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Monte Carlo simulations of dynamically triangulated surfaces of variable topology are used to in-
vestigate the scattering intensities of bicontinuous microemulsions. The bulk scattering intensity is
shown to follow the Teubner-Strey expression. The domain size and the correlation length are ex-
tracted from the scattering peaks as a function of the bending rigidity, saddle-splay modulus, and sur-
factant density. The results are compared to earlier theories based on Ginzburg-Landau and Gaussian
random field models. The ratio of the two length scales is shown to be well described by a linear com-
bination of logarithmically renormalized bending rigidity and saddle-splay modulus with universal
prefactors. This is in contrast to earlier theoretical predictions in which the scattering intensity is inde-
pendent of the saddle-splay modulus. The equation of state, and the asymptotics of the bulk and film
scattering intensities for high and low wave vectors are determined from simulations and compared
with theoretical results. © 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3701265]

I. INTRODUCTION

Mixtures of water, oil, and surfactant encompass a large
variety of mesoscopic structures, including lamellar, hexago-
nal, cubic, and micellar phases. For low surfactant densities, a
particularly interesting and important phase is the macroscop-
ically homogeneous and isotropic microemulsion phase.1, 2 In
all these phases, it is energetically favorable for the surfac-
tant to form monolayers at the microscopic oil-water inter-
face, with the hydrophilic head on the water side and the hy-
drophobic tail on the oil side; this induces the formation of
water-rich and oil-rich domains. For microemulsions, an ex-
tensive monolayer separates space into two intertwined vol-
umes, rich in water and oil, respectively, both of which are
continuous. Due to this property, such phases are called bicon-
tinuous. The surfactant monolayers have typically a vanishing
interface tension.3, 4 Consequently, the properties of the mix-
ture are largely governed by the bending rigidity of surfactant
monolayers.5–9

A closely related system is found in binary mixtures
of water and surfactant, also for low surfactant densities,
in which the surfactant tends to form bilayers with the hy-
drophilic ends exposed. In a narrow region of phase space,
this leads to the separation of the solvent into two contin-
uous domains by the surfactant bilayer. Such configurations
are called L3 phases or sponge phases.10 The L3 phase often
coexists with a lamellar phase or a highly dilute surfactant
solution, or both. In addition to the general structure, sponge
phases share many properties with symmetric oil-water mi-
croemulsions, including vanishing interface tension and spon-
taneous curvature.

Small-angle neutron scattering is among the most im-
portant experimental techniques to investigate and char-
acterize the structure and dynamics of microemulsions
and sponge phases,11–13 to elucidate the role of additives

such as amphiphilic block copolymers14–17 or non-absorbing
polymers,18, 19 and to understand the behavior of unconven-
tional microemulsions containing supercritical CO2 instead of
oil.20, 21 As microemulsions with new components and addi-
tives become important for future applications, it is impor-
tant to understand in more detail which information about the
emergent properties of the surfactant membranes can be ex-
tracted from a scattering experiment.

Depending on the sample preparation, the scattering can
take place either in bulk contrast or in film contrast. In the
former, the neutrons scatter from one of the solvents, and the
scattering reveals the structure of the bulk phases. In the latter,
the neutrons scatter from either the surfactant or additive sub-
stances in the surfactant layer, and the scattering probes the
structure of the interface. Only the latter technique is avail-
able for sponge phases. The scattering experiments typically
lead to a peak with a finite width in the bulk scattering, and a
weaker peak or a shoulder in the film scattering. Other experi-
mental scattering methods include neutron spin echo,22, 23 dy-
namic light scattering,24 and small-angle x-ray scattering.25, 26

The phase diagrams of solvent-surfactant systems have been
predicted theoretically by employing coarse-grained lattice
models of fluctuating membranes,27–31 as well as lattice mod-
els of three-component amphiphilic mixtures.32

Since the structure of microemulsions is dominated by
the curvature elasticity of the surfactant layer, a crucial step
in understanding it is to identify how the scattering peaks
follow from the elastic properties of the surfactant mem-
brane. The first theories11, 33, 34 were phenomenological the-
ories of the Ginzburg-Landau type. In them, Gaussian fluc-
tuations of the order-parameter field determine the scattering
intensity, which is given by the so-called Teubner-Strey for-
mula for bulk scattering. It gives the correct functional form
of the scattering intensity at and in the vicinity of the peak.
Because of the phenomenological form of the theory, the
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parameters of the formula cannot be connected easily with
material properties.

A later approach, which attempted to improve on the phe-
nomenological theory, is the Gaussian random field model
(GRFM).35, 36 In it, the structure of the surfactant monolayer
is described by the level set of a Gaussian random scalar field
for which a two-point interaction kernel is chosen so that the
free-energy density in GRFM is as close as possible to
the free-energy density given by a curvature Hamiltonian. The
GRFM gives the same expression for the bulk scattering in-
tensity as the phenomenological theory but also predicts all
parameters as a function of the material properties. The most
important prediction is that all features of the scattering peak
– its amplitude, position, and width – depend only on the
bending rigidity, the temperature, and the surfactant density
but are independent of the saddle-splay modulus. The predic-
tions of the GRFM have been used to analyze scattering ex-
periments in Refs. 15, 16, and 20. These analyses show that it
is necessary to augment the GRFM results by the logarithmic
renormalization37 of the bending rigidity, which arises from
thermal fluctuations on length scales smaller than the charac-
teristic domain size.15, 16, 38–42

The aim of our study is to determine the structure of mi-
croemulsions and sponge phases by Monte Carlo (MC) sim-
ulations of dynamically triangulated surfaces with fluctuating
topology, following Ref. 43. The advantage of this approach
is that an ensemble of thermally fluctuating membranes —
with shapes and topologies controlled by bending rigidity and
saddle-splay modulus — and the resulting scattering inten-
sities can be calculated without resorting to any approxima-
tions. Our language, when referring to the model system is
that of microemulsions; however, at the level of abstraction
we employ, the discussion is equally valid for both a bal-
anced ternary microemulsion with a surfactant monolayer, or
a sponge phase with a surfactant bilayer. We calculate the bulk
and film scattering intensity of the simulated configurations,
and concentrate especially on the dimensionless ratio of do-
main size and correlation length, which is extracted from the
scattering intensity in bulk contrast. This allows, for the first
time, a stringent test of the accuracy of previous theoretical
predictions. As the main result, we demonstrate that in con-
trast to the existing theoretical predictions, the length scale
ratio strongly depends on the saddle-splay modulus. We also
study the high-q tail of the scattering intensities, the equation
of state of the microemulsion, and long-wavelength properties
of the film scattering intensity. The behavior of these quanti-
ties are compared to the predictions of earlier work and pro-
vide useful consistency checks and additional detailed infor-
mation about the microemulsion phase.

