000205134 001__ 205134
000205134 005__ 20240711085602.0
000205134 0247_ $$2doi$$a10.1007/s10832-015-9988-7
000205134 0247_ $$2WOS$$aWOS:000366155900004
000205134 037__ $$aFZJ-2015-05599
000205134 041__ $$aEnglish
000205134 082__ $$a620
000205134 1001_ $$0P:(DE-Juel1)156244$$aTsai, Chih-Long$$b0$$eCorresponding author$$ufzj
000205134 245__ $$aHigh conductivity of mixed phase Al-substituted Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$
000205134 260__ $$aDordrecht [u.a.]$$bSpringer Science + Business Media B.V$$c2015
000205134 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article$$bjournal$$mjournal$$s1449584850_18274
000205134 3367_ $$2DataCite$$aOutput Types/Journal article
000205134 3367_ $$00$$2EndNote$$aJournal Article
000205134 3367_ $$2BibTeX$$aARTICLE
000205134 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000205134 3367_ $$2DRIVER$$aarticle
000205134 520__ $$aAl-substituted Li7La3Zr2O12 (LLZ:Al) was synthesized via conventional solid state reaction. Different dwell times at sintering temperature of 1200 °C led to a varying Li content in LLZ:Al which significantly affected the Li-ion conductivity. Electrochemical impedance spectroscopy and X-ray diffraction were used to characterize the sintered pellets which showed a maximum total ionic conductivity of ~3 × 10−4 S cm−1 at room temperature although the samples were composed of cubic and tetragonal LLZ:Al, with the tetragonal phase as its major phase. Inductively coupled plasma optical emission spectroscopy revealed that the Li content steadily decreased from 7.5 to 6.5 Li per formula unit with increasing sintering time. The highest conductivity was observed from the sample with the lowest Li concentration at 6.5 per formula unit. Scanning electron microscopy images revealed the formation of large grains, about 500 μm in diameter, which additionally could be the reason for achieving high total Li-ion conductivity. Electrochemical tests showed that mixed phase LLZ:Al is stable against metallic Li up to 8 V.
000205134 536__ $$0G:(DE-HGF)POF3-131$$a131 - Electrochemical Storage (POF3-131)$$cPOF3-131$$fPOF III$$x0
000205134 7001_ $$0P:(DE-Juel1)156509$$aDashjav, Enkhtsetseg$$b1$$ufzj
000205134 7001_ $$0P:(DE-Juel1)156292$$aHammer, Eva-Maria$$b2
000205134 7001_ $$0P:(DE-Juel1)145623$$aFinsterbusch, Martin$$b3
000205134 7001_ $$0P:(DE-Juel1)129667$$aTietz, Frank$$b4$$ufzj
000205134 7001_ $$0P:(DE-Juel1)129580$$aUhlenbruck, Sven$$b5$$ufzj
000205134 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, Hans Peter$$b6$$ufzj
000205134 773__ $$0PERI:(DE-600)1472395-5$$a10.1007/s10832-015-9988-7$$n1-4$$p25-32$$tJournal of electroceramics$$v35$$x1385-3449$$y2015
000205134 8564_ $$uhttps://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.pdf$$yRestricted
000205134 8564_ $$uhttps://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.gif?subformat=icon$$xicon$$yRestricted
000205134 8564_ $$uhttps://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.jpg?subformat=icon-1440$$xicon-1440$$yRestricted
000205134 8564_ $$uhttps://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.jpg?subformat=icon-180$$xicon-180$$yRestricted
000205134 8564_ $$uhttps://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.jpg?subformat=icon-640$$xicon-640$$yRestricted
000205134 8564_ $$uhttps://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.pdf?subformat=pdfa$$xpdfa$$yRestricted
000205134 909CO $$ooai:juser.fz-juelich.de:205134$$pVDB
000205134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156244$$aForschungszentrum Jülich GmbH$$b0$$kFZJ
000205134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)156509$$aForschungszentrum Jülich GmbH$$b1$$kFZJ
000205134 9101_ $$0I:(DE-Juel1)VS-II-20090406$$6P:(DE-Juel1)145623$$aWissenschaftlicher Geschäftsbereich II$$b3$$kVS-II
000205134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129667$$aForschungszentrum Jülich GmbH$$b4$$kFZJ
000205134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129580$$aForschungszentrum Jülich GmbH$$b5$$kFZJ
000205134 9101_ $$0I:(DE-588b)5008462-8$$6P:(DE-Juel1)129594$$aForschungszentrum Jülich GmbH$$b6$$kFZJ
000205134 9131_ $$0G:(DE-HGF)POF3-131$$1G:(DE-HGF)POF3-130$$2G:(DE-HGF)POF3-100$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bEnergie$$lSpeicher und vernetzte Infrastrukturen$$vElectrochemical Storage$$x0
000205134 9141_ $$y2015
000205134 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000205134 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000205134 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR$$bJ ELECTROCERAM : 2014
000205134 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000205134 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000205134 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000205134 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000205134 915__ $$0StatID:(DE-HGF)1150$$2StatID$$aDBCoverage$$bCurrent Contents - Physical, Chemical and Earth Sciences
000205134 915__ $$0StatID:(DE-HGF)9900$$2StatID$$aIF < 5
000205134 920__ $$lyes
000205134 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$kIEK-1$$lWerkstoffsynthese und Herstellungsverfahren$$x0
000205134 980__ $$ajournal
000205134 980__ $$aVDB
000205134 980__ $$aI:(DE-Juel1)IEK-1-20101013
000205134 980__ $$aUNRESTRICTED
000205134 981__ $$aI:(DE-Juel1)IMD-2-20101013