using ALSA programming to steer the

actuator. It includes the working and program flow of sine wave generation and in details the

capturing program to record the sensor input signals.

6.1 Sine wave Generation
As described in section 4.3, the strategy is to drive the actuators by an analog sine wave

signal. For this purpose Raspberry Pi is using a sound card as ADC and DAC (see section

3.2.1). The sine wave will be generated using the ALSA drivers.

The implementation of an analog sine wave generation module for later use is described in the

following section.

6.1.1 Analog Output from Raspberry Pi

A C module for sine wave generation with a specific frequency has been created in Geany.

 The access to the drivers is obtained by including the header files #include

<alsa/asoundlib.h> and #include <alsa/pcm.h>. These are very

essential for opening the ALSA sound drivers. They include all the definitions of

ALSA functions (see section 3.3.1).

 To open a PCM device, certain functions have to be included. The function call

snd_pcm_open opens the default PCM device and sets the access mode to

PLAYBACK. It also sets some parameters and then displays the values of the hardware

parameters as shown in Figure 6.1.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

28

Figure 6.1 Sample code from the sine wave generation code showing PCM device opening

 Buffer size is set to 44,100 using the macro BUFFER_SIZE 44100.

 The hardware parameters were activated using the function snd_pcm_hw_params.

The desired hardware parameters can be set using API call, which includes the PCM

stream handle, the hardware parameters structure and the parameter value. Then, the

stream is set to interleaved mode, 2 channels and sampling rate to 44,100 bps.

The function to generate and put out the analog sine wave value is depicted in the Figure 6.2.

By using the ‘sin’ function (from the math library) a buffer can be filled with signal values

regarding sampling rate ‘FS’ and at given frequency ‘f’. A sample code is attached as

Figure 6.2for detailing the implementation process.

The function snd_pcm_writei, sends the data to PCM device to control the number of

output frames is returned.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

29

Figure 6.2 Sample code showing the sine wave generation function

The opened handle has to be closed using close_handle function as shown in the Figure

6.3

Figure 6.3 Sample code to show the closing function

The program must be compiled with the linking console –lportaudio and –lasound. Then the

module can be used to generate a sine wave at the given frequency which is required to drive

analog signal to actuator. The module has been tested with an example program and can be

reused for project purpose.

6.2 Capturing sensor values
Raspberry Pi cannot read analog signals directly. Some external hardware is required to read

the data. In order to read the sensor data an external sound card is used as a medium. The

signals generated from a sensor are converted to sound samples using ALSA drivers with the

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

30

help of this sound card. In order to observe the values there is a need of a software module

through which the signals can be recorded.

6.2.1 Analog input to Raspberry Pi

The module has been generated using Geany. To capture analog signals.

The header files #include <stdlib.h> and #include <alsa/asoundlib.h>,

which allows the program to open the important audio drives are included.

In order to open a PCM device several functions have to be executed in the function routine.

The function call snd_pcm_open opens the PCM stream and sets the access mode to

CAPTURE. A sample code showing the open handle function is depicted in the Figure 6.4.

Figure 6.4 Sample code to open the handle function

After initialising the access mode, the other required parameters for the capture module have

to be initialised. The hardware parameters, channels, rate, format, access etc. needed for

capturing are set. The Figure 6.5 shows the function sequence in detail

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

31

Figure 6.5 Setting parameters required to capture the sensor readings

A function called Capture() is implemented to capture the analog signal as samples. All

the values will be stored in a buffer as shown in the Figure 6.6.

Figure 6.6 Function showing the buffer capturing the values

Similar to sine generation, a close_capture function is used to close the handle.The

module must be compiled with the linking console with either –lportaudio or –lasound.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

32

This interfacing can be included in an arbitrary program. The returned buffer contains the set

of analog input samples over approximately one second.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

33

7 IEEE 1451.1 Implementation
This chapter provides a detailed description about the IEEE 1451.1 NIST open Gaithersburg

implementation in this project. A brief description about the example implementation of

temperature program is also given in this chapter which is downloaded from the source forge

[20]. In the later sections, the exact implementation of aoNCAP and aiNCAP is discussed.

This chapter also covers the detail description of program flow of IEEE 1451.1 and control

mechanism of aiNCAP and aoNCAP by JNCAP.

7.1 Example implementation of a temperature measurement using IEEE

1451.1
An example implementation from IEEE 1451.1 is used as mentioned in the chapter 3.

Temperature NCAP (tempNCAP) and Java NCAP (JNCAP) are two different programs

through which communication takes place in the reference model. The tempNCAP uses IEEE

1451 library to communicate with JNCAP. The IEEE 1451 library consists of several files

which acts like a base for all functions in the tempNCAP. It provides all the functionalities

required for the tempNCAP, which inherits the properties from the IEEE 1451 library as

mentioned in the IEEE 1451.1 (see chapter 5) standard [11].