This paper is organized as follows. In Sec. II, we briefly
summarize the theoretical background of microemulsion scat-
tering. In Sec. III, the Monte Carlo simulations of dynami-
cally triangulated surfaces with fluctuating topology are ex-
plained in detail, together with the procedure to compute the
scattering intensities from the simulated configurations. In
Sec. IV, we present our results concerning the equation of
state, bulk and film scattering intensities, and the topology of
the sponge phase. Finally, the results are discussed and the
paper is concluded in Sec. V.

II. THEORETICAL BACKGROUND

A. Ginzburg-Landau theory

The first attempt to explain the structure of mi-
croemulsions theoretically is given by the phenomenological
Ginzburg-Landau theory for microemulsions.11 The model is
defined by the free-energy functional38, 44

F[ψ] = 1

a

∫
[f (ψ) + g(ψ)(∇ψ)2 + (�ψ)2]d3r, (1)

where ψ(�r) is a three-dimensional scalar order-parameter
field, which is identified with the local density difference be-
tween the two bulk solvents. The amphiphile concentration
does not appear explicitly, and should be considered inte-
grated out. The functions f(ψ) and g(ψ) are chosen as45

f (ψ) = ω(ψ − ψo)2(ψ2 + f0)(ψ − ψw)2, (2)

g(ψ) = b + g2ψ
2. (3)

Here, a > 0 and ω > 0 are necessary to obtain thermody-
namically stable systems. The choice of Eq. (2) corresponds
to a three-phase coexistence of an oil-rich phase at ψ = ψ0,
a water-rich phase at ψ = ψw, and a microemulsion at ψ

= 0. In order to concentrate on the microemulsion phase,
Eqs. (2) and (3) are further simplified assuming small ψ . This
leads to f(ψ) = cψ2 and g(ψ) = b, where constant contribu-
tions to f(ψ) are ignored, and the linear ψ-term in f vanishes
for symmetric microemulsions with ψo = −ψw. Altogether,
these simplifications lead to

F[ψ] = 1

a

∫
[cψ2 + b(∇ψ)2 + (�ψ)2]d3r. (4)

A negative value of the coefficient b makes the amphiphilic
monolayers energetically preferable. The bulk scattering in-
tensity resulting from Eq. (4) is11

Sb(q) = a

q4 + bq2 + c
. (5)

This equation, with b < 0, was demonstrated to match ex-
periments rather well in Ref. 11, as well as in several later
experimental studies, see, e.g., Refs. 12, 15, 16, and 20. Note
that this phenomenological theory needs further input from a
more microscopic model to predict the coefficients a, b, and c
as a function of microscopic parameters of the system.

The correlation function corresponding to Eq. (5) is

gb(r) = sin(k0r)

k0r
exp

(
− r

ξ

)
. (6)

As a characteristic feature of microemulsions, Eq. (6) con-
tains two length scales, the domain size of the structure,
d = 2π /k0, and the decay length, ξ , associated with the ab-
sence of long-range order. In terms of the parameters of the
scattering intensity (Eq. (5)), these length scales are given
by11

k0 = 1

2

√
2
√

c + b ; ξ−1 = 1

2

√
2
√

c − b. (7)
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B. Gaussian random field model and membrane
curvature elasticity

The GRFM, in combination with the membrane curva-
ture Hamiltonian, makes additional predictions for the scatter-
ing intensity as a function of the properties of the amphiphilic
monolayer.35, 36 Like in Ginzburg-Landau theory, the starting
point is a three-dimensional scalar order-parameter field ψ(�r).
In Fourier space, the order-parameter fluctuations are gov-
erned by the Hamiltonian35

Ht = 1

2

∑
�q

V (�q)ψ(�q)ψ(−�q), (8)

where the sum is over all possible wave vectors �q and V (�q)
is a so far arbitrary potential of a two-body interaction. In
addition, the constraint 〈ψ(�r)〉�r = 1 is applied.

In order to fix V (�q) and consequently make further anal-
ysis possible, the amphiphilic monolayer is considered as a
mathematical surface, with its shape and fluctuations con-
trolled by the curvature energy46

H
kBT

=
∫

S

dS[2κ(H − c0)2 + κ̄K], (9)

where H = (H1 + H2)/2 is the mean curvature and K = H1H2

the Gaussian curvature, both expressed in terms of the local
principal curvatures H1 and H2, and the integral is over the
whole surface S. The material properties of the membrane
are contained in three elastic parameters, the dimensionless
bending rigidity κ , the saddle-splay modulus κ̄ , and the spon-
taneous curvature c0. We consider here only sponge phases
and balanced microemulsions with c0 = 0.

In the GRFM, the interaction kernel V (�q) is chosen such
that the difference in the free-energy density between the two
Hamiltonians of Eqs. (8) and (9) is minimized.35 This results
in a V (�q) whose inverse is the bulk scattering intensity given
in Eq. (5). However, the parameters, most importantly b and c,
can now be expressed in terms of the bending rigidity κ and
the area density of the surface. For large κ , the parameters
are15, 35

b = 3

2
π2

(
S

V

)2

, (10)

c =
(

3

4
π2

)2 (
S

V

)4

. (11)

This determines the (inverse) length scales k0 and ξ−1 via
Eq. (7). Additionally, the inverse of the area density S/V,
where S is the total membrane area in the system, and V the
system volume, is a natural structural length scale, in units of
which the other lengths are conveniently measured. Finally,
the predictions for the length scales and their dimensionless
ratio k0ξ become15

k0 =
√

3

2
π

S

V
, (12)

ξ = 128

15π

(
S

V

)−1

κ, (13)

k0ξ = 64

5
√

3
κ. (14)

In both Eqs. (13) and (14), the temperature does not appear
since κ is dimensionless, as defined in Eq. (9). According
to GRFM, the characteristic wave vector k0 is independent
of the elastic properties of the membrane and the correlation
length ξ is proportional to κ . The most remarkable feature of
Eqs. (12)–(14) is, however, the complete lack of dependence
on the saddle-splay modulus κ̄ .

C. Bending rigidity renormalization

For membranes and surfaces with vanishing surface ten-
sion, the bending rigidity κ and the saddle-play modulus κ̄

on a length scale l are renormalized by thermal fluctuations
on smaller scales.37 More precisely, the elastic membrane pa-
rameters are predicted to vary as37, 47–49

κR(l) = κ − α
1

4π
ln(l/δ), (15)

κR(l) = κ − α
1

4π
ln(l/δ), (16)

where δ is an effective cutoff of the fluctuation wavelengths of
the membrane and l = V/S is the structural length scale given
by the surfactant density. The coefficients α and ᾱ are univer-
sal prefactors. Their values have been under debate, but most
calculations37, 48 arrive at the values α = 3 and ᾱ = −10/3.
There is also numerical and experimental evidence in favor of
these values.16, 41, 43 In the remainder of this contribution, we
use them in our numerical analysis. We employ the minimum
distance a0 between two vertices as the cutoff δ.

