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diffractometer for soft-matter and biology at FRM II  
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Forschungszentrum Jülich GmbH, Jülich Centre for Neutron Science (JCNS), 
Outstation at FRM II, 85747 Garching, Germany  

E-mail: a.radulescu@fz-juelich.de 
 
Abstract. The KWS-2 small-angle neutron diffractometer operated by JCNS at FRM II is 
upgraded and optimized towards high intensity and wide Q-range studies of mesoscopic 
structures and structural changes due to rapid kinetics and becomes a dedicated SANS 
instrument to soft-matter and biology. The high intensity permits fast measurement of small or 
weak scattering samples and time resolved structural studies with a time resolution up to 
100ms. The possibility to cover up to four decades in Q will soon enable structural 
investigation over a wide length scale, between several Å and 1μm. The characteristics and 
performance of the instrument in the conventional pinhole mode is detailed presented and the 
new upgrades currently in progress and aiming for boosting the instrument performance 
towards higher intensity and wider Q-range are reported.  

1. Introduction 
After the shut-down of the FRJ-2 “DIDO” research reactor in Jülich, the small-angle neutron 
diffractometers KWS-1 and KWS-2 have been rebuilt by the Jülich Centre for Neutron Science 
(JCNS) at the neutron source Heinz Maier-Leibnitz (FRM II reactor) in Garching [1]. Both 
instruments are 42m long and based on the same concept: by the pinhole geometry the exploration of a 
wide momentum transfers Q, between 7x10-4 and 0.5Å-1, is possible by the variation of the sample-to-
detector distance between 1m and 20m and of the wavelength between 4.5Å and 20Å. At FRM II the 
combination of the high flux supplied by the cold neutron source (CNS) and the newly designed 
neutron guide system [2] supported the major upgrade of KWS-2 towards particular scientific topics: 
with a new “fast” detection electronics accepting high count rates up to 0.6 MHz, a new collimation 
system allowing for larger experimental flexibility and the routine use of large beam-sizes, KWS-2 
became a dedicated SANS diffractometer to high-intensity / wide Q-range investigation of mesoscopic 
structures and structural changed due to rapid kinetics in soft-matter, chemistry and biology.  

In the middle of 2010 the instrument entered a second phase of major upgrade aiming for boosting 
the instrument performance towards higher intensities and wider Q-range by means of focusing 
elements – the MgF2 lenses [3-5]. The neutron lenses are planned for the high intensity mode (up to 15 
times gain in intensity compared to the conventional pinhole mode by increasing the sample area 
while holding the resolution) and the high resolution mode (exploration of low Q range up to 1x10-4  
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Å-1) when they will be used in the combination with a double-disk chopper with variable opening and 
a high resolution position-sensitive detector.  

In this paper we will present the design and characteristics of the KWS-2 SANS diffractometer in 
the standard pinhole mode including some data for demonstrating its performance.  
 
2. Instrument components and characteristics 
The 42m long instrument KWS-2 occupies an end-of-guide beam position (50x50mm2 cross section) 
on the newly built NL3-ao vertically “S-shaped” neutron guide [2,6] in the cold-neutron-guides West-
Hall of FRM II. A conceptual design of the KWS-2 instrument is shown in figure 1 while the key 
components and working procedure for the pinhole standard mode are discussed in turn below. A 
detailed description and characterization of the new components that are currently in construction (the 
double-disc chopper with variable opening, the neutron lenses and the high-resolution detector) makes 
the subject of a forthcoming publication. 
 

Figure 1. Schematic diagram of the KWS-2 SANS instrument. 