 NCAP consists of transducer, functional and NCAP block as mentioned in the chapter 5,

Figure 5.4. It uses the data model for the data formats like Float32 which is required for the

communication paradigm and an object model for discovering, invoking synchronizing and

many such. It uses the communication models like publish/subscribe and client/server models

for the communication between JNCAP and tempNCAP. All these blocks deduce their

functionality from the IEEE 1451 library while communicating with JNCAP.

As mentioned in the section IEEE 1451 example implementation from source forge, this

temperature program consists of C++ and JAVA files, in which the C++ program uses the

ACE wrappers. The tempNCAP is controlled by the JNCAP which is a Java application.

Initially the reference program sends some temperature values of a sensor through the

network. The simulated temp TIM get values from the transducer block. The Float32 data

array is used in the temperature program and the argument array consists of all the

temperature data. The used data architecture was described in the section 5.3.2.

The output from the temperature program consists of the temperature values. When JNCAP

starts, various options are displayed as shown in the Figure 7.1. In order to discover the

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

34

tempNCAP, user have to push discover button and the IP address of the remote tempNCAP is

displayed on the screen.

Figure 7.1 JAVA JNCAP screen when it starts initially showing the options like discover, connect and send
command on the window

In the next step, in order to connect JNCAP and tempNCAP, "connect" option has to be

selected as shown in the Figure 7.1. If the tempNCAP receives the command it triggers all the

blocks in tempNCAP. Then tempNCAP sends an acknowledgment to JNCAP and connects

with JNCAP. When the user wants to receive some temperature values from tempNCAP,

"Send" command has to be selected.

Figure 7.2 The output windows of JAVA NCAP (JNCAP) and tempNCAP showing the fictional
temperature values when JNCAP sends the send command.

Once the command is received by the tempNCAP, it sends a request to the respective blocks

inside the tempNCAP. The blocks inside the tempNCAP i.e. transducer and function blocks

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

35

which are responsible for the data processing are pushed into active state. As mentioned in the

section 5.3.1, the BL_ACTIVE goes to active state. When BL_ACTIVE state goes to active

state the transducer block is activated. This changes the state of the function block from

FB_IDLE to FB_RUNNING. When the function block comes to running mode, it starts

sending the temperature data to JNCAP as shown in the Figure 7.2. The temperature values

are stored in Float32 array and are extracted from the transducer block using the IORead

function in the functional block. The function block then publishes the data using the

publish/subscribe mode of communication and JNCAP subscribes the data. And apparently,

the temperature data can be visualized on the JNCAP screen.

7.2 The aoNCAP Implementation
As the objective of this project work is to send some amplitude values via analog output to

steer the actuator and to receive analog signal values from the sensor in a distributed actuation

control, interfacing has been done in such a way that it receives and sends data from raspberry

pi from and to actuator and sensor. One NCAP is used for sending the analog signal to the

actuator and the other NCAP receives the sensor reading from sensor. One JNCAP controls

both the NCAPs using the NCAP to NCAP communication path. Therefore they are named as

analog output NCAP (aoNCAP) and analog input NCAP (aiNCAP).

7.2.1 Purpose of aoNCAP

The aoNCAP is responsible for sending analog sine wave to actuator. It uses sound card as a

DAC (digital to analog converter). This can be observed from the Figure 7.3. The aoNCAP is

controlled by JNCAP which is Java NCAP, receiving commands from JNCAP, what it has to

be performing.

aoNCAP
(Raspberry Pi)

Sound card Actuator

Figure 7.3 Diagram showing connection between AONCAP and actuator using sound card as a transducer
interface module (TIM)

The aoNCAP communicates with JNCAP with the help of IEEE 1451 library.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

36

7.2.2 AONCAP description

The aoNCAP communicates with JNCAP through network interface. The major blocks in

aoNCAP are transducer block, function block, aoNCAP block and aoMain block as shown in

the Figure 7.4. Every block has an exclusive functionality in the NCAP communication. A

brief description of each block can be seen in the following sections.

aoNCAP
Implementation

IEEE 1451
Library

aoNCAP aoTBlock aoFBlock aoMain

Figure 7.4 Diagram showing the blocks inside AONCAP module through which communication occurs

The aoNCAP block

The aoNCAP block brings all the blocks together and is responsible for communication

housekeeping. The discover and publish operations are done by this aoNCAP block. The

functionality of the NCAP block has been explained clearly in the section 5.3.1. In this

section the main functionality of the NCAP in aoNCAP implementation has been depicted.

aoNCAP
Creates NCAP

Object
Creates a Tag

Builds Dispatch
address

Starts the
aoNCAP

Registers the
dispatch address

Initializes the
NCAP state

NCAP to Active
state

Figure 7.5 Functions performed by the aoNCAP block in AONCAP implementation in step wise

The NCAP block creates an NCAP object which defines the TCP server port and its

assignment. Then it creates a tag, which can be used to identify the NCAP for others on

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

37

different networks. It builds a dispatch address for clients to connect to the JNCAP. There

after it registers the dispatch address with the NCAP and tells NCAP to go active or to start

running. The communication flow can be observed from the Figure 7.5 above.