The renormalization of κ̄ is essential to understand the
transition between the lamellar and bicontinuous phases of
surfactant solutions. The renormalized saddle-splay modulus
κ̄R is negative for small l (note that the bare value κ̄ < 0), in-
creases with increasing length scale — corresponding to de-
creasing surfactant density — and finally vanishes. This hap-
pens at the boundary between the lamellar and bicontinuous
phases, where κ̄R = 0.29, 30

D. Film scattering

So far, all theoretical expressions we have discussed
have been for bulk scattering. While similar treatment for
the scattering in film contrast is more complicated, certain is-
sues can still be addressed. The Ginzburg-Landau model of
Sec. II A has been extended to include the surfactant den-
sity, and the film scattering intensity has been calculated in a
perturbative expansion in the coupling between the two order
parameters.50, 51 In GRFM, the film correlation function for
large r is well approximated by36

g
(∞)
ff (r) =

(
S

V

)2

+ 2

π2

[
τgb(r)2 − 2

3
g′

b(r)2 + 1

9τ
g′′

b (r)2

]
,

(17)

where g′
b(r) and g′′

b (r) are the first and second derivatives of
gb(r) with respect to r, and

τ =
(π

2

)2
(

S

V

)2

. (18)
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Equation (17) implies, in particular, that whenever there is a
peak in the bulk scattering intensity at k0 for a given system,
the film scattering intensity has a peak or at least a shoulder
at 2k0.

The film scattering intensity in the GRFM approach has
then been calculated in two ways. First, in Ref. 36 scatter-
ing intensity was computed numerically by using the exact
GRFM expression for the film correlation function. Second,
in Ref. 15 the film scattering intensity was calculated analyt-
ically by using the approximate expression of Eq. (17); it has
then been combined with a film scattering intensity according
to the Porod law, Eq. (21), corresponding to a film scattering
function g

(0)
ff (r) ∝ r−1 for small r. The combined expression

was then shown to reproduce experimental data after a fitting
procedure.15

Both theoretical approaches, Ginzburg-Landau and
GRFM, agree in their prediction that the film scattering in-
tensity for small q has the form36, 50, 51

Sf (q) = α + β
1

q
arctan

(
ξq

2

)
. (19)

Here, α and β are constants. Since arctan( ξq

2 ) tends to a con-
stant for large qξ , this is equivalent to 1/q-behavior for 1
< qξ < k0ξ . Furthermore, in both theoretical approaches a
peak, a shoulder, or a monotonous decay of the film scatter-
ing intensity is found for large, intermediate, and small k0ξ ,
respectively.36, 51

E. Porod laws

The scattering intensities in both bulk and film contrast
for large �q are dominated by the local interface profile. In
bulk scattering, the Porod law12, 52 states that

Sb(q) = 2π (�ρ)2 S

V
q−4 exp(−q2
2), (20)

where �ρ is the scattering length difference between the two
bulk phases, and 
 is the roughness of the interface. The q−4

decay of the intensity for high q is the same power law as pre-
dicted both by the phenomenological theory and the GRFM,
Eq. (5). However, the Porod law has a different origin, since it
only probes the surfaces at short length scales and does not see
the correlations between different surfaces. This is manifested
by the fact that the predicted amplitude is different. This gives
a convenient way to distinguish between the intermediate-q
regime corresponding to alternating oil and water phases, and
the high-q Porod regime.

Similarly, the Porod law for film scattering reads53

Sf (q) = 2π (�ρ)2t2 S

V
q−2 exp

( − q2t2
eff

)
, (21)

where t is the film thickness and teff =
√

t2/12 + 
2, where

 is the surface roughness.15

III. SIMULATIONS

A. Monte Carlo of dynamically triangulated surfaces

We employ MC simulations of dynamically triangulated
surfaces,7, 54 which we amend for fluctuating topology follow-
ing Refs. 42 and 43.

In the simulations, the membrane is modeled as a triangu-
lated surface, with beads of diameter a0 at the vertices. Denote
the number of beads in the surface by N, the number of bonds
by Nb, and the number of triangles by Nt. The beads are not
allowed to overlap. To this end, the potential

VHS(r) =
{

∞ if r < a0

0 otherwise
(22)

between all pairs of vertices is applied. Here, r is the distance
between the vertices. The edges of the triangulation play the
role of tethers connecting the beads and they are modeled as
having a maximum finite extension but otherwise no contri-
bution to the energy. In other words, the potential

VME(r) =
{

0 if r < �0

∞ otherwise
(23)

is applied for all pairs of vertices connected by an edge.
If the parameters above are chosen such that �0/a0 <

√
3,

the membrane is self-avoiding.7 Here, we use �0/a0 = √
8/3

≈ 1.633.
The energy corresponding to the first term of Eq. (9) can

only be applied through an explicit discretization. Here, we
use the discretization41, 55, 56

VBR = κ

2

N∑
i=1

1

σi

⎧⎨
⎩

∑
j∈Ni

σi,j �ri,j

ri,j

⎫⎬
⎭

2

, (24)

where Ni is the set of neighbors of vertex i, �ri,j is the bond
vector from vertex i to vertex j, and ri,j = |�ri,j | its length,
σi,j = ri,j [cot(θ1) + cot(θ2)] is the length of the bond between
vertices i and j in the dual lattice with θ1 and θ2 being the
angles opposite to the bond in the two triangles neighboring
it, and finally

σi = 1

4

∑
j∈Ni

σi,j ri,j (25)

is the area of the dual cell of vertex i.
The last term of Eq. (9), in turn, can be treated by using

the Gauss-Bonnet theorem

1

2π

∫
S

dSK = χE = N − Nb − Nt, (26)

where the topological invariant χE is called the Euler charac-
teristic of the closed surface S.

Using the sum of the three potentials in Eqs. (22)–(24),
a MC simulation of the membrane can be constructed as fol-
lows. A MC step consists of N attempts to move a randomly
chosen particle by a displacement chosen uniformly at ran-
dom in the cube [ − s, s]3. A move is accepted with probabil-
ity equal to min (1, exp (�E)),57 where �E = Eold − Enew is
the difference in the total energy between the configurations
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before and after the attempt. We choose s so that approxi-
mately 50% of the moves are accepted. The temperature does
not appear explicitly in these expressions since β−1 = kBT
has been absorbed in the units of energy. Note that were there
no bending energy, all moves which do not violate the con-
straints of maximum tether extension and non-overlap of the
beads would be accepted.

The simulation model as described up to now does not
allow movement, diffusive or otherwise, of the beads within
the surface. Such is, however, necessary, since the surfactant
monolayers modeled here are fluid. To overcome this, bond
flips are introduced. We consider two neighboring triangles,
i.e., systems of four beads. They necessarily have exactly one
diagonal connection out of two possible ones. An attempted
bond flip is then an attempt to remove the diagonal tether and
replace it with another possibility. As above, the energy of the
surface is evaluated before and after the attempt, which is then
accepted with probability min (1, exp (�E)) in order to satisfy
detailed balance.

Note that due to the Gauss-Bonnet theorem, Eq. (26), the
second term on the right-hand side of Eq. (9) is topological
invariant and does not affect the Monte Carlo steps described
above.

