001     205134
005     20240711085602.0
024 7 _ |a 10.1007/s10832-015-9988-7
|2 doi
024 7 _ |a WOS:000366155900004
|2 WOS
037 _ _ |a FZJ-2015-05599
041 _ _ |a English
082 _ _ |a 620
100 1 _ |a Tsai, Chih-Long
|0 P:(DE-Juel1)156244
|b 0
|e Corresponding author
|u fzj
245 _ _ |a High conductivity of mixed phase Al-substituted Li$_{7}$La$_{3}$Zr$_{2}$O$_{12}$
260 _ _ |a Dordrecht [u.a.]
|c 2015
|b Springer Science + Business Media B.V
336 7 _ |a Journal Article
|b journal
|m journal
|0 PUB:(DE-HGF)16
|s 1449584850_18274
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
520 _ _ |a Al-substituted Li7La3Zr2O12 (LLZ:Al) was synthesized via conventional solid state reaction. Different dwell times at sintering temperature of 1200 °C led to a varying Li content in LLZ:Al which significantly affected the Li-ion conductivity. Electrochemical impedance spectroscopy and X-ray diffraction were used to characterize the sintered pellets which showed a maximum total ionic conductivity of ~3 × 10−4 S cm−1 at room temperature although the samples were composed of cubic and tetragonal LLZ:Al, with the tetragonal phase as its major phase. Inductively coupled plasma optical emission spectroscopy revealed that the Li content steadily decreased from 7.5 to 6.5 Li per formula unit with increasing sintering time. The highest conductivity was observed from the sample with the lowest Li concentration at 6.5 per formula unit. Scanning electron microscopy images revealed the formation of large grains, about 500 μm in diameter, which additionally could be the reason for achieving high total Li-ion conductivity. Electrochemical tests showed that mixed phase LLZ:Al is stable against metallic Li up to 8 V.
536 _ _ |a 131 - Electrochemical Storage (POF3-131)
|0 G:(DE-HGF)POF3-131
|c POF3-131
|f POF III
|x 0
700 1 _ |a Dashjav, Enkhtsetseg
|0 P:(DE-Juel1)156509
|b 1
|u fzj
700 1 _ |a Hammer, Eva-Maria
|0 P:(DE-Juel1)156292
|b 2
700 1 _ |a Finsterbusch, Martin
|0 P:(DE-Juel1)145623
|b 3
700 1 _ |a Tietz, Frank
|0 P:(DE-Juel1)129667
|b 4
|u fzj
700 1 _ |a Uhlenbruck, Sven
|0 P:(DE-Juel1)129580
|b 5
|u fzj
700 1 _ |a Buchkremer, Hans Peter
|0 P:(DE-Juel1)129594
|b 6
|u fzj
773 _ _ |a 10.1007/s10832-015-9988-7
|0 PERI:(DE-600)1472395-5
|n 1-4
|p 25-32
|t Journal of electroceramics
|v 35
|y 2015
|x 1385-3449
856 4 _ |u https://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.pdf
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.gif?subformat=icon
|x icon
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.jpg?subformat=icon-1440
|x icon-1440
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.jpg?subformat=icon-180
|x icon-180
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.jpg?subformat=icon-640
|x icon-640
|y Restricted
856 4 _ |u https://juser.fz-juelich.de/record/205134/files/art_10.1007_s10832-015-9988-7.pdf?subformat=pdfa
|x pdfa
|y Restricted
909 C O |o oai:juser.fz-juelich.de:205134
|p VDB
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 0
|6 P:(DE-Juel1)156244
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 1
|6 P:(DE-Juel1)156509
910 1 _ |a Wissenschaftlicher Geschäftsbereich II
|0 I:(DE-Juel1)VS-II-20090406
|k VS-II
|b 3
|6 P:(DE-Juel1)145623
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 4
|6 P:(DE-Juel1)129667
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 5
|6 P:(DE-Juel1)129580
910 1 _ |a Forschungszentrum Jülich GmbH
|0 I:(DE-588b)5008462-8
|k FZJ
|b 6
|6 P:(DE-Juel1)129594
913 1 _ |a DE-HGF
|l Speicher und vernetzte Infrastrukturen
|1 G:(DE-HGF)POF3-130
|0 G:(DE-HGF)POF3-131
|2 G:(DE-HGF)POF3-100
|v Electrochemical Storage
|x 0
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF3
|b Energie
914 1 _ |y 2015
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
|b J ELECTROCERAM : 2014
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1150
|2 StatID
|b Current Contents - Physical, Chemical and Earth Sciences
915 _ _ |a IF < 5
|0 StatID:(DE-HGF)9900
|2 StatID
920 _ _ |l yes
920 1 _ |0 I:(DE-Juel1)IEK-1-20101013
|k IEK-1
|l Werkstoffsynthese und Herstellungsverfahren
|x 0
980 _ _ |a journal
980 _ _ |a VDB
980 _ _ |a I:(DE-Juel1)IEK-1-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IMD-2-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21