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We study theoretically the origin and mechanism of the ultrafast inverse Faraday effect, which is a magneto-

optical effect, attracting much interest nowadays. Laser-induced subpicosecond spin dynamics in hydrogenlike

systems and isolated many-electron atoms are investigated in order to get insight into this process. We show

that the stimulated Raman scattering process leads to a change of the magnetic state of a system. We obtain the

time evolution of the induced magnetization, its dependencies on laser properties, and the connection with the

spin-orbit coupling of a system.
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INTRODUCTION

Ultrafast optical control of the magnetic state of a medium

has recently become a subject of intense research in modern

magnetism.1,2 The manipulation of a magnetic order by

subpicosecond laser pulses is challenging for the development

of novel concepts for high-speed magnetic recording, infor-

mation processing, and data storage. And at the same time,

it reveals fundamental questions on magnetization dynamics

and makes it possible to understand the fascinating physics of

processes, which happen on subpicosecond time scales.

A set of experiments has revealed a direct subpicosecond

optical control on magnetization via the inverse Faraday

effect, i.e., the process of the generation of a magnetic

field by nonlinear polarized light.3–5 In these experiments

circularly polarized high-intensity laser pulses several tens of

femtoseconds long are used to excite a magnetic system of

a sample.6–14 It was shown that such laser pulses act as an

effective magnetic field in oxidic materials, which are weak

ferromagnets6–10 and even compensated antiferromagnets12

and paramagnets.13 However, the mechanisms of laser-induced

magnetization dynamics are still poorly understood in spite of

much experimental6–18 and theoretical19–27 effort.

One of the open questions is the evolution of the magnetic

momentum of a medium excited by a laser pulse.18,21,24 It

cannot be answered without the knowledge of the laser-

induced transitions, which lead to the change of the magnetic

state of a system in the inverse Faraday effect experiments.

In order to get a detailed insight into such transitions, we

study the stimulated Raman scattering process, which has

been suggested to be responsible for this effect.4,9,20 In this

process a laser pulse stimulates an optical transition from the

ground state to a virtual excited state, which is split due to

some interaction, for example, the spin-orbit coupling. Then

the transition back to the ground state is stimulated. But due to

the transition to the virtual state, the magnetic state of the

electron brought back to the ground state is changed. We

simulate this process in our systems at the femtosecond time

scale and describe the mechanism of how optical transitions,

excited by circularly polarized light, can lead to a change of a

magnetic state of a system. We investigate the spin dynamics,

which accompanied this process, and study how it depends on

system and laser properties.

Another question is the role of the spin-orbit coupling

(SOC) in the inverse Faraday effect (IFE). It is commonly

accepted that SOC is necessary for magneto-optical effects.5

But what is the exact function of this interaction in the process?

It is also unclear what happens when the spectral width of the

laser pulse is of the order of the SOC and whether it limits the

pulse duration required for the effect. We make a detailed study

of the laser-induced spin dynamics in a hydrogen atomlike

model, in which SOC is present, in order to reveal the pure

contribution of this interaction. The simple picture, in which

it is the only spin-dependent interaction, allows us to find out

its connection with the IFE. We vary the value of the SOC and

study how the effect depends on it.

Another important issue, which we address, is the time evo-

lution of the laser-induced magnetization during the presence

of the pulse and why the magnetization remains in a system

after the excitation, as observed in experiments.6–14 We have

shown in our last paper28 that the standard expression5 M(t) ∝
E∗(t) × E(t), which connects the induced magnetization M(t)

with the generating electric field E(t), is not applicable for

subpicosecond pulses. Therefore, the time dependency of the

induced magnetization requires much deeper understanding

for the interpretation of the experiments done on a subpi-

cosecond time scale. In the present article, we calculate M(t)

for atomic systems and its dependence on the laser properties.