2.1. Wavelength selection and collimation system 
The incident beam from the neutron guide is monochromatized by a mechanical slit selector 
(ASTRIUM GmbH) with a wavelength resolution Δλ/λ=0.20 in a wavelength range of λ = 4.5 ÷ 20Å. 
The monochromated beam is collimated by a system of moveable guides and fixed position apertures. 
The 18 neutron guide elements, each 1m long with 50x50mm2 cross-section and m=1.4 non-magnetic 
coating, allow for the variation of the effective source-to-sample distance from 2m to 20m in 1m 
increments to vary the beam divergence and flux on the sample. Each guide is followed by a squared 
source-defining aperture (entrance aperture). The apertures placed at 2, 4, 8, 14 and 20m in front of the 
sample and the sample aperture have variable opening, between 1x1mm2 and 50x50mm2, allowing for 
either symmetric or slit-like beam geometry; the other apertures have a 50x50mm2 fixed opening. All 
apertures are equipped with 10B enriched ceramic blades with sharp edges and large BC4 masks. The 
variable opening apertures are equipped with additional elements that increase their performance 
(transducers, special driving systems, special positioning and alignment systems). Thus, collimation of 
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the incident beam is defined by the entrance aperture (typically 50x50mm2 for standard pinhole mode) 
and the sample aperture (typically 10x10mm2); this is the pinhole standard working mode.  

2.2. The sample area 
The KWS-2 SANS instrument has a sample area that allows for the accommodation of large sample 
environments such us cryostats, furnaces, rheometers, shear cells, stretching devices, pressure cells, 
humidity cells, etc. A sample stage that allows for the xyzθ positioning of sample holders and can 
support heavy sample environments is typically used. In this case, an evacuated tube with variable 
length, the so-called “collimation nose”, enables the positioning of the sample aperture very close to 
the sample or the entrance window of the sample environment, diminishing the air flight path of 
neutrons. For measurements at room temperature or within a typical temperature range for soft-matter 
and biology topics (-20°C÷150°C) a multi-position / multi-level thermostated sample holder with dry-
air flow is routinely used. For special cases, an evacuated sample chamber allowing for the use of a 
multi-position thermostated sample holder with sealed sample cells can be used. The sample area is 
massively shielded by 1.5cm thick inner layer of borated plastic and 5cm thick outer layer of lead. The 
access of users at the sample position is allowed through a motorized door commanded by the 
instrument controlling computer and coordinated with the status of the instrument shutters.  
 

 

 

 

Figure 2. Typical scattering pattern collected with the scintillation detector of KWS-2 as raw data (a) 
and corrected data for detector sensitivity (b). 

b)a) 

2.3. Main detector 
The KWS-2 main detector is based on the Anger principle [7] with an array of 8x8 photomultipliers, a 
60x60cm2 6Li glass scintillator with an efficiency >95% for λ>4.5Å neutrons [8] and a light disperser 
glass, which spread the light produced by a neutron event to an array of 3x3 photomultipliers [9]. The 
readout electronics enables fast signal and data processing (about 0.6μs statistical dead-time) and 
allows for the acquisition of stable and reliable count rates up to 0.6MHz. Because of the 
photomultipliers array and the scintillator active area made of 4x4 plates glued together, a grid-like 
structure corresponding to detector regions with lower sensitivity characterizes the raw scattering 
patterns (figure 2a). Therefore, corrections that take into account the detector sensitivity measured 
with an incoherent standard sample (Plexiglas) must be always applied to the raw data (figure 2b).  

The determination of the system dead-time was carried out by comparing the detector count rates 
under uniform neutron illumination to that of a fission chamber. Because the count rate of the fission 
chamber is linearly related to the true count rate n of the scattered neutrons, the dead time of the 
detector may be derived from the deviations of the measured count rates nm from the ideal behavior 
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(figure 3). The recorded data can be fully corrected for detector dead-time losses for count rates up to 
150kHz, when a 10% dead-time effect occurs in the measured rates nm compared to the true rates n 
(figure 4). The 6Li scintillator is sensitive for γ-radiation originating directly from the reactor or from 
activated materials in the surroundings. In order to suppress the γ-background discriminators and 
filtering algorithms have been implemented that reduce the γ-to-neutron ratio to 10-5. The spatial 
resolution of the detector determined using an absorbing boron coated diaphragm with holes placed in 
front of the scintillator is 5.25mm.  
 

 

Figure 3. Measurement of the detection electronics dead-time using a “zero dead-time” fission 
chamber; the fit of the data with the paralysable model (curve) delivered the statistical dead-time; the 

ideal behavior of the detection electronics is indicated by the straight line. 
 

