001     20515
005     20210129210749.0
024 7 _ |2 DOI
|a 10.1007/JHEP02(2012)044
024 7 _ |2 WOS
|a WOS:000301451200044
024 7 _ |a altmetric:3980023
|2 altmetric
037 _ _ |a PreJuSER-20515
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Particles & Fields
100 1 _ |0 P:(DE-HGF)0
|a Bali, G.S.
|b 0
245 _ _ |a The QCD phase diagram for external magnetic fields
260 _ _ |a Berlin
|b Springer
|c 2012
300 _ _ |a 44
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 13263
|a Journal of High Energy Physics
|x 1126-6708
|y 2
500 _ _ |a This work has been supported by DFG grants SFB-TR 55, FO 502/1-2 and BR 2872/4-2, the EU grants (FP7/2007-2013)/ERC no 208740 and PITN-GA-2009-238353 (ITN STRONGnet). Computations were carried out on the GPU cluster at the Eotvos University in Budapest and on the Bluegene/P at FZ Julich. We thank Ferenc Niedermayer for useful discussions, interesting ideas and for careful reading of the manuscript. G. E. would like to thank Massimo D'Elia, Swagato Mukherjee, Daniel Nogradi, Tamas Kovacs and Igor Shovkovy for useful discussions.
520 _ _ |a The effect of an external (electro) magnetic field on the finite temperature transition of QCD is studied. We generate configurations at various values of the quantized magnetic flux with N-f = 2 + 1 flavors of stout smeared staggered quarks, with physical masses. Thermodynamic observables including the chiral condensate and susceptibility, and the strange quark number susceptibility are measured as functions of the field strength. We perform the renormalization of the studied observables and extrapolate the results to the continuum limit using N-t = 6, 8 and 10 lattices. We also check for finite volume effects using various lattice volumes. We find from all of our observables that the transition temperature T c significantly decreases with increasing magnetic field. This is in conflict with various model calculations that predict an increasing T-c(B). From a finite volume scaling analysis we find that the analytic crossover that is present at B = 0 persists up to our largest magnetic fields e B approximate to 1 GeV2, and that the transition strength increases mildly up to this e B approximate to 1 GeV2.
536 _ _ |0 G:(DE-Juel1)FUEK411
|2 G:(DE-HGF)
|x 0
|c FUEK411
|a Scientific Computing (FUEK411)
536 _ _ |a 411 - Computational Science and Mathematical Methods (POF2-411)
|0 G:(DE-HGF)POF2-411
|c POF2-411
|x 1
|f POF II
536 _ _ |a QCDTHERMO - QCD thermodynamics on the lattice (208740)
|0 G:(EU-Grant)208740
|c 208740
|x 2
|f ERC-2007-StG
536 _ _ |a STRONGNET - Strong Interaction Supercomputing Training Network (238353)
|0 G:(EU-Grant)238353
|c 238353
|x 3
|f FP7-PEOPLE-ITN-2008
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a Lattice QCD
653 2 0 |2 Author
|a Lattice Quantum Field Theory
700 1 _ |0 P:(DE-HGF)0
|a Bruckmann, F.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Endrödi, G.
|b 2
700 1 _ |0 P:(DE-Juel1)VDB73603
|a Fodor, Z.
|b 3
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Katz, S.D.
|b 4
700 1 _ |0 P:(DE-Juel1)132171
|a Krieg, S.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Schäfer, A.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Szabó, K.K.
|b 7
773 _ _ |0 PERI:(DE-600)2027350-2
|a 10.1007/JHEP02(2012)044
|g p. 44
|p 44
|q 44
|t Journal of high energy physics
|x 1126-6708
|y 2012
856 7 _ |u http://dx.doi.org/10.1007/JHEP02(2012)044
909 C O |o oai:juser.fz-juelich.de:20515
|p openaire
|p VDB
|p ec_fundedresources
913 2 _ |0 G:(DE-HGF)POF3-511
|1 G:(DE-HGF)POF3-510
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Supercomputing & Big Data
|v Computational Science and Mathematical Methods
|x 0
913 1 _ |0 G:(DE-HGF)POF2-411
|1 G:(DE-HGF)POF2-410
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|l Supercomputing
|v Computational Science and Mathematical Methods
|x 1
|4 G:(DE-HGF)POF
|3 G:(DE-HGF)POF2
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1020
|2 StatID
|a DBCoverage
|b Current Contents - Social and Behavioral Sciences
920 1 _ |0 I:(DE-Juel1)JSC-20090406
|g JSC
|k JSC
|l Jülich Supercomputing Centre
|x 0
970 _ _ |a VDB:(DE-Juel1)136089
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)JSC-20090406
980 _ _ |a UNRESTRICTED


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21