The aoTBlock

This is responsible for interfacing the transducers and the application functions using software

programming. The operations and their functionalities such as correction mode, sampling

mode and others are discussed in the section 5.3.1in detail.

The functionality of the TBlock is clearly depicted in the Figure 7.6. In the first step the

transducer block starts defining a tag for the object, named as “aoNCAP-TBlock” in order to

be recognised by the clients. The object tag defines a logical endpoint for the server side of

client-server communication with a datatype ‘Object Tag’. It is usually assigned by the end

user and is unique within a given system [11]. Then it creates a dispatch address additional to

the one created in the NCAP block.

As illustrated in the Figure 7.6, it defines a set of object properties which gives a special

identity to the block. Then it registers the transducer block with the NCAP, such that it makes

itself visible for the operations. In the next step it initiates the transducer block, followed by

the registration of the transducer block with the NCAP. Then on receiving the appropriate

trigger form the JNCAP it goes to active state. Then the state machine of the transducer block

goes to TB_CORRECTED i.e. BL_ACTIVE as mentioned in section 5.3.1.

The transducer block is also responsible for sending data to the function block on receiving

the command from the JNCAP. As seen in the example implementation, the transducer block

is responsible for holding the temperature values, and in the similar way, aoTBlock is

responsible for sending analog signal to actuator. This is done by implementing the IOWrite

function as shown in the Figure 7.7.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

38

External trigger from the
JNCAP when it sends ‘send

command’

aoTBlock
Creates

transducer
block

Creates one
more dispatch

address

Creates set of
object

properties

Starts
transducer

block

Registers with
NCAP

Initialize the
TBlock

Brings TBlock to
active state

Figure 7.6 Functions performed by TBlock in aoNCAP Block in pictorial representation

The IOWrite function extracts the data from the sinewave generation interface described in

the section 6.1.1. The functionality of the sine wave generation has been implemented in the

transducer block of aoNCAP, so that it generates a sine wave at particular frequency as given

in the program.

Figure 7.7 The sample code of the transducer block showing sine wave generating function

As can be observed from the Figure 7.7 transducer block uses the argument array to store the

frequency value through the io_input_arguments. It gets the functionality of the sine

wave from sine wave generation interfacing i.e. sine(handle,(int) frequency) as

shown in Figure 7.7, which is explained in chapter 6. The IOWrite operation sends the data

to the functional block through which actuator gets the frequency upon JNCAP sending the

‘send command’.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

39

The aoFBlock

This block is responsible for the abstraction and packaging of application functionality in the

IEEE 1451.1 based program. All the application specific functionalities are owned and

controlled by the functional block. The theoretical functionality of this block is described in

section 5.3.1

The program flow of the functional block in aoNCAP is clearly mentioned in the Figure

7.8below. Firstly, a function block defines tag for the object as “aoNCAP-FBlock”. Then

optional dispatch address will be created which contains the local host address of the function

block. It creates a set of object properties including the ncap multicast address which gives a

special identity to the block. It instantiates the function block with a new parameter to

represent by an instance. After that, it registers the functional block with NCAP to make it

visible to the network operations. Once the registration is done, it initializes the functional

block and makes the transducer block active. Then finally it starts the application or

invocation with the help of start () function.

aoFBlock Defines a tag
Creates dispatch

address

Defines object
properties

Instantiate the
Function block

Register the
Function block

Initialize the
functional block

Transducer block
to active state

start

Figure 7.8 Functions performed by FBlock in aoNCAP block in pictorial representation

As explained in the example implementation, functional block communicates with the JNCAP

in order to send and receive data. In aoNCAP, it publishes the data to JNCAP upon receiving

the send command from the JNCAP. This block is responsible to process the data which it

obtains from the transducer block using the IOWrite function. The IOWrite function has been

explained in the above section in aoTblock.

A sample code from the FBlock where the sine wave function has been implemented is shown

in the Figure 7.9. As observed from the Figure 7.9, it is clear that function block is calling the

IOWrite function on tblock using input and output arguments called ao_arg_p_read and

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

40

ao_arg_p_write. These input and output arguments have been implemented in the IEEE

1451 library, and whenever needed the functionality of these arguments will be called to

aoNCAP block.

Figure 7.9 Sample code of the Fblock showing the use of the analog output interface IOWrite

When the functional block receives message it changes its state from FB_IDLE to

FB_ACTIVE and it starts the functional block then it activates the transducer block as shown

in the Figure 7.8.