We show that a system is brought to a new magnetic state

after the action of an ultrashort laser pulse. The magnetization

dynamics after the excitation by a laser is caused by the fact

that the system is not in the initial state anymore.11,20

We discuss in the first section the role of optical transitions

for the inverse Faraday effect and why much attention should

be given for their analysis. We introduce the method, which

we use to describe the action of laser light on our systems,

in the second section. It is based on the solution of the

time-dependent Schrödinger equation. We solve it up to the

second order of the inverse light velocity 1/c without any

further approximations and derive the induced magnetization

without the application of thermodynamic relations. We study

precisely the time evolution of the involved quantities since it

has been pointed out that theories relying on the assumption

that the action of the laser light is much shorter than relevant

times for the system are not sufficient to describe spin

dynamics during the first several picoseconds.12

In the next section we introduce the mechanism of the

influence of optical transitions on the magnetic state of a

system. We study the role of the spin-orbit coupling in this
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process and the relation of the effect with its value. We

investigate the dependence of the induced magnetization on

the laser properties, such as central frequency and intensity,

and calculate its time evolution. We use a very simple system

in order to make this study very clear and obvious. In the

Sec. IVwe apply this approach to many-electron atoms as an

example of how it can be extended for a more complicated

case. We suggest how our theory can be applied for a solid

state system in the last section.

I. THE INVERSE FARADAY EFFECT AND THE

ULTRAFAST INVERSE FARADAY EFFECT

The inverse Faraday effect was predicted by Pitaevskii3

and was defined by him as “magnetization of a transparent

medium induced by oscillating electric field.” It was derived

by differentiation of the thermodynamic potential with respect

to an external magnetic field. Pershan et al.4 developed

later the theory for this effect based on quantum mechanics.

First, they obtained the effective Hamiltonian derived by

the time-dependent Schrödinger equation up to the second

order. The effective Hamiltonian described the interaction

of light with a transparent medium. Since the assumption

that the laser intensity “changes slowly compared to thermal

relaxation times of the system” was meaningful for the

experimental conditions at that time,29 it was possible to

derive a potential function from this Hamiltonian. Afterwards

it was shown that the induced magnetization is a derivative

of this potential. Their formulation of the effect was “the IFE

consists of a magnetization induced by circularly polarized

light in a nonabsorbing material”. Therefore, the IFE according

to Pitaevskii and Pershan et al.’s formalisms consists of

two processes, which come together: interaction of light

with a transparent magnetic medium (IFE-1); this interaction

produces a quasistationary relaxed state, which leads to the

creation of magnetization in the sample (IFE-2).

The IFE-2 takes place, if the intensity changes slowly

compared to thermal relaxation times of the system. In this case

the interaction of light with a medium leads to a new thermal

equilibrium, because IFE-1 keeps changing the magnetic state

of the system and the system has enough time to relax

according to the new conditions. This quasistationary state

exists only during the presence of the excitation. The IFE-2

process does not take place in the ultrafast magnetization

experiments,13,28 because the action of the laser pulses is

shorter than any relaxation times of a system, and the effects

observed in Refs. 6–14 do not represent the IFE according to

its classical definition.

However, a kind of the IFE-2 valid for the ultrafast

dynamics would be the IFE-2uf process. The IFE-2uf takes

place because the system is brought away from its ground

magnetic state by transitions induced by circularly polarized

laser light. The system has to react to being in this new state;

thus magnetic precessions start. There are also some decay

processes observed in the next several tenths of a picosecond

due to relaxation or damping processes. We suggest that the

term “ultrafast IFE” should be meant by the combination of

the IFE-1 and IFE-2uf processes.

Magnetization dynamics after the excitation, i.e., the IFE-

2uf process, is straightforwardly accessed in the experiments.

Magnetic precessions are the usual target for the problem of

all-optical manipulation of a magnetic order.1,2,30 However,

these effects are initially caused by the action of a laser light

on the system, i.e., by the IFE-1 process. Therefore, it is

essential to get insight into and characterize the IFE-1 in order

to control the subsequent dynamics. The same suggestion was

made by Satoh et al.12 and Reid et al.,13 who both came to

the conclusion that the analysis of the evolution of the orbital

and spin momenta and the selection rules are necessary for the

description of the whole effect.