In the simulations, we use a constant pressure ensemble.
The primary motivation is to avoid problems with two-phase
coexistence regions, but this choice also has the additional
advantage that one gains direct access to the equation of state,
since the surfactant density φ can be determined as a function
of the applied external pressure.

B. Fluctuating topology

So far, the topology of the surface has been fixed. How-
ever, bicontinuous microemulsions show a rich microscopic
structure, where the topology of the surfactant monolayer
fluctuates in an equilibrium state, and varies after a quench
from one state to another. Therefore, including topology
changes in the MC simulation scheme described above is es-
sential. Here, we follow Refs. 42 and 43 and use the topology
change shown schematically in Fig. 1. It consists of either in-
serting or cutting minimal necks between two distinct mem-
brane segments.

We now describe this step in detail. Let the variable
s characterize the state of the system. The probability of
state s is P (s) ∼ exp[−H(s)], where H is the curvature en-
ergy in units of kBT of the system in state s, given by
Eq. (9), where now, in contrast to the vertex-displacement
and bond-flip steps described above, the Gaussian-curvature
term plays an essential role. Two states s and s′ are linked
by a transition probability w(s → s′) of going from state s
to s′. The condition of “microscopic reversibility” or detailed
balance,

P (s)w(s → s ′) = P (s ′)w(s ′ → s), (27)

is then sufficient to guarantee that the systems reaches the
equilibrium state characterized by the Gibbs ensemble.

(a) (b)

FIG. 1. Monte Carlo step for changing the topology of a triangulated surface.
(a) Two surface triangles are removed. (b) The two holes are connected by a
prism of six triangles.

The transition probabilities are43

w(s → s ′) =
{

ass ′ for as ′sP (s ′) ≥ ass ′P (s)

ass ′ as′sP (s ′)
ass′ P (s) for as ′sP (s ′) < ass ′P (s)

.

(28)
The stochastic matrix element ass ′ for making a neck starting
in state s is ass ′ = 2p/Nt (s); for destroying a neck when in
state s′, it is as ′s = 6(1 − p)/Nt (s ′). Here, p is the probability
that we try to create a neck for a chosen surface triangle, and
(1 − p) is the probability that we try to destroy a neck. In
the first case, the factor 2 arises since when trying to create
a neck, there are two surface triangles that would lead to the
same result; in the second, the factor is 6 since there are six
surface triangles in a neck, and the choice of any of the six
will lead to the destruction of the neck with equal probability.
The choice (Eq. (28)) guarantees that Eq. (27) is fulfilled. The
move from s to s′ should be accepted with probability57

min

(
1,

as ′sP (s ′)
ass ′P (s)

)
. (29)

In this algorithm, a surface triangle is chosen at random,
and an attempt is made to generate a neck three times as often
as an attempt to destroy a neck. This means that p = 3/4.
When attempting to create a neck in the move s → s′, the
move is accepted with the probability

min

(
1,

Nt (s)

Nt (s ′)
exp[H(s) − H(s ′)]

)
, (30)

where Nt(s′) = Nt(s) + 4. Similarly, when attempting to de-
stroy a neck, the move is accepted with the probability

min

(
1,

Nt (s)

Nt (s ′)
exp[H(s) − H(s ′)]

)
, (31)

where Nt(s′) = Nt(s) − 4.
In a simulation with a fixed number of vertices and

variable topology, the number of triangles and bonds must
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FIG. 2. Typical configurations from simulations for N = 2207 beads for
κ = 3.5, κ̄ = −0.6, and p = 0.01 (upper panel) as well as for κ = 5.0,
κ̄ = −0.6, and p = 0.03 (lower panel). The two sides of the membrane are
colored differently to make the bicontinuous structure more easily visible.
A view of the structure for κ = 3.5, κ̄ = −0.6, and p = 0.01 from dif-
ferent angles to reveal the shape and topology more clearly, and an anima-
tion of the temporal evolution of the microemulsion structure are shown (en-
hanced online) (a) [URL: http://dx.doi.org/10.1063/1.3701265.1], (b) [URL:
http://dx.doi.org/10.1063/1.3701265.2].

fluctuate as a consequence of Euler’s theorem. This implies
that the number of attempted bond moves per Monte Carlo
step must now be adjusted in such a way that the probability
for a bond-flip attempt is constant, independent of the topol-
ogy. This can easily be done by relating the number of bond
flips to the actual total number of bonds of each configuration.

Examples of the microemulsion configurations generated
by this simulation are plotted in Fig. 2 for two values of the
bending rigidity κ . The different membrane shapes indicate
that the structure becomes more correlated for larger values
of κ , as can be seen quantitatively from the correlation length
discussed in Sec. IV B below.

The most important quantities describing the structure of
the microemulsion that we calculate here are the scattering in-
tensities in bulk and film contrast. These are used here in or-

der to facilitate direct comparisons with experiments. The de-
tails on their calculation from the simulations are explained in
the Appendix. All scattering intensities in film and bulk con-
trast are computed from the simulated configurations using
Eqs. (A6) and (A8), respectively.

IV. RESULTS

A. Equation of state

We start by calculating the equation of state of the
microemulsion in order to compare with earlier simulation
results43 and theoretical predictions. More specifically, we
wish to determine the dependence of the surfactant density
on the applied pressure. The expected behavior to the lowest
order in the surfactant volume fraction φ is given by scaling
arguments as58

p ∝ φ3. (32)

Two kinds of corrections have been discussed. On one hand,
since the scaling argument leading to Eq. (32) assumes
small volume fractions, the form p = aφ3 + bφ5 incor-
porating a next-to-leading order correction as φ5 has been
suggested.59, 60 On the other hand, the bending rigidity κ and
the saddle-splay modulus κ̄ are logarithmically renormalized
by thermal fluctuations as discussed in Sec. II C. In contrast to
the high-density correction, the renormalization becomes im-
portant at low densities, i.e., at high dilution, since the role of
the length scale in the renormalization is played by the inverse
area density (S/V)−1 of the surfactant monolayer. Therefore, a
logarithmic correction to the equation of state as p = φ3[b1

+ b2log φ] has been proposed.27 Note that these two correc-
tions come into play in different regimes, and therefore ob-
serving either one in a given system does not rule out the
possibility of the other. The low-density correction plays an
important role in the derivation of the phase diagram of sur-
factant solutions by considering instabilities destroying the
lamellar phase,28–30 as discussed in Sec. II C above.

We plot the equation of state as measured from our sim-
ulations in Fig. 3. All data are shown for N = 2207 vertices.
The plot clearly indicates that the equation of state is well de-
scribed by the form

pδ3

kBT
= [A(κ, κ̄) + B(κ, κ̄) ln(φ)] φ3, (33)

as proposed on the basis of membrane-elasticity renormal-
ization. Here, we define the membrane volume fraction as
φ = δ S/V, with an effective membrane thickness δ. For
simplicity, we use δ = a0, i.e., we identify the membrane
thickness with the diameter of the hard spheres at the mem-
brane vertices; this is certainly an over-estimation of the ef-
fective membrane fraction. We will come back to this point
in Sec. V.

