001 | 20515 | ||
005 | 20210129210749.0 | ||
024 | 7 | _ | |2 DOI |a 10.1007/JHEP02(2012)044 |
024 | 7 | _ | |2 WOS |a WOS:000301451200044 |
024 | 7 | _ | |a altmetric:3980023 |2 altmetric |
037 | _ | _ | |a PreJuSER-20515 |
041 | _ | _ | |a eng |
082 | _ | _ | |a 530 |
084 | _ | _ | |2 WoS |a Physics, Particles & Fields |
100 | 1 | _ | |0 P:(DE-HGF)0 |a Bali, G.S. |b 0 |
245 | _ | _ | |a The QCD phase diagram for external magnetic fields |
260 | _ | _ | |a Berlin |b Springer |c 2012 |
300 | _ | _ | |a 44 |
336 | 7 | _ | |a Journal Article |0 PUB:(DE-HGF)16 |2 PUB:(DE-HGF) |
336 | 7 | _ | |a Output Types/Journal article |2 DataCite |
336 | 7 | _ | |a Journal Article |0 0 |2 EndNote |
336 | 7 | _ | |a ARTICLE |2 BibTeX |
336 | 7 | _ | |a JOURNAL_ARTICLE |2 ORCID |
336 | 7 | _ | |a article |2 DRIVER |
440 | _ | 0 | |0 13263 |a Journal of High Energy Physics |x 1126-6708 |y 2 |
500 | _ | _ | |a This work has been supported by DFG grants SFB-TR 55, FO 502/1-2 and BR 2872/4-2, the EU grants (FP7/2007-2013)/ERC no 208740 and PITN-GA-2009-238353 (ITN STRONGnet). Computations were carried out on the GPU cluster at the Eotvos University in Budapest and on the Bluegene/P at FZ Julich. We thank Ferenc Niedermayer for useful discussions, interesting ideas and for careful reading of the manuscript. G. E. would like to thank Massimo D'Elia, Swagato Mukherjee, Daniel Nogradi, Tamas Kovacs and Igor Shovkovy for useful discussions. |
520 | _ | _ | |a The effect of an external (electro) magnetic field on the finite temperature transition of QCD is studied. We generate configurations at various values of the quantized magnetic flux with N-f = 2 + 1 flavors of stout smeared staggered quarks, with physical masses. Thermodynamic observables including the chiral condensate and susceptibility, and the strange quark number susceptibility are measured as functions of the field strength. We perform the renormalization of the studied observables and extrapolate the results to the continuum limit using N-t = 6, 8 and 10 lattices. We also check for finite volume effects using various lattice volumes. We find from all of our observables that the transition temperature T c significantly decreases with increasing magnetic field. This is in conflict with various model calculations that predict an increasing T-c(B). From a finite volume scaling analysis we find that the analytic crossover that is present at B = 0 persists up to our largest magnetic fields e B approximate to 1 GeV2, and that the transition strength increases mildly up to this e B approximate to 1 GeV2. |
536 | _ | _ | |0 G:(DE-Juel1)FUEK411 |2 G:(DE-HGF) |x 0 |c FUEK411 |a Scientific Computing (FUEK411) |
536 | _ | _ | |a 411 - Computational Science and Mathematical Methods (POF2-411) |0 G:(DE-HGF)POF2-411 |c POF2-411 |x 1 |f POF II |
536 | _ | _ | |a QCDTHERMO - QCD thermodynamics on the lattice (208740) |0 G:(EU-Grant)208740 |c 208740 |x 2 |f ERC-2007-StG |
536 | _ | _ | |a STRONGNET - Strong Interaction Supercomputing Training Network (238353) |0 G:(EU-Grant)238353 |c 238353 |x 3 |f FP7-PEOPLE-ITN-2008 |
588 | _ | _ | |a Dataset connected to Web of Science |
650 | _ | 7 | |2 WoSType |a J |
653 | 2 | 0 | |2 Author |a Lattice QCD |
653 | 2 | 0 | |2 Author |a Lattice Quantum Field Theory |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Bruckmann, F. |b 1 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Endrödi, G. |b 2 |
700 | 1 | _ | |0 P:(DE-Juel1)VDB73603 |a Fodor, Z. |b 3 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Katz, S.D. |b 4 |
700 | 1 | _ | |0 P:(DE-Juel1)132171 |a Krieg, S. |b 5 |u FZJ |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Schäfer, A. |b 6 |
700 | 1 | _ | |0 P:(DE-HGF)0 |a Szabó, K.K. |b 7 |
773 | _ | _ | |0 PERI:(DE-600)2027350-2 |a 10.1007/JHEP02(2012)044 |g p. 44 |p 44 |q 44 |t Journal of high energy physics |x 1126-6708 |y 2012 |
856 | 7 | _ | |u http://dx.doi.org/10.1007/JHEP02(2012)044 |
909 | C | O | |o oai:juser.fz-juelich.de:20515 |p openaire |p VDB |p ec_fundedresources |
913 | 2 | _ | |0 G:(DE-HGF)POF3-511 |1 G:(DE-HGF)POF3-510 |2 G:(DE-HGF)POF3-500 |a DE-HGF |b Key Technologies |l Supercomputing & Big Data |v Computational Science and Mathematical Methods |x 0 |
913 | 1 | _ | |0 G:(DE-HGF)POF2-411 |1 G:(DE-HGF)POF2-410 |2 G:(DE-HGF)POF2-400 |a DE-HGF |b Schlüsseltechnologien |l Supercomputing |v Computational Science and Mathematical Methods |x 1 |4 G:(DE-HGF)POF |3 G:(DE-HGF)POF2 |
914 | 1 | _ | |y 2012 |
915 | _ | _ | |0 StatID:(DE-HGF)0010 |2 StatID |a JCR/ISI refereed |
915 | _ | _ | |0 StatID:(DE-HGF)0100 |2 StatID |a JCR |
915 | _ | _ | |0 StatID:(DE-HGF)0110 |2 StatID |a WoS |b Science Citation Index |
915 | _ | _ | |0 StatID:(DE-HGF)0111 |2 StatID |a WoS |b Science Citation Index Expanded |
915 | _ | _ | |0 StatID:(DE-HGF)0150 |2 StatID |a DBCoverage |b Web of Science Core Collection |
915 | _ | _ | |0 StatID:(DE-HGF)0199 |2 StatID |a DBCoverage |b Thomson Reuters Master Journal List |
915 | _ | _ | |0 StatID:(DE-HGF)0200 |2 StatID |a DBCoverage |b SCOPUS |
915 | _ | _ | |0 StatID:(DE-HGF)0420 |2 StatID |a Nationallizenz |
915 | _ | _ | |0 StatID:(DE-HGF)1020 |2 StatID |a DBCoverage |b Current Contents - Social and Behavioral Sciences |
920 | 1 | _ | |0 I:(DE-Juel1)JSC-20090406 |g JSC |k JSC |l Jülich Supercomputing Centre |x 0 |
970 | _ | _ | |a VDB:(DE-Juel1)136089 |
980 | _ | _ | |a VDB |
980 | _ | _ | |a ConvertedRecord |
980 | _ | _ | |a journal |
980 | _ | _ | |a I:(DE-Juel1)JSC-20090406 |
980 | _ | _ | |a UNRESTRICTED |
Library | Collection | CLSMajor | CLSMinor | Language | Author |
---|