 

Figure 4. Radially-averaged scattering patterns from a diblock copolymer in solution, measured for 
different count rates; the data were corrected for the detector sensitivity, scattering from empty cell 

and instrument background and calibrated on the absolute scale using a Plexiglas secondary standard; 
the inset show the two-dimensional scattering pattern recorded with a count rate of 140 kHz; the 

quality of data in both presentations proves the reliability of the dead-time and detector sensitivity 
corrections applicable up to high count rates. 

diblock copolymer in D2O/d‐DMF
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The main detector is equipped with a system of three mobile rectangular beam-stop masks with 
sizes of 5x5, 7x7 and 9x9 cm2, which can be separately brought in beam in order to mask the direct 
beam and to tune the Qmin resolution by matching different beam size and divergence conditions. The 
detector can be moved between 1m and 20m after the sample and positioned vertically and laterally in 
beam, in order to catch on the beam-stop the direct beam for different wavelengths.  
 
3. Instrument performance 

3.1. Flux at the sample position 
The flux at the sample position as a function of the incident wavelength and collimation configuration 
has been measured by standard gold foil activation method [10]. The results are shown in figure 5.  

The magnitude of the neutron flux strongly depends on the amount of liquid deuterium in the cold 
neutron source (CNS) of FRM II: the full filling of the CNS requires about 15l of it. Detailed flux 
measurements have been carried out for the partial CNS filling of 10.6l. The highest flux for the 
shortest collimation length Lc=2m and λ=4.5Å is about 2x108 n/s cm2. Later measurements using the 
Plexiglas secondary standard performed for a better CNS filling (13l) have shown a considerable 
increase in the neutron flux at the sample position by a factor of 1.7. Under the optimal conditions of 
CNS the neutron flux is comparable to that of the SANS instruments at the high-flux reactor of the 
Institute Laue-Langevin in Grenoble. 
 

 

Figure 5. Absolute neutron flux at the sample position as a function of wavelength λ for different 
collimation lengths Lc, typical opening of the entrance and sample apertures and 10.6l CNS filling. 

 

3.2. Available Q-range 
The momentum transfer Q at a given point on the detector is given by 

 ( ) ( ) ( )( )[ ]{ } λπλθπ /2//tansin4/2/sin4 1
DLrrQ −==  (1) 

where r is the radial distance of a point on the detector from the beam axis, LD the sample-to-detector 
distance, θ the scattering angle and λ the neutron wavelength. If we considered the closest distance at 
which reliable data may be recorded given by the smallest beam-stop and the largest distance given by 
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the detector corners, the Q-range available for a selection of instrument configuration is shown in 
figure 6. 
 

 

Figure 6. Available range of momentum transfer Q for a selection of instrument configurations at 
KWS-2: the neutron flux at the sample position divided by the square of the detector distance is 

plotted against Q for different combinations of collimation length LC and detection length LD and for 
neutron wavelengths in the range 4.5Å ≤ λ ≤ 20Å. 

 

3.3 Beam Profile 
A very important quantity in the characterization of the instrument is the contrast ration at the detector. 
This is defined by the peak intensity in the center of the beam stop versus the flux at twice the half-
widths of the primary beam. As can be seen from the intensity distribution in figure 7, the contrast 
ratio is of the order of 105, which allows measurements of very small scattering cross-sections.  