The simulation data show that the coefficient A(κ, κ̄) in
Eq. (33) is essentially independent of κ and depends lin-
early on κ̄ , and that B(κ, κ̄) is independent of both κ and
κ̄ . A fit of the data shown in Fig. 3 with the linear de-
pendence A(κ̄) = −(c + dκ), yields the values c ≈ 0.543,
d ≈ 2.77, and B ≈ 0.964. The corresponding fits are shown
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FIG. 3. The equation of state [p(φ)δ3/T]φ−3 vs. ln (φ) of sponge phases for
several values of κ and κ as indicated by the legend. All data are for system
size N = 2207. The symbols show the simulation results, and the thick dotted
lines are the fits as discussed in the text.

in Fig. 3. These results confirm and strengthen earlier ones43

concerning the same system but for considerably smaller
values of κ (and smaller system sizes). The present results
are more reliable, however, since larger values of κ lead to
smoother surfaces and larger domain sizes, and consequently
there are fewer discretization artifacts.

B. Bulk scattering

We now turn to the scattering intensity in bulk contrast.
We calculate the bulk scattering intensity from the simu-
lated configurations using Eq. (A8). Examples are depicted in
Fig. 4(a) for varying bending rigidity κ and in Fig. 4(b) for
varying pressure. In Fig. 4(a), the Teubner-Strey equation (5)
has been fitted to all curves around the scattering peak. More
precisely, we have used non-weighted least-squares fits in the
region qδ ∈ (0, 2]. The fit around the peak is good, but in the
large-q tail the amplitudes of the power law decay are differ-
ent in Eq. (5) and the simulation data. This difference is ex-
pected, however, because the considerations leading to Eq. (5)
as discussed above concern the structure of the microemulsion
at length scales around the structural length scale of the sys-
tem, whereas the scattering intensity at large q is determined
by the local interface structure at small scales. In our case,
these interfaces are locally flat, and the corresponding scatter-
ing properties are given by the Porod laws discussed above in
Sec. II E.

In order to check the Porod law for bulk scattering,
Eq. (20), we have fitted the large-q tail of Sb(q) with a power
law. In all cases, the exponent is −4. The amplitude is plot-
ted in Fig. 5 as a function of S/V. Regardless of the values
of κ and κ̄ , all data fall on a single straight line. This corre-
sponds to our expectations. The roughness of the surface 
 in
Eq. (20) vanishes, since for the largest q for which the term
exp (−q2
2) in Eq. (20) becomes relevant the surface is made
of flat triangles for which there is no roughness. A linear fit
to the data in Fig. 5 yields the slope ab V/S ≈ 5.86, which is
in reasonable agreement with the Porod result ab V/S = 2π

0.5 1

qδ

0.01

1

S
b(q

)

κ=5.0
κ=4.0
κ=3.5

0.5 1

2 4

2 4
q

0.01

0.1

1

10

S
b(q

) κ=3.0, p=0.003

κ=3.5, p=0.003

κ=3.0, p=0.01

κ=3.5, p=0.01

κ=3.0, p=0.03

κ=3.5, p=0.03

(a)

(b)

FIG. 4. Bulk scattering intensity Sb(q) (symbols) as a function of the wave
vector q for p = 0.1, κ = −0.6, N = 2207, and several values of the bending
rigidity κ (upper panel), and for κ = −0.6, N = 2207, and several values of
the bending rigidity κ and the osmotic pressure p (lower panel). In the upper
panel, the solid lines are fits corresponding to the Teubner-Strey formula,
Eq. (5), with the line colors matching the symbol colors in the corresponding
simulation data.

(compare Eq. (20) with �ρ = 1). In conclusion, the Porod
low for bulk scattering is reproduced by our simulations.

Next, we analyze the microemulsion structure at length
scales of the order of the structural length scale (S/V)−1. Each
data set is fitted to the Teubner-Strey equation (5) and the co-
efficients a, b, and c are extracted. Equation (7) is then used
to compute the domain size d = 2π /k0 and the correlation
length ξ .

First, the domain size d, scaled by the structural length
scale (S/V)−1, is plotted as a function of S/V for several
values of κ and κ̄ in Fig. 6 for two system sizes. For
Np = 2207, there is a weak dependence on S/V for small S/V
and κ ≤ 3.5; otherwise dS/V is independent S/V. Likewise, for
Np = 607 the dependence of dS/V on S/V is also either weak
or absent, which implies that finite-size effects are small. For
both cases, the prediction by GRFM follows from Eq. (12)
and is a constant dS/V = 4/

√
3 ≈ 2.3094. Comparison with

Fig. 6 shows that this agrees almost quantitatively with a de-
viation of only about 15%.

Second, the correlation length ξS/V is plotted in Fig. 7
as a function of S/V for system sizes N = 2207 (main figure)
and N = 607 (inset). Now, in contrast to the scaled domain
size, dS/V, a dependence on all three parameters, S/V, κ , and
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FIG. 5. The amplitude of the large-q tail of the bulk scattering intensity Sb(q)
as a function of S/V for several values of κ and κ , together with a linear fit
forced to go through the origin.

κ̄ is found. This should be compared to the prediction given
by GRFM, Eq. (13), where ξS/V∝κ and no dependence on κ̄

or the density S/V is expected. The predicted values are ξS/V
≈ 8.15, 9.51, 10.87, and 13.58 for κ = 3.0, 3.5, 4.0, and 5.0,
respectively, approximately a factor of 4 larger than the sim-
ulation data. The simulation results for the correlation length
are qualitatively different than the predictions of the GRFM.

Finally, let us look at the length scale ratio k0ξ . As a
dimensionless number describing the structure of the mi-
croemulsions, this forms our main observable, for which
comparisons to experiments are also easily possible. The
length scale ratio k0ξ is plotted in Fig. 8 for N = 2207 and
N = 607. Like the correlation length, ξS/V, k0ξ depends on
κ , κ̄ , and S/V. Most importantly, due to the κ̄-dependence, it
differs qualitatively from the predictions of GRFM.