The aoMain block

The aoMain block holds all the data functionality of the transducer and functional block. The

functions implemented in the functional and transducer block are accessed from the main

block.

aoMain
Creates local
clients server

address

Creates object
tag

Creates
dispatch
address

Sets object
properties

Creates NIST
NCAP

Creates
transducer

block

Creates
Function block

Starts the
aoNCAP

Figure 7.10 Functions performed by the main block in aoNCAP in pictorial representation

The program flow of the main block has been depicted in the Figure 7.10. It creates the local

client server address and port in order to be recognised by the JNCAP. Then it creates an

object tag as mentioned in the TBlock and FBlock in previous sections, it also creates the

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

41

dispatch address for the NCAP. Then it sets the object properties as similar to TBlock and

FBlock and then it creates the NIST NCAP, through which the JNCAP can discover the

aoNCAP. Similarly it creates the transducer and functional block, all the properties of

transducer, functional and NCAP blocks are available by the main block. It publishes the data

using the functional and transducer block functions.

7.3 The aiNCAP Implementation
The aiNCAP is responsible for receiving the sensor readings from the sensor in distributed

actuation control. The operation of aiNCAP is similar to aoNCAP, except the configuration in

FBlock. It is connected to the JNCAP using the IP address and it will be controlled by JNCAP

using the send command. When JNCAP sends command the output from the sensor will be

displayed on the JNCAP screen. A clear description of the aiNCAP functionality will be

explained in below sections.

aiNCAP
(Raspberry Pi)

Sound card Sensor

Figure 7.11 Diagram showing the connection between the aiNCAP and the Sensor with a sound card as a
transducer interface module (TIM)

Figure 7.11 shows the connection between the aiNCAP and sensor and how the aiNCAP

communicates the sensor using sound card.

7.3.1 The aiNCAP description

The aiNCAP communicates JNCAP through network interface. The blocks inside aiNCAP

are transducer block, functional block, aiNCAP block and aiMain block as shown in the

Figure 7.12. The functionality of the NCAP block and Main block in aiNCAP is similar to

aoNCAP and aoMain block of aoNCAP implementation. For this reason, there will be clear

description regarding the transducer and functional block in detail instead of concentrating on

NCAP and main blocks in this section.

The NCAP block is responsible to create the TCP server port which supports network

communication. It helps for registration, deregistration, initialization, startup and many

functions like this as mentioned in the aoNCAP block in 7.2.2.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

42

aiNCAP
Implementation

IEEE 1451
Library

aiNCAP aiTBlock aiFBlock aiMain

Figure 7.12 Figure showing the blocks inside aiNCAP through which communication occurs

The aiMain block is responsible to hold the data functionality of the transducer block and

functional block. There is a clear description about this block in aoMain block in 7.3.1.

The aiTBlock

The transducer block is responsible for interfacing the transducer and the application

functions using software programming as mentioned in the aoTBlock section 7.2.2 above. The

program flow is same as explained in the aoTBlock section except the functionality. The

aiTBlock is designed to receive the sensor values using the IORead function. In aoTBlock

IOWrite function has been used to generate analog signal.

As shown in the Figure 7.13, the transducer block creates transducer block tag and then

creates the set of object properties which gives special identity to the aiTBlock. In the next

step it registers the transducer block with the NCAP as explained in the aoTBlock above.

External trigger from
JNCAP when it sends
‘send command’

aiTBlock
Creates

transducer
block

Creates one
more dispatch

address

Creates set of
object

properties

Starts
transducer

block

Registers with
NCAP

Initialize the
TBlock

Brings TBlock to
active state

Figure 7.13 The figure showing the program flow of the transducer block in aiNCAP implementation

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

43

The aiTBlock is initialized and brought to active state upon receiving the external command

from the JNCAP.

For data receiving it uses the capture interfacing program which is explained in the section

6.2. The IORead function as shown in the Figure 7.14 consists of input and output argument

arrays where the data will be stored. When JNCAP sends a command, it starts the TBlock and

receives the sensor values using the sound card and ALSA programming interface. The values

obtained from the sound card will be extracted by the IORead function. From the Figure 7.14

it can be observed that a capture function has been initialized to receive the sensor readings

using capture(capture_handle, &buffer).

Figure 7.14 A sample code showing the capture function which reads the sensor readings from the sensor

As shown in the Figure 7.14, the sensorarray extracts the data from the buffer and

then it hands it over to io_output_arguments. After receiving the sensor values, the

io_output_arguments sends the data to functional block for data processing, which will be

explained in the aiFBlock.

The aiFBlock

This block is responsible for data abstraction and controlling the application specific

functionalities. The program flow of the analog input functional block is much similar to

aoFBlock mentioned in the section 7.2.2. A brief description of the function block is depicted

in the Figure 7.15. It starts defining a tag and then creates the dispatch address which contains

the local host address of the function block.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

44

aiFBlock Defines a tag
Creates
dispatch
address

Defines object
properties

Instantiate the
Function block

Register the
Function block

Initialize the
function block

Transducer
block to active

state
start

Figure 7.15 The figure showing the program flow of the function block in aiNCAP implementation

In the later stage it defines the object properties which give a special identity to the block and

then it registers the function block and initializes the function block. When the function block

receives a command from the JNCAP, it changes its state from FB_IDLE to FB_RUNNING.