3.4. Instrument resolution 
One of the elements enabling for the achievement of a high neutron flux on the sample is the large 
wavelength spread used, Δλ/λ=0.20. The large Δλ/λ and the limited geometric resolution of a SANS 
instrument (finite collimation, detector resolution, gravity) lead to smearing that can cause to a certain 
extent loss of the structural information contained in the SANS curve. In order to recover at least part 
of this information lost as a result of the limited resolution, the actual instrumental resolution 
parameters have to be known a priori or determined independently. The structural information is then 
retrieved usually by implementing the resolution function in the fitting procedure [11] or, less used, by 
desmearing the measured data [12]. The resolution of pinhole SANS instruments with area detectors is 
well understood and can be modeled according to [11, 13, 14]. At KWS-2 the wavelength distribution 
measured by time-of-flight [6] agrees well with that resulting from the setting of the mechanical 
velocity selector, a Gaussian-like distribution with Δλ/λ=0.20. For long wavelengths (λ>10Å), the 
wavelength distribution deviates slightly from the triangular form and becomes gradually asymmetric 
as a consequence of combined effects arising from the Maxwell speed distribution of the incoming 
“white” neutron beam and the deterioration of the transmission and resolution of the velocity selector 
for large beam divergence characteristic for long neutron wavelengths [15].  
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Figure 7. Intensity profile measured at KWS-2 for the collimation length LC=8m, detection distance 
LD=8m and λ=12Å.  

 
A dilute dispersion of charged-stabilized, monodisperse silica nanoparticles has been used to verify 

the instrumental resolution function based on the wavelength spread provided by the velocity selector, 
the beam divergence determined by the collimation system and the cell size of the detector. The data 
measured with λ=4.5Å, corrected for detector sensitivity, instrument background, scattering from 
empty cell and solvent and calibrated on the absolute scale are displayed in figure 8 over the typical Q-
range explored at KWS-2 by using different LC-LD combinations. 
 

 

Figure 8. SANS patterns from silica particles in deuterated DMF for different particle volume 
fractions described by model function convoluted with the instrument resolution. 

2 % 
0.2 % 

 
The experimental data were fitted by a model function characteristic for a system of hard spheres 

[16] convoluted with the resolution function of the instrument. The fit of the data was successful and 
the structure parameters of the reference samples determined from a SAXS experiment [17] were 
recovered. One should remark that, even with a significant higher wavelength spread such as 
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Δλ/λ=0.20, the structural features of the form factor can be observed up to the third oscillation, which 
enables a quite reliable interpretation of the measured data in terms of structural models. 
 

 

Figure 9. Fast SANS measurements of Plexiglas standard sample (isotropic constant pattern) 
performed with a time-resolution of 100ms as a test of the real-time data acquisition mode; final 

upgrade of the detection electronics allows for the fast start of data acquisition within 100ms after the 
opening of the instrument shutter. 

 

3.5. Time-resolved SANS with 100ms time-resolution 
KWS-2 was optimized for real time measurements of fast structural changes due to rapid kinetics. 
Data acquisition on sub-second time scale allows for the exploration of the early stages of formation of 
structures. Valuable new information are obtained in various soft matter topics like, for example, 
micellization behavior of block copolymers [18], fast crystallization of polymeric systems [19], 
deformation of elastomers [20] or application of magnetic fields [21]. At KWS-2, the detector 
electronics correlated with the experimental conditions (neutron wavelength and flight-path) allows 
for time-resolutions of the order of 100ms (figure 9). An example of time-resolved SANS study of the 
chain exchange kinetics in block copolymer micelles of spherical and cylindrical geometry is 
presented in [22]. 
 
4. Calibration and measurement methods 
 
4.1. Wavelength calibration 
The wavelength calibration is carried out by using Bragg reflection from silver behenate (AgBE 
powder supplied by Chemos GmbH, Germany), which is one of the very few materials that feature 
cold neutron Bragg reflections in the SANS angular range. These reflections (figure 10) can be 
analysed with Bragg’s law to determine the wavelength of the primary beam delivered by the velocity 
selector [23,24], knowing the long-period spacing d=58.380Å of AgBE. The large particle size of the 
AgBE powder yields the scattering observed at low Q. The three Bragg peaks at high Q observed 
using different LD’s and various velocity selector speeds were analysed and the absolute wavelengths 
were determined.  
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4.2. Absolute intensity calibration 
One of the advantages of the SANS technique is that the scattered intensity can be obtained on the 
absolute scale [25] and thus quantitative information such as molecular weight of polymers or 
aggregation number of micelles can be directly extracted from the “forward scattering” I(Q→0). The 
absolute calibration of the scattering from a sample of interest is performed by scaling the recorded 
intensity with that from a sample (standard) with well known scattering properties. One of the typical 
standard samples used in neutron scattering is vanadium. Because of the weak scattering of vanadium, 
vanadium-calibrated materials are typically used as secondary standards for SANS. The secondary 
standard sample used at KWS-2 is a Plexiglas slab with a thickness of 1.5mm.  
 