Based on the simulation data shown in Fig. 8(a), we pro-
pose that k0ξ can be described as a linear combination of
the renormalized bending rigidity κR and the renormalized
saddle-splay modulus κ̄R as

k0ξ = 64

5
√

3
[aκR(l) + āκ̄R(l)] , (34)
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δ S/V
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κ=3.5; κ=-0.7
κ=4.0; κ=-0.6
κ=4.0; κ=-0.7
κ=5.0; κ=-0.6

0.5 0.6 0.7 0.8
σ S/V

2.65

2.7

2.75

d 
S

/V

FIG. 6. The scaled domain size, dS/V, as a function of S/V for several values
of κ and κ for system size N = 2207. The inset shows the same for N = 607.
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FIG. 7. The correlation length ξS/V as a function of S/V for several values of
κ and κ for system size N = 2207. The inset shows the same for N = 607.

where a and ā are dimensionless coefficients, which we de-
termine below. The values a = 1 and ā = 0 correspond
to the predictions of the augmented GRFM. Plugging the
renormalized material parameters in Eqs. (15) and (16) into
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δ S/V
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8

k 0ξ κ=3.0; κ=-0.6
κ=3.0; κ=-0.7
κ=3.0; κ=-0.8
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κ=3.5; κ=-0.7
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κ=4.0; κ=-0.7
κ=5.0; κ=-0.6
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FIG. 8. The length scale ratio k0ξ as a function of S/V for several values of
κ and κ for system sizes (a) N = 2207 and (b) N = 607. The symbols show
the simulation results and the dashed-dotted lines are the fits discussed in the
text. The color coding indicates which values of κ and κ̄ the dashed-dotted
lines correspond to.
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Eq. (34) yields

k0ξ = 64

5
√

3

{
(aκ + āκ̄) + (aα + āᾱ)

1

4π
ln

(
δ

S

V

)}
.

(35)
Here, the thickness δ of the surfactant layer is taken to be
the same as the bead diameter a0 of the triangulated-surface
model. We have fitted Eq. (35) to the complete data set shown
in Fig. 8(a). The resulting values for the coefficients are

a ≈ 0.148 and ā ≈ −0.849 ,

so that

k0ξ = 64

5
√

3

{
(0.15κ − 0.85κ̄) + 3.27

4π
ln

(
δ

S

V

)}
. (36)

This shows that the dependence of k0ξ on κ̄ is more pro-
nounced than on κ . Equation (36) is plotted in Fig. 8(a) as
a function of S/V separately for all values of κ and κ̄ . We ob-
serve a reasonable agreement. Note that the fitting procedure
itself has been applied simultaneously on all of the data, i.e.,
for all simulated values of p, κ , and κ̄ .

A similar analysis for the smaller system size with Np

= 607 has also been performed. The results are shown
in Fig. 8(b). The resulting coefficients are a ≈ 0.132 and
ā ≈ −1.038. These differ slightly for those reported for
Np = 2207 above. Since the differences are small, we believe
that the results for the larger system are more reliable and es-
sentially unaffected by finite-size effects.

The fact that Eq. (34) describes the simulation data bet-
ter than the augmented GRFM is one of our main results. We
wish to emphasize, however, that the exact form of Eq. (34)
— the simple linear combination of renormalized κ and κ̄ —
is for the moment not supported by any rigorous theoretical
arguments. Instead, it is the simplest possible ansatz we can
make that describes the simulation data well. No theories for
k0ξ with a resulting κ̄ dependence exist. The current results
underline the need for developing the theory of microemul-
sions further.

C. Film scattering

Examples of the scattering intensity in film contrast are
shown in Fig. 9. Compared to the bulk scattering intensities
discussed above, the scattering peak is less pronounced, as
is well known from experiment. The tail is well fitted with a
power law Sf(q) ∼ q−2 for large q as predicted by the Porod
law, Eq. (21).

In order to check the Porod law for simulated film scat-
tering more precisely, we have fitted the large-q tail of the film
scattering intensity Sf(q) with a power law decay. The expo-
nent is invariably −2. As was the case with the bulk scatter-
ing intensity, the simulated surfactant layers are not rough.
Therefore, the surface roughness 
 = 0 in Eq. (21). The am-
plitude of the q−2 decay is determined by the fits to the simu-
lation data, and is plotted in Fig. 10 as a function of S/V. The
dependence is linear as expected, and a fit reveals the slope
af V/S ≈ 6.173, which is reasonably close to the predicted
value af V/S = 2π (compare Eq. (21) with �ρ = 1). As a

1
qδ

0.1

1

S
f(q

)

κ=3.0
κ=4.0
κ=5.0
slope -2

FIG. 9. Film scattering intensity Sf(q) as a function of the wave vector q for
p = 0.01, κ = −0.6, Np = 2207, and several values of the bending rigidity κ

together with a power law fit to the tail (line shifted upwards for clarity).

conclusion, the simulation reproduces also the Porod law for
scattering in film contrast.

We focus now on the film scattering intensity in the re-
gion q < 2k0. Figure 11 shows cases with a clear peak in the
scattering intensity (at higher surfactant density) together with
ones having a mere shoulder (at lower surfactant density). In
all cases we have simulated, the peak or shoulder in the film
scattering is located at q = 2k0 (with k0 being the peak posi-
tion in the bulk scattering for the same set of parameters). This
is completely in line with the theoretical predictions,36, 51 and
also indicates that simulation results for film and bulk scat-
tering are mutually compatible. Comparisons between least-
squares fits to Eq. (19) and simulation data are shown in
Fig. 11, where α and β play the role of the fitting parame-
ters. In all cases, the predicted dependence is recovered in the
low-q region, although the data are somewhat noisy. This re-
gion is not visible in all data sets however, since, depending
on the value of k0 for a given data set, the region q < 2k0 can
become prohibitively narrow. Considering the values for the
data sets depicted in Fig. 11, we find that α is independent of
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FIG. 10. The amplitude af of the large-q tail of the film scattering intensity
Sf(q) as a function of S/V for several values of κ an κ̄ , together with a linear
fit forced to go through the origin.
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FIG. 11. The small-q behavior of the film scattering intensity for various
cases. (a) κ̄ = −0.6, p = 0.1, N = 2207, and κ varies as indicated by the
legend. (b) κ = 3.0, p = 0.01, N = 2207, and κ̄ varies as indicated by the
legend. The main panels show the small-q part of Sf(q) on linear scale, where
the full lines are fits to Eq. (19). The insets display the full scattering functions
on double-logarithmic scales. The colors of the data sets in the insets match
those in the main figures.

κ and an increasing function of |κ̄|, whereas β is a decreasing
function of both κ and |κ̄|.

D. Topology

Finally, we study the topology of the sponge phases using
the scaled Euler characteristic43, 45

γ = 〈χEV 2S−3〉, (37)

where χE is the Euler characteristic defined in Eq. (26), V is
the volume of the system, and S is the total area of the mem-
brane. The scaled Euler characteristic γ is used instead of χE,
since as an extensive quantity χE is not a good measure of the
connectivity of a sponge phase. We plot γ as a function of the
surfactant density δS/V in Fig. 12 for several values of κ and
κ̄ .