It activates the transducer block once it goes to running state and will be able to receive the

data from the transducer block.

Figure 7.16 A sample code showing the data processing functions in functional block of aiNCAP
implementation

As the functionality of the function block is to control the application functionalities, it is used

for data processing. It sends the data processing to the data abstracted from the transducer

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

45

block. After it performs the data processing it sends the data to JNCAP and data can be

visualized on the JNCAP screen. The data processing mechanism can be observed from the

sample code given in the Figure 7.16. It extracts the sensor values from the

‘ai_arg_array_p’ to analog input ‘ai’. Then the data array takes all the values

from the analog input ai using ‘Get()’ function. Then the processed data after extracting

the maximum value is sent to the output function. Once functional block receives send

command from JNCAP it delivers the data it extracted from the transducer block.

7.4 Java Network Capable Application Processor (JNCAP)
Java NCAP implemented in the example implementation is responsible for controlling the

tempNCAP as mentioned in section 7.1. To control the aoNCAP and aiNCAP JNCAP has

been extended. It consists of different source files which are responsible for discovering,

publishing, subscribing, disconnecting and many functions like this. The initial example

implementation has been extended by a Disconnect command and a SendCommandsToAll

functionality. These commands allow the user to perform a disconnect operation whenever it

is needed, and allows the user to send commands to all NCAPs connected to the JNCAP in

parallel. Once the send command is pushed on JNCAP, it starts sending the commands until

we disconnect the aiNCAP and aoNCAP.

Figure 7.17 JNCAP output window with all the commands like discover, connect, disconnect, Send
command and send command to all functions in Real implementation

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

46

JNCAP controls the aiNCAP and aoNCAP using the buttons as shown in the Figure 7.17. The

functionality has been included along with the buttons in the source files. When user starts

JNCAP, a window will be opened as shown in the above Figure 7.17.

Discover

JNCAP searches for NCAPs by a multicast address using the ‘object-tag’, the JNCAP

receives the information about the NCAP and establishes connection with it using its IP

address. When it receives a tag name from the client, the number of discovered NCAPs will

be displayed on the window as shown in the Figure 7.17. It displays the number in the box

NCAP’s found and the IP address of the NCAP’s in a drop down menu besides.

Connect

Once JNCAP discovers the NCAP’s running in the network, then the user will be pushing

“connect” button on the window. It makes a connection with NCAP using the IP address

displayed on the IP address box, just beside the “NCAP’s found” box. Any number of

NCAP’s can be connected with the JNCAP using the IP address.

Disconnect

The Disconnect button is used to disconnect the NCAP or terminate the connection. When

disconnect button is pushed the NCAP stops running and terminates the connection with

JNCAP.

Send command

When send command is selected, JNCAP sends a command to start the FBlock there by to

receive the data from transducer block using appropriate functions. This includes the

command choice and node choice. Command choice consists of commands like start FBlock,

stop FBlock, Resume, Pause, Read FBlock through which user can select the desired option.

The node choice includes the IP addresses of the NCAPs to which these commands should be

sent. The send command can send command only upon selecting required IP address. It uses

the publish/subscribe mode of communication to send and receive data as mentioned in the

chapter 5.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

47

SendCommandToAll

The functionality of the SendCommandToAll is similar to Send command, it is used to send

required commands to the connected NCAPs. The additional functionality with

SendCommandToAll is to send commands to all NCAPS connected with JNCAP just on one

click in parallel. So user doesn’t have to select each and every IP address of the connected

NCAPs to send the commands. It also uses the publish/subscribe mode of communication to

receive and send data.

7.5 Controlling AONCAP and AINCAP using JNCAP
As mentioned in the above section, any number of NCAPs can be connected and controlled

by the JNCAP. In order to connect the JNCAP with aiNCAP and aoNCAP, they have to be

started first. When the user starts both NCAP’s, the JNCAP program has to be started. When

the JNCAP window will be opened, a series of steps have to be followed in order to send and

receive data from aiNCAP and aoNCAP as shown in the Figure 7.18.

When NCAPs and JNCAP are started, in order to make a connection between JNCAP and

NCAPs, Discover command has to be pushed. The JNCAP then gets the multicast address

through the publish mode of communication. The number of NCAPs found will be displayed

in the box NCAPs found.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

48

Start JNCAP

Discover NCAPS

Founds NCAPs

Connect to IP

Send command
Send command to all
NCAPs at one time

Send command
to All

DisconnectProcess ends

No NCAPs
found

NO

YES

YES

YES

YES

NO

Figure 7.18 Algorithm explaining the control mechanism of JNCAP with aiNCAP and aoNCAP

As shown in the Figure 7.18, once the JNCAP discovers NCAPS, then Connect command

have to be selected in order to establish a connection. This connection will be done by

selecting the desirable IP address of the NCAP from the drop down box beside the NCAPs

found box as shown in Figure 7.18. Any number of NCAPs can be connected by selecting

their IP address.