 

Figure 10. Scattering pattern from AgBE measured for the selector speed of 28200 rpm at three 
detection distances and corrected for detector sensitivity and background (instrument and cell). 

 

 

Figure 11. Absolute scattering cross-section from KWS-2 Plexiglas secondary standard for three 
different wavelengths: the data were calibrated with vanadium and cross-checked with glassy carbon.  
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The Plexiglas standard is calibrated with vanadium and, in order to account for multiple scattering 
effects, a cross-check with a glassy carbon standard sample [26] was done. This complex calibration 
procedure applied to the Plexiglas secondary standard allowed for a precise determination of the 
wavelength dependent calibration factor [24], which is further used for the absolute calibration of the 
scattering from the studied samples. 

At KWS-2 the Plexiglas secondary standard is used also to normalize the individual detection cells 
of the main detector for local variations in efficiency (the detector sensitivity measurement). 

4.3. Data reduction 
The scattering intensities recorded at KWS-2 from studied samples are corrected, calibrated and, in the 
case of isotropic scattering, radial averaged using standard procedure [25] by means of the QtiKWS 
data analysis software [27].  
 
5. Future upgrades 
The boosting of the instrument performance towards higher intensities and wider Q-range by means of 
focusing elements – the MgF2 aspherical lenses [3-5] and tilted velocity selector is aimed in the near 
future. For this purpose the neutron lenses are currently installed inside the last collimation segment 
towards the sample position, between 2m and 1m in front of the sample. The lenses have been tested 
and the experimental arrangements for the high resolution and high intensity modes were optimized 
[5]. A set of 26 lenses grouped in three packages that can be automatically brought in beam will be 
used either separately or in a combined way, to match the focusing conditions for different neutron 
wavelengths and collimation-detection conditions. In order to suppress the scattering on phonons and 
to increase the transmission by a factor of 2 the lenses will be cooled at 70K. For the high resolution 
mode the lenses will be used in combination with a high resolution position-sensitive scintillation 
detector and a double-disc chopper. The high resolution detector with space resolution of 0.5mm is 
installed in a fixed position at 17m after the sample. It is designed to be parked in a housing in top of 
the main detector evacuated tube (see figure 1) and to be brought automatically in beam when needed 
and the main detector is parked in the end position at 20m after the sample. The housing and 
positioning system of the high resolution detector are currently in construction. 
 

 

Figure 12. (a) – Focused beam profile obtained at KWS-2 using seven aspherical lenses as measured 
(symbols) and simulated (line) results; (b) – the scattered intensity from 0.25% PMMA in cis-decalin 
solution obtained by focusing-lenses at KWS-2; a beam-stop attached on the high resolution detector 
masks to a large extent the transmitted beam while the scattering from the sample is clearly observed 

above the background (empty cell) at Q>2x10-4Å-1.  

b)a) 
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The high resolution mode combining the high resolution detector with aspherical MgF2 lenses was 
tested at KWS-2. Figure 12a shows the beam profile measured while using seven lenses at room 
temperature and a neutron wavelength λ=18Å. The high resolution detector was placed at 8.9m 
distance from the lenses (7.1m after the sample) and the collimation length used was 20m (18.2m in 
front of the lenses) with an entrance aperture of 8x8 mm2 and a sample aperture of 10x20 mm2. The 
measured profile agrees very well in the central part with the results of simulations carried out using 
the McStas package with focusing lens compound [28] included. The contrast ratio obtained in these 
conditions is about 10-3 while the significant background observed towards the edge of the detector 
may arise from chromatic aberration (due to the large wavelength spread used) and scattering from the 
instrument windows. Definitely, these imperfections remain to be further improved.  