We consider the IFE-1 process as coherent spin excitations

due to the stimulated Raman scattering process. Therefore, we

concentrate on the study of the connection between optically

induced transitions and the spin state, which we think is the

most relevant for the whole ultrafast inverse Faraday effect.

We also briefly discuss the IFE-2uf process in Sec. V, where

we suggest how our approach can be used to study the spin

precessions induced by the optical transitions.

II. THE ACTION OF A LASER FIELD ON AN ELECTRONIC

SYSTEM

We consider the action of a laser pulse with a frequency ω0

and an electric field E,

E = −zEf (t/T ) sin(ω0t). (1)

on an electronic system with spatial extend much smaller than

the wavelength λ0 = c/ω0. E is the amplitude of the electric

field, z is perpendicular to the direction of propagation, and

the function f (t/T ) describes the time dependence of the

amplitude of the electric field.

Let us briefly recall the approach to describe the action of

the electric field E on the system, which was introduced in

Ref. 28. The electric field is related to the vector potential31

E = −
1

c
Ȧ. (2)

The vector potential obeys the wave equation

�A =
(

∂

c∂t

)2

A =
1

c2
Ä, ∇A = 0. (3)

The spatial extent of the wave train, cT , has to be large

compared to the wavelength λ0 to ensure that A fullfills Eq. (3).

An unpertubed electronic system is described by the

Hamiltonian

H0 =
∑

α

p2
α

/

2 + Vint. (4)

pα is the momentum of an electron, and Vint is the sum of

the kinetic energy of nuclei, the interaction energy between

electrons and nuclei, and the mutual Coulomb energy of the

electrons and nuclei. The interactions, which are important

for effects on the spin of the electrons, such as the spin-orbit

and Zeeman interactions, must be also included in Vint. The

summation is over all electrons in the system, and the mass

and charge of an electron and Planck’s constant are set to

1 (atomic units).

Wave functions of a perturbed electronic system are found

by the solution of the time-dependent Schrödinger equation.
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The momentum operator is replaced by p − A/c, and the

equation of motion for an electronic wave function � is

i
∂�

∂t
=

[

∑

α

[pα − A(rα,t)/c]2/2 + Vint

]

�. (5)

The solution is the expansion

�(t) = e−iH0t [�0 + �1(t) + �2(t) + · · · ]. (6)

The Raman process, which we are interested in, is of the

second order in the inverse speed of light 1/c. Therefore, the

terms up to the third one in the expansion (6) are important.

They are derived in Appendix A for the case when the time-

dependent function of the amplitude E of the electric field is

Gaussian shaped: f (t/T ) = e−t2/T 2

/
√

π3 (3D normalized).

In the case of a discrete spectrum, the first order wave

function is the summation over all possible final states f ,

which a one photon transition can lead to,

�1(t) =
∑

f

d0f Ŵ
(1)
f (t)φf , (7)

where d0f = 〈φf |z ·
∑

α rα|�0〉 is the dipole matrix element

of the transition from the ground state 0 to a final state f , φf is

the wave function of the f state, and the time dependency of

�1(t) is introduced by the function Ŵ
(1)
f (t) (cf. Appendix A).

The second order wave function is the summation over

all possible intermediate j and final f states, to which the

transitions are allowed:

�2(t) =
∑

j,f

d0jdjf Ŵ
(2)
j,f (t)φf . (8)

The time-dependent function Ŵ
(2)
j,f (t) is

Ŵ
(2)
j,f (t) =

2(ǫf − ǫj )(ǫj − ǫ0)
√

π

(

NT

2πc

)2

×
∫ t/T

−∞
ds ′

[

ei(ǫf −ǫj )T s ′
cos(ω0T s ′)e−s ′2

×
[

e−
[T (ω0j +ω0)]2

4 erfc

(

i

2
T (ω0j + ω0) − s ′

)

+ e−
[T (ω0j −ω0)]2

4 erfc

(

i

2
T (ω0j − ω0) − s ′

)]]

, (9)

where s ′ stands for t ′/T ; ǫ0, ǫj , and ǫf are the energies of

the initial i, an intermediate j , and a final state f ; and ωkl =
ǫl − ǫk . k and l stand for 0, j or f .