In order to start the FBlock, send command should be selected. As there are two possibilities

to start FBlock, either SendCommandsToAll or Send command option has to be selected. If

send command is selected then user have to pick appropriate IP address of the NCAP which is

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

49

intended to start. As per the requirement of the project it is sufficient to select

SendCommandsToAll in order to send commands to aoNCAP and aiNCAP in parallel. Once

the JNCAP sends SendCommandsToAll command, aoNCAP starts sending analog sine data to

actuator and aiNCAP starts receiving sensor values from sensor. As mentioned in the section

4.3, the requirement has been fulfilled.

Raspberry Pi
(aoNCAP)

Sound Card
(TIM)

Raspberry Pi
(aiNCAP)

Sound Card
(TIM)

Sensor

Raspberry Pi
(JNCAP)

N NNS SS

S SSN NN

1

2

3

3

1. Actuator signal
2. Sensor signal
3. IEEE 1451.1 Implementation
4. Magnets
5. Coil

4

5

Figure 7.19 diagram showing the connections between the Raspberry Pis , actuator and sensor.

The algorithm shown in Figure 7.18 can be compare to the block diagram of the project (see

Figure 7.19). When JNCAP discovers the aiNCAP and the aoNCAP, it tries to connect with

two NCAPS using IP address. Once the connection has been established, JNCAP is ready to

control the aiNCAP and aoNCAP as shown in Figure 7.19. When JNCAP sends command to

aiNCAP and aoNCAP to start the FBlock, aoNCAP starts sending the analog signal to

actuator through sound card and aiNCAP starts receiving sensor values and sends them to

JNCAP. Then the values can be visualized on the JNCAP application window.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

50

8 Time Measurement
This chapter explains about the propagation time through IEEE 1451 layer. It explains about

the time measurement parameters in the earlier sections and about the results in the last

section.

8.1 Time measurement in aiNCAP and aoNCAP
The time measurement has been measured in IEEE 1451 layer for aiNCAP and aoNCAP

during the process. The time measurement functions has been implemented in IEEE 1451

library, aiNCAP and aoNCAP during the invocation , during dispatching the multicast address

and during the publication of data. Each of the implemented functions in the IEEE 1451.1

implementation is explained in the following.

When JNCAP sends Discover command, a process is invoked on aiNCAP and aoNCAP. This

time is taken as invocation time as shown in Figure 8.1.

Figure 8.1 The time measurement function implemented in aiNCAP and aoNCAP during the invocation of
NCAPs address discovering

When the invocation is done, NCAPs will send the acknowledgement through IEEE 1451

library. The time measurement has been done during sending the multicast address to JNCAP.

The implemented function is shown in the Figure 8.2. A time measurement function has been

implemented before and after the send function.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

51

Figure 8.2 Time measurement before and after send command i.e. during sending the dispatch address of
NCAPs for the request from JNCAP

From the above measurements, the difference between the invoke time and time before send

and the time difference between the invoke time and time after send will be considered as a

propagation time for IEEE layer and for the whole communication stack.

The time measurement for aiNCAP, when it publishes data upon receiving the send command

from JNCAP is measured during the publishing of data. The implemented time measurement

function for aiNCAP can be observed from the Figure 8.3.

Figure 8.3 The time measurement for aiNCAP when it publishes the data upon receiving the send
command from JNCAP

For aiNCAP an arbitrary time is also used to publish the data. As shown in the Figure 8.4,

aiNCAP publishes the data to JNCAP with a time span of 1 sec. It starts publishing data by

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

52

polling the appropriate process with a predefined time period (see time representation in

Figure 8.4).

Figure 8.4 Arbitrary time has been set to send data from aiNCAP to JNCAP when aiNCAP receives send
command from JNCAP

This time period can be changed as per the time required to publish data. If the time period is

reduced to very less value, then aiNCAP starts publishing data frequently. The mean values of

several measurements are shown in Table 8.1.

Table 8.1 The mean values of the time through IEEE layer and the time for the whole communication
process

Mean value before send

and invoke(Milliseconds)

Mean value after send and

invoke

aiNCAP 2.8ms 3.5ms

aoNCAP 2.3ms 3.2ms

Considering the resulting values from Table 8.1 a general result of propagation time is less

than 3ms through IEEE layer.

The reduction of time representation to 1ms also delivers a result less than 3ms propagation

time through IEEE communication layer. The minimum time seems to depend on calculation

power and network capability as aiNCAP is flooding the network with data in this

configuration.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

53

9 Experimental setup and validation
This chapter explains about the experiments and results obtained from the setup. It also gives

a description about the validation for the results obtained.