Figure 12b shows in the radial averaged presentation the scattering from a sample of PMMA 
colloids in cis-decalin solution (1mm thickness) compared with the scattering from the empty sample 
cell. The signal from the sample is clearly visible above the background at Q>2x10-4Å-1. Corrected 
data are shown in figure 13 in parallel with the results obtained at KWS-2 with λ=7Å using the 
pinhole mode and at KWS-3 mirror-focusing instrument [29] with λ=12.7Å. The minimum Q value 
reached at KWS-2 with neutron lenses goes down to 10-4Å-1, which shows that in the near future more 
than three decades in Q range, from 0.5Å-1 up to 10-4Å-1, can be covered at a single instrument. A fit 
with the solid sphere form factor including the polydispersity σ(R)/R of the particle radii reported by 
static light scattering (σ0=0.06 of the log-normal size distribution), which is depicted by the solid 
curve in figure 13, delivered a colloidal radius of about 8100Å,, a value similar to that of 7900Å 
obtained by static light scattering. Because of finite resolution, the minima of the form factor are 
smeared out in the experimental data measured using both focusing methods.  

 

 

Figure 13. Intensity versus scattering vector of the 0.25% PMMA in cis-decalin solution obtained at 
KWS-2 by combining the classical pinhole and lenses-focusing modes. The data measured on the 

same sample at KWS-3 mirror-focusing instrument are shown in parallel. The solid curve represents 
the fit of the experimental data with the form factor of spheres (see text). 

 
In order to have thus the possibility to tune the wavelength resolution for the conventional pinhole 

mode and to avoid the chromatic aberration effects while using the focusing lenses the analysis of the 
wavelength distribution by time-of-flight using a double-disc chopper with variable opening is planned 
to be used. The installation of the chopper in front of the collimation is currently in progress. The two 
discs with two diametrically opposed windows (90° sectors) are placed very close to each other (5cm). 
Thus, a variable opening of the chopper can be achieved by changing the phase between the discs 
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which will allow for a high flexibility with respect to defining the time resolution and intensity on the 
sample. 

Finally, the possibility to explore larger Q domains, up to 1Å-1, is targeted in close connection to 
the small correlation lengths typically exhibited by biological structures.  

 

 

Figure 14. Simulated results at the end of the vertical “S-shaped” NL3a-o guide obtained for the 
white flux (blue line) and the monochromatic flux (black and red lines) using the velocity selector at 

a speed of 28200 rpm in two tilting situations (0° and -10° with respect to the beam axis).  
 
For this purpose a vertical tilting of the velocity selector up to -10° with respect to the beam axis is 

intended. One should mention that the velocity selector is placed in the middle of the vertical “S-
shaped” guide with the entrance window in a “three o’clock” position. Simulations carried out with 
McStas package [30] have shown that the neutron wavelength of λ=3Å (Qmax→1Å-1) can be selected 
with certain advantages prevailing over the disadvantages: due to the cut-off of the “S-shaped” neutron 
guide the wavelength spread (20%) is held while the price in intensity is acceptable for the low 
resolution–high intensity (shortest sample-to-detector distance) configuration aimed in this situation. 
The mechanism for the controlled vertical tilting of the selector is in construction phase and will be 
installed in the summer of 2012. 
 
6. Conclusions 
KWS-2 instrument operated by the JCNS at FRM II is a high intensity / wide Q-range small-angle 
neutron diffractometer optimized for studies of soft-matter and biological systems. The high intensity 
permits on one hand rapid measurement of small or weak-scattering samples and, on the other hand, 
time-resolved structural investigations with a time resolution up to 100ms. The possibility to cover up 
to four decades in Q, between 1x10-4Å-1 and 1Å-1, will enable structural studies over a wide length 
scale spanning between several Å and 1μm.   
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Erratum

Figure 5 in the original paper incorrectly showed the absolute neutron flux for a CNS filling of 13l, which
results in an increased flux at the sample position with a factor of up to 1.7. The correct figure and caption
are shown below.

Figure 5. Absolute neutron flux at the sample position as a function of wavelength λ for different
collimation lengths Lc, typical opening of the entrance and sample apertures and 10.6l CNS filling.