The simulation data strongly suggest that γ depends log-
arithmically on δS/V,

γ = γ0(κ, κ̄) + γ1 ln

(
δ

S

V

)
, (38)
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FIG. 12. The scaled Euler characteristic γ = 〈χEV2S−3〉, as a function of the
surfactant density δS/V. The symbols denote the simulation data for various
values of κ and κ̄ , as indicated. The dashed-dotted lines are a least-squares fit
to Eq. (38). The inset shows the constant term γ 0 in Eq. (38) as a function of
κ for different values of κ̄ . The solid lines are guides to the eye.

where the prefactor of the logarithmic term γ 1 does not ap-
pear to depend on κ or κ̄ , whereas the constant term γ 0 is a
function of both κ and κ̄ . We have performed a least-squares
fit to Eq. (38). The results indicate that γ 1 ≈ 0.078. The de-
pendence of the constant term γ 0 on κ and κ̄ is plotted in
Fig. 12. Here, γ 0 is found to be a decreasing function of κ

and an increasing function of κ̄ . Note that GRFM predicts an
universal constant γ GRF = −π /16 ≈ −0.196 for all interac-
tion kernels V (�q), see Eq. (8).33 The GRFM prediction falls
well within the range of the simulation results, but lacks the
systematic dependencies of γ on κ , κ̄ , and S/V noted above.
It is also interesting to note that the topology of the ordered
gyroid (G) phase is characterized by γ G = −0.271.61 With
increasing κ , the γ values in Fig. 12 indeed become more
negative, consistent with the structure becoming more like a
minimal surface.

V. DISCUSSION AND CONCLUSIONS

We have studied the scattering intensities in bulk and film
contrast of bicontinuous microemulsions using Monte Carlo
simulations of a dynamically triangulated surface. The topol-
ogy of the surface is allowed to fluctuate.43

The bulk scattering intensity of microemulsions shows a
peak with a position and width, or equivalently, two length
scales, the domain size and the correlation length. We charac-
terize the dependence of the dimensionless ratio k0ξ of these
two length scales as a function of the bending rigidity, the
saddle-splay modulus, and the surfactant density, which is
coupled to the applied osmotic pressure by the equation of
state. An existing theory, the GRFM,35, 36 predicts that k0ξ

should depend linearly on κ and be independent of κ̄ . On the
other hand, κ and κ̄ have been shown to depend logarithmi-
cally on the investigated length scale, and thus on the surfac-
tant density.37

Here, we have demonstrated by simulations that k0ξ de-
pends on all three parameters, κ , κ̄ , and density S/V. Further-
more, the dependence on κ̄ is stronger than that on κ . This
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differs qualitatively from the GRFM predictions. In order to
characterize the discrepancy further, we have fitted a simple
ansatz, Eq. (36), which is a linear combination of the renor-
malized κ and κ̄ with universal prefactors, to the simulation
data. The analysis clearly indicates that this form of the de-
pendence describes the simulation data better than the earlier
predictions.

It is important to point out that the new result (Eq. (36)) is
not inconsistent with the previous analysis of scattering data
in Ref. 16, which was based on the assumption of a linear de-
pendence of k0ξ on κR only. The reason is that the prefactor of
the logarithm in Eq. (36) is nearly the same — 3.27/(4π ) ver-
sus 3/(4π ) — so that the S/V-dependence is essentially identi-
cal in both cases, and the extraction of the bare elastic moduli
of the membrane can proceed quantitatively in the same way.
However, an analysis of k0ξ no longer gives direct access to
the bare κ , as assumed in Ref. 16 but only to the linear com-
bination (0.15κ − 0.85κ̄).

The parameter δ plays a double role in the analysis of the
simulation data. On the one hand, it is the cutoff in the fluctua-
tion spectrum of a membrane; on the other hand, the effective
membrane thickness needed to define a membrane volume
fraction. We have identified both lengths with the hard-core
diameter of the membrane beads. In a real membrane, these
parameters will be of similar magnitude but have not to be
identical. This raises the obvious question, how strongly our
analysis and the conclusions are affected by the choice of δ.
First, in the definition of the membrane volume fraction, the
effective membrane thickness mainly appears as a length unit.
The results in most of our figures can be easily transformed
to any other choice of membrane thickness; for example, a
choice δ = a0/2 would simply reduce the volume fractions in
Figs. 6–8 by a factor 2. Second, our main result of the depen-
dence of k0ξ on κ , κ̄ , and S/V does not depend on the mem-
brane thickness. Here, δ only enters as a fluctuation cutoff.
Since δ appears in the logarithm, a different choice of δ only
adds an additive constant but does not affect the functional
dependences. However, we want to emphasize that the values
of κ and κ̄ extracted from an experiment would be (mildly)
affected by the definition of δ.

The main result of our analysis, Eq. (36), raises the
question of the origin of the κ̄-dependence. Figures 6 and 7
demonstrate that both length scales, domain size and correla-
tion length, depend on κ̄ . The domain size d decreases and the
correlation length ξ increases with increasing κ̄ . The former
effect can be understood as the creation of passages, Fig. 1,
becoming more favorable for increasing κ̄ creating connec-
tions between parallel membranes. Such connections lead to
entropic attraction between the membranes,31, 38 i.e., the pas-
sages tend to draw the membranes closer to each other. To un-
derstand the latter effect, we note that the membranes under
consideration are almost minimal surfaces (of vanishing mean
curvature) for all but the smallest values of the bending rigid-
ity κ . The requirement of almost vanishing average curva-
ture reduces the available configuration space rather strongly.
The more connections between the surfaces are introduced
for larger κ̄ , the more correlated are the membrane positions,
since the average curvature remains pointwise small. This can
be speculated to lead to larger correlation lengths ξ .

This is connected to the behavior of the scaled Euler
characteristic, Eq. (37). While a constant value γ = −π /16
≈ −0.196 is predicted by the GRFM, the values for triply
periodic minimal surfaces range from approximately −0.271
to −0.370 for different surfaces.61 The values for the lowest
studied κ and highest densities S/V roughly correspond to the
GRFM prediction, but there is a consistent trend to higher val-
ues of |γ | with growing κ and the description of the system as
an approximative minimal surface becomes more appropriate.
Furthermore, different minimal surfaces have a different Eu-
ler characteristic or, equivalently, a different number of pas-
sages per unit volume. Since the parameter κ̄ directly controls
the energetical favorability of the passages, the scaled Euler
characteristic γ is expected to depend on κ̄ . Indeed, such a
dependence is seen in the simulation results, see Fig. 12. Fur-
thermore, |γ |, which is proportional to the number of handles
per unit volume, decreases with an increasing κ̄ as the connec-
tions become energetically less favorable. This trend is clearly
seen in the simulation data.

In addition to characterizing k0ξ , we have extracted
the equation of state from the simulations, with p = φ3[b1

+ b2log φ]. Thus, the dominating correction to the first or-
der scaling p∝φ3 is logarithmic, following from the logarith-
mic rescaling of bending rigidity and saddle-splay modulus.
We have also demonstrated that the simulations reproduce the
Porod laws for bulk12, 52 and film53 scattering qualitatively. Fi-
nally, we have shown that the low-q behavior of the scattering
intensity in film scattering matches theoretical predictions of
a q−1 behavior.