9.1 Experimental setup
The experimental setup has been made as shown in the Figure 1.1. The connections from the

controlling node i.e. JNCAP to the aoNCAP and aiNCAP have been made according to the

description given in the section 4.1. All the connections were made as per the requirement

without any compromises.

9.2 Experiment validation
The validation has been done according to the mentioned theory in section 4.5. The output

from the aoNCAP can be visualized using the MacLab by ADI instruments [28]. The analog

output from the aoNCAP is given to the MacLab with the help of the sound card as mentioned

in the section 4.5. When the aoNCAP receives send command from JNCAP, it starts sending

the analog signal.

Figure 9.1 An analog signal obtained from the aoNCAP when it receives send command from JNCAP

The result obtained from the aoNCAP is shown in the Figure 9.1. An analog signal of 150 Hz

frequency and 1Vp-p amplitude is sent from aoNCAP to MacLab using sound card.

The result is visualized and validated using the MacLab. The validated result using MacLab is

shown in the Figure 9.2. The analog sine wave obtained from the aoNCAP has a frequency of

156.25 Hz instead of 150 Hz and amplitude of -1.15V to 1.18 V peak to peak.

V
ol

ta
ge

 (V
)

Time (sec)

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

54

Figure 9.2 The validation report of the analog sine wave obtained from aoNCAP using MacLab at 150 Hz

This result is almost accurate. There is a slight change in the frequency and the difference is

due to the capacitance problems obtained from the sound card.

The result from the aiNCAP can be validated using the function generator. An analog sine

wave at particular amplitude is sent to aiNCAP using sound card. When JNCAP sends send

command, aiNCAP starts receiving the data from function generator using the sound card. A

sample sine wave of amplitude 1.1 Vpp has been sent to aiNCAP through sound card from

function generator (see Figure 9.3).

Figure 9.3 A function generator is sued to generate a sinusoidal signal. The signal with amplitude of 1.1 V
was sent to the aiNCAP using sound card upon receiving the send command from JNCAP to aiNCAP

156.25 Hz

Frequency (kHz)

V
ol

ta
ge

 (V
)

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

55

Figure 9.4 The result obtained from function generator can be visualized on JNCAP application window,
when aiNCAP publishes the data to JNCAP

The data sent from function generator to aiNCAP can be visualized on JNCAP window.

When aiNCAP receives data from function generator with the help of sound card, it starts

publishing the data on JNCAP. As observed from the Figure 9.3 and Figure 9.4, the data sent

and received are almost equal just with a minor difference. This difference has been occurred

due the capacitance problems with the sound card.

The results obtained from the testing environment are satisfactory. It can be assumed that the

actuation and measurements will work properly with the actuator and sensors for the flat plate

actuation in further experiments.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

56

10 Conclusion and Outlook

The last chapter of the report contains the conclusions of the thesis work, outlines and ideas

concerning work.

10.1 Conclusion
The aim of the project is to create a Raspberry Pi Network based on IEEE 1451.1 Smart

Transducer Standard Interface Protocol. A network consisting of three Raspberry Pi nodes

allows steering actuator and recording sensor values. The example implementation IEEE 1451

from NIST Open Gaithersburg is used as a reference model for IEEE 1451.1 implementation

[20].

As described in section 4.1 three Raspberry Pis are connected using a network switch. One of

the three Raspberry Pis acts as a Control node (JNCAP) and two other Raspberry Pis are used

as analog output (aoNCAP) and analog input (aiNCAP) nodes respectively. These aiNCAP

and aoNCAP are connected to actuator and sensor with the help of a sound card. The

Raspberry Pi setup works properly and everything is done as per the initial requirement.

The results obtained from the aiNCAP and aoNCAP are validated using the MacLab [28] and

a function generator as described in the section 9.2. All the results obtained are as expected

and show minimal variations. The mean of the timing values obtained from the validation for

propagation time through IEEE 1451.1 layer are less than 3ms which are very promising.

The Raspberry Pi Network which has been established using the IEEE 1451.1 Smart

Transducer Interface Standard Protocol is now ready for implementation of a wave control as

inner loop of the distributed cascade flow control.

10.2 Future work

The statistical timing results obtained from aoNCAP and aiNCAP using IEEE 1451.1 Smart

Transducer Interface Standard Protocol will be imported into actuator and sensor network

model to ensure realistic behavior of a large scale actuator and sensor network

There are a few possible options for extending the Raspberry Pi based testbed for actuation

control.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

57

The modules can be improved to record a continuous measurement and exiting of the analog

output data for aoNCAP. Now the analog output data is processed for every 5 seconds and in

the future this may be extended as continuous flow of data.

