000020515 001__ 20515 000020515 005__ 20210129210749.0 000020515 0247_ $$2DOI$$a10.1007/JHEP02(2012)044 000020515 0247_ $$2WOS$$aWOS:000301451200044 000020515 0247_ $$2altmetric$$aaltmetric:3980023 000020515 037__ $$aPreJuSER-20515 000020515 041__ $$aeng 000020515 082__ $$a530 000020515 084__ $$2WoS$$aPhysics, Particles & Fields 000020515 1001_ $$0P:(DE-HGF)0$$aBali, G.S.$$b0 000020515 245__ $$aThe QCD phase diagram for external magnetic fields 000020515 260__ $$aBerlin$$bSpringer$$c2012 000020515 300__ $$a44 000020515 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article 000020515 3367_ $$2DataCite$$aOutput Types/Journal article 000020515 3367_ $$00$$2EndNote$$aJournal Article 000020515 3367_ $$2BibTeX$$aARTICLE 000020515 3367_ $$2ORCID$$aJOURNAL_ARTICLE 000020515 3367_ $$2DRIVER$$aarticle 000020515 440_0 $$013263$$aJournal of High Energy Physics$$x1126-6708$$y2 000020515 500__ $$aThis work has been supported by DFG grants SFB-TR 55, FO 502/1-2 and BR 2872/4-2, the EU grants (FP7/2007-2013)/ERC no 208740 and PITN-GA-2009-238353 (ITN STRONGnet). Computations were carried out on the GPU cluster at the Eotvos University in Budapest and on the Bluegene/P at FZ Julich. We thank Ferenc Niedermayer for useful discussions, interesting ideas and for careful reading of the manuscript. G. E. would like to thank Massimo D'Elia, Swagato Mukherjee, Daniel Nogradi, Tamas Kovacs and Igor Shovkovy for useful discussions. 000020515 520__ $$aThe effect of an external (electro) magnetic field on the finite temperature transition of QCD is studied. We generate configurations at various values of the quantized magnetic flux with N-f = 2 + 1 flavors of stout smeared staggered quarks, with physical masses. Thermodynamic observables including the chiral condensate and susceptibility, and the strange quark number susceptibility are measured as functions of the field strength. We perform the renormalization of the studied observables and extrapolate the results to the continuum limit using N-t = 6, 8 and 10 lattices. We also check for finite volume effects using various lattice volumes. We find from all of our observables that the transition temperature T c significantly decreases with increasing magnetic field. This is in conflict with various model calculations that predict an increasing T-c(B). From a finite volume scaling analysis we find that the analytic crossover that is present at B = 0 persists up to our largest magnetic fields e B approximate to 1 GeV2, and that the transition strength increases mildly up to this e B approximate to 1 GeV2. 000020515 536__ $$0G:(DE-Juel1)FUEK411$$2G:(DE-HGF)$$aScientific Computing (FUEK411)$$cFUEK411$$x0 000020515 536__ $$0G:(DE-HGF)POF2-411$$a411 - Computational Science and Mathematical Methods (POF2-411)$$cPOF2-411$$fPOF II$$x1 000020515 536__ $$0G:(EU-Grant)208740$$aQCDTHERMO - QCD thermodynamics on the lattice (208740)$$c208740$$fERC-2007-StG$$x2 000020515 536__ $$0G:(EU-Grant)238353$$aSTRONGNET - Strong Interaction Supercomputing Training Network (238353)$$c238353$$fFP7-PEOPLE-ITN-2008$$x3 000020515 588__ $$aDataset connected to Web of Science 000020515 65320 $$2Author$$aLattice QCD 000020515 65320 $$2Author$$aLattice Quantum Field Theory 000020515 650_7 $$2WoSType$$aJ 000020515 7001_ $$0P:(DE-HGF)0$$aBruckmann, F.$$b1 000020515 7001_ $$0P:(DE-HGF)0$$aEndrödi, G.$$b2 000020515 7001_ $$0P:(DE-Juel1)VDB73603$$aFodor, Z.$$b3$$uFZJ 000020515 7001_ $$0P:(DE-HGF)0$$aKatz, S.D.$$b4 000020515 7001_ $$0P:(DE-Juel1)132171$$aKrieg, S.$$b5$$uFZJ 000020515 7001_ $$0P:(DE-HGF)0$$aSchäfer, A.$$b6 000020515 7001_ $$0P:(DE-HGF)0$$aSzabó, K.K.$$b7 000020515 773__ $$0PERI:(DE-600)2027350-2$$a10.1007/JHEP02(2012)044$$gp. 44$$p44$$q44$$tJournal of high energy physics$$x1126-6708$$y2012 000020515 8567_ $$uhttp://dx.doi.org/10.1007/JHEP02(2012)044 000020515 909CO $$ooai:juser.fz-juelich.de:20515$$pec_fundedresources$$pVDB$$popenaire 000020515 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed 000020515 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR 000020515 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index 000020515 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded 000020515 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection 000020515 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List 000020515 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS 000020515 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz 000020515 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences 000020515 9141_ $$y2012 000020515 9132_ $$0G:(DE-HGF)POF3-511$$1G:(DE-HGF)POF3-510$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lSupercomputing & Big Data$$vComputational Science and Mathematical Methods$$x0 000020515 9131_ $$0G:(DE-HGF)POF2-411$$1G:(DE-HGF)POF2-410$$2G:(DE-HGF)POF2-400$$3G:(DE-HGF)POF2$$4G:(DE-HGF)POF$$aDE-HGF$$bSchlüsseltechnologien$$lSupercomputing$$vComputational Science and Mathematical Methods$$x1 000020515 9201_ $$0I:(DE-Juel1)JSC-20090406$$gJSC$$kJSC$$lJülich Supercomputing Centre$$x0 000020515 970__ $$aVDB:(DE-Juel1)136089 000020515 980__ $$aVDB 000020515 980__ $$aConvertedRecord 000020515 980__ $$ajournal 000020515 980__ $$aI:(DE-Juel1)JSC-20090406 000020515 980__ $$aUNRESTRICTED