This study opens up many directions for future work. On
the theoretical side, a theory of the microemulsion structure
that can explain the dependence of the scattering intensity on
κ̄ is required. On the experimental side, our results show a
new possibility for measuring the – often elusive – saddle-
splay modulus.
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APPENDIX: SCATTERING INTENSITIES OF
TRIANGULATED SURFACES

Consider first the film scattering intensity at wave vector
�q from a triangle A whose corners are given by the position
vectors �r1, �r2, and �r3. The film scattering amplitude from this
triangle is then given by the integral

If (q; �r1, �r2, �r3) =
∫

A

d2rei �q·�r . (A1)

In order to evaluate Eq. (A1), parametrize the surface of the
triangle through t1 and t2 as

�r = �r1 + t1(�r2 − �r1) + t2(�r3 − �r1) (A2)
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so that Eq. (A1) can be written as an integral over t1 and t2 as

If =
∫ 1

0
dt1

∫ 1−t1

0
dt2

√
det ρ eiq·[�r1+t1(�r2−�r1)+t2(�r3−�r1)],

(A3)
where √

det ρ = (�r2 − �r1) × (�r3 − �r1). (A4)

Equation (A3) can be evaluated to

If (q; �r1, �r2, �r3) =
√

det ρ

[
exp(i �q · �r1)

�q · (�r1 − �r3)�q · (�r2 − �r1)

+ exp(i �q · �r2)

�q · (�r2 − �r1)�q · (�r3 − �r2)

+ exp(i �q · �r3)

�q · (�r3 − �r1)�q · (�r2 − �r3)

]
. (A5)

The film scattering intensity of the microemulsion is then the
sum of Eq. (A5) over all triangles of the surface normalized
by volume, i.e.,

Sf (q) = 1

V

∣∣∣∣∣
Nt∑
i=1

If (q; �r (i)
1 , �r (i)

2 , �r (i)
3 )

∣∣∣∣∣
2

. (A6)

In contrast to the film scattering intensity, the bulk scat-
tering intensity is evaluated as a three-dimensional volume
integral instead of the surface integral of Eq. (A1). However,
since the surface is closed due to the periodic boundary con-
ditions, we can express it as a surface integral using the diver-
gence theorem. This results in the scattering amplitude

Ib(q; �r1, �r2, �r3) = − 1

q2
(n̂ · �q)If (q; �r1, �r2, �r3), (A7)

where If (q; �r1, �r2, �r3) is given by Eq. (A1). Here, n̂ is the
outward-facing unit normal vector, and the fact that it is a
constant within a triangle has been used. Note that in order
to evaluate this expression, the surface has to be oriented. As
above, the bulk scattering intensity of the microemulsion is
computed as a sum over all triangles of the surface normal-
ized by volume,

Sb(q) = 1

V

∣∣∣∣∣
Nt∑
i=1

Ib(q; �r (i)
1 , �r (i)

2 , �r (i)
3 )

∣∣∣∣∣
2

. (A8)

1Micelles, Membranes, Microemulsions, and Monolayers, edited by
W. M. Gelbart, A. Ben-Shaul, and D. Roux (Springer-Verlag, Berlin, 1994).

2G. Gompper and M. Schick, in Phase Transitions and Critical Phenomena,
edited by C. Domb and J. Lebowitz (Academic, London, 1994), Vol. 16,
pp. 1–176.

3J. Schulman and J. Montagne, Ann. N.Y. Acad. Sci. 92, 366 (1961).
4P. De Gennes and C. Taupin, J. Phys. Chem. 86, 2294 (1982).
5G. Porte, J. Phys. Condens. Matter 4, 8649 (1992).
6S. A. Safran, Statistical Thermodynamics of Surfaces, Interfaces, and
Membranes (Addison-Wesley, Reading, MA, 1994).

7G. Gompper and D. Kroll, J. Phys. Condens. Matter 9, 8795 (1997).
8U. Seifert, Adv. Phys. 46, 13 (1997).
9Statistical Mechanics of Membranes and Surfaces, edited by D. Nelson,
T. Piran, and S. Weinberg (World Scientific, Singapore, 2004).

10G. Porte, M. Delsanti, I. Billard, M. Skouri, J. Appell, J. Marignan, and
F. Debeauvais, J. Phys. II (France) 1, 1101 (1991).

11M. Teubner and R. Strey, J. Chem. Phys. 87, 3195 (1987).

12T. Sottmann, R. Strey, and S. Chen, J. Chem. Phys. 106, 6483 (1997).
13T. Sottmann and R. Strey, J. Chem. Phys. 106, 8606 (1997).
14H. Endo, J. Allgaier, G. Gompper, B. Jakobs, M. Monkenbusch, D. Richter,

T. Sottmann, and R. Strey, Phys. Rev. Lett. 85, 102 (2000).
15H. Endo, M. Mihailescu, M. Monkenbusch, J. Allgaier, G. Gompper,

D. Richter, B. Jakobs, T. Sottmann, R. Strey, and I. Grillo, J. Chem. Phys.
115, 580 (2001).

16G. Gompper, H. Endo, M. Mihailescu, J. Allgaier, M. Monkenbusch,
D. Richter, B. Jakobs, T. Sottmann, and R. Strey, Europhys. Lett. 56, 683
(2001).

17T. Foster, T. Sottmann, R. Schweins, and R. Strey, J. Chem. Phys. 128,
064902 (2008).

18O. Holderer, H. Frielinghaus, D. Byelov, M. Monkenbusch, J. Allgaier, and
D. Richter, J. Chem. Phys. 122, 094908 (2005).

19M. Monkenbusch, O. Holderer, H. Frielinghaus, D. Byelov, J. Allgaier, and
D. Richter, J. Phys. Condens. Matter 17, S2903 (2005).

20O. Holderer, M. Klostermann, M. Monkenbusch, R. Schweins, P. Lindner,
R. Strey, D. Richter, and T. Sottmann, Phys. Chem. Chem. Phys. 13, 3022
(2011).

21M. Klostermann, T. Foster, R. Schweins, P. Lindner, O. Glatter, R. Strey,
and T. Sottmann, Phys. Chem. Chem. Phys. 13, 20289 (2011).

22B. Farago, M. Monkenbusch, K. Goecking, D. Richter, and J. Huang,
Physica B: Condens. Matter 213, 712 (1995).

23O. Holderer, H. Frielinghaus, M. Monkenbusch, J. Allgaier, D. Richter, and
B. Farago, Eur. Phys. J. E 22, 157 (2007).

24M. Mihailescu, M. Monkenbusch, H. Endo, J. Allgaier, G. Gompper,
J. Stellbrink, D. Richter, B. Jakobs, T. Sottmann, and B. Farago, J. Chem.
Phys. 115, 9563 (2001).

25I. Barnes, S. Hyde, B. Ninham, P. Derian, M. Drifford, and T. Zemb,
J. Phys. Chem. 92, 2286 (1988).

26L. Liu, P. Bauduin, T. Zemb, J. Eastoe, and J. Hao, Langmuir 25, 2055
(2009).

27D. Andelman, M. Cates, D. Roux, and S. Safran, J. Chem. Phys. 87, 7229
(1987).

28L. Golubovic and T. Lubensky, Europhys. Lett. 10, 513 (1989).
29L. Golubovic and T. Lubensky, Phys. Rev. A 41, 4343 (1990).
30D. Morse, Phys. Rev. E 50, 2423 (1994).
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