A closed loop for wave control to realize desired sinusoidal waveform on the surface will be

created where the aiNCAP and aoNCAP can be implemented on one node and the

combinational node can be controlled using the JNCAP. The combinational node is

responsible to receive and use wave parameters. In addition to this, sensor and actuator node

can be used to record and publish sensor data for flow control.

The function setup on JNCAP to enter the amplitude and frequency values can be automated

instead of hard coded values in the aoNCAP module.

The minor differences occurred during the analog output generation and recording sensor

values using sound card could be improved by using external ADC and DAC modules.

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

58

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

59

11 References

[1] DFG Project description [27.02.2015]

http://gepris.dfg.de/gepris/OCTOPUS/;jsessionid=3E0AABC4DFDF934CD2C55F55E7BAD

81C?context=projekt&id=202175528&language=en&module=gepris&task=showDetail

[2] M. Dueck, M. Kaparaki, S. Srivastava, S. van Waasen, and M. Schiek. Development of a

real time actuation control in a network-simulation framework for active drag reduction in

turbulent flow. In Automatic Control Conference (CACS), 2013 CACS International, pages

256–261, Dec 2013.

[3] Marcel Dück, Mario Schloesser, Stefan van Wassen and Miceal Schiek. Deterministic

transport protocol verified by a real-time actuator and sensor network simulation for

dustributed active turbulent flow control

[4] Raspberry organization blog [13.01.2015]

http://www.raspberrypi.org/help/what-is-a-raspberry-pi/

[5] Raspberry Pi review by Gareth Halfacree [13.01.2015]

http://www.bit-tech.net/hardware/pcs/2012/04/16/raspberry-pi-review/1

[6] The Edimax dongle specifications from Edimax blog [04.02.2015]

http://www.edimax.com/edimax/merchandise/merchandise_detail/data/edimax/global/wireles

s_adapters_n150/ew-7811un

[7] GNU Emacs [16.02.2015]

http://www.gnu.org/software/emacs/

[8] Raspberry Pi resources from IBEX [14.01.2015]

http://www.raspberry-projects.com/pi/category/programming-in-c

[9] Codeblocks organisation [16.02.2015]

http://www.codeblocks.org/

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

60

[10] Eclipse blog [16.02.2015]

http://www.eclipse.org/home/index.php

[11] IEEE Standard for a Smart Transducer Interface for Sensors and Actuators-Network

Capable Application Processor (NCAP) Information Model [6.7.2014]

http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=841361

[12] Creative products blog [17.02.2015]

http://en.europe.creative.com/p/archived-products/sound-blaster-play

[13] Creative sound blaster support [14.01.2015]

http://support.creative.com/kb/ShowArticle.aspx?sid=53419

[14] A users guide to ALSA programming [3/09/2014]

http://www.linuxjournal.com/node/8234/print

 [15] Jack audio kit organisation [17.02.2015]

http://jackaudio.org/applications/

[16] Simple Directmedia layer organisation [17.02.2015]

https://www.libsdl.org/

[17] OpenAL 1.1 specifications and Reference [17.02.2015]

http://www.openal.org/documentation/openal-1.1-specification.pdf

[18] Advanced Linux Sound Architecture (ALSA) Open Hub [3/09/2014]

https://www.openhub.net/p/alsa

[19] The advanced Linux Sound Architecture for ALSA [3/09/2014]

http://www.alsa-project.org/main/index.php/Introduction

[20] The open Gaithersburg IEEE 1451 implementation from source forge [16.06.2014]

http://sourceforge.net/projects/open1451/files/open1451-gaithersburg/1.00/

Raspberry Pi based IEEE 1451.1 Network for Distributed Actuation Control

61

[21] NIST IEEE 1451 implementation

http://www.nist.gov/el/isd/ieee/ieee1451.cfm

[22] The ADAPTIVE communication Environment (ACE) [15.10.2014]

http://www.dre.vanderbilt.edu/~schmidt/ACE.html

[23] Implementing IEEE 1451.1 in a wireless Environment by Rick Schneeman, NIST

[8.07.2014]

http://ieee1451.nist.gov/Workshop_04June01/Schneeman.pdf

 [24] AT-FS708 Unmanaged Fast Ethernet Switches [20.02.2015]

http://www.alliedtelesis.com/media/datasheets/fs708_ds.pdf

[25] How to setup Raspberry Pi to have a static IP address [25.02.2015]

http://www.raspberrypi.org/learning/networking-lessons/rpi-static-ip-address.md

[26] IEEE 1451 A Universal Transducer Protocol Standard by Dr. Darold Wobschall

[29.12.2014]

https://eesensors.com/media/wysiwyg/docs-pdfs/ESP16_Atest.pdf

[27] A brief tutorial on IEEE 1451.1 standard by V.Viegas, M.Pereira, and P.Girao

[08.01.2015]

http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4483732

[28] ADI Instruments [26.02.2015]

http://www.adinstruments.com/company

Jül-4389
Juli 2015
ISSN 0944-2952