Equations (8) and (9) are exact for all T , ω0, and ω0j , and,

therefore, are applicable to any regime of excitation, i.e.,

(a) the ultrafast regime, when the length of the pulse T is

in the subpicosecond region (T |ω0j ± ω0| ∼ 1) and

(b) the “stationary” regime, when the length of the pulse is

in the nanosecond region (T |ω0j ± ω0| ≫ 1).

The regime (a) is typically realized in modern magneto-

optical experiments,1,2 while (b) was the condition of the

“classical” inverse Faraday experiment,29 for which the stan-

dard theory by Pitaevskii3 and later by Pershan et al.4 was

developed. Equation (8) turns into this theory at large T as

follows.28

For large complex arguments z = |z| eiθ , |z| → ∞, and

the polar angle |θ | < 3π/4, the function erfc(z) approaches

asymptotically e−z2

√
πz

.32 From the condition |θ | < 3π/4, it

follows that T |ω0j ± ω| > 2t/T , and the condition T |ω0j ±
ω| ≫ 1 is necessary for |z| → ∞. Substituting this asymptote

into Eq. (8), one obtains

�2(t) = −i

∫ t

−∞
Heff(t

′)dt ′ . (10)

The function Heff(t) is exactly the effective Hamiltonian,

which was defined by Pershan et al.4 as

〈f |Heff(t)|i〉 = −i
∑

j

[

v0j (t)v∗
jf (t)

ω0j + ω0

+
vjf (t)v∗

0j (t)

ω0j − ω0

]

eiω0f t

(11)

with vkl(t) = dklE(t).

It follows from Eq. (8), that the function Ŵ
(2)
j,f (t) decreases

rapidly, when T |ω0j ± ω0| becomes larger, but would not

feel the change of frequency, when T |ω0j ± ω0| ≫ 1. How-

ever, the contributions from the levels with energy far away

from the resonance frequency to the function Ŵ
(2)
j,f (t) are

negligible in the ultrafast regime (T |ω0j ± ω0| ∼ 1).

III. THE HYDROGEN ATOMLIKE SYSTEM EXCITED

BY POLARIZED LASER LIGHT

We start from the study of a simple hydrogen atomlike

system excited by a laser pulse. We consider the excitation

of a Gaussian-shaped laser pulse, which is 100-fs long

(T = 10−13 s), circularly left polarized, propagating in the z

direction, i.e., z = (nx + iny)/
√

2, where nx and ny are the unit

vectors in the x and y directions. We assume that the system

is initially in the ground 1s state with the spin s0 aligned

initially in the x direction (s0x = 1/2). This means that the

wave function of the initial state is �0 = Y00R1s(
1√
2

1√
2

), where

Y00 and R1s are the radial and spherical parts, respectively, of

the 1s-state wave function. The pulse causes a transition from

the ground state to the 2p state, which is noticeably split due

to the SOC (two orders of magnitude higher than in a real

hydrogen atom). The SOC is considered for this system in

order to understand the role of this interaction and study the

consequence of its variation. Then the transition back to the

ground state is stimulated (Fig. 1). We assume that the laser

frequency ω0 is close to the resonance frequency between 1s

and 2p states, and the contribution from the transitions to the

other p states can be ignored. The energies ǫ1s and ǫ2p of the

1s and 2p states are equal to the original ones of a hydrogen

FIG. 1. (Color online) The hydrogen atomlike system excited by

a circularly left-polarized pulse. The process designated as σ+ is

the absorption of a left-polarized photon. σ− is the emission of a

left-polarized photon.
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atom, and the levels 2p1/2 and 2p3/2 are below and above 2p,

respectively: ǫ2p1/2 = ǫ2p − (2/3)λ and ǫ2p3/2 = ǫ2p + (1/3)λ,

where λ is the value of the SOC. We take NT/2πd0ω0c = 1

for simplicity. We want to answer the two following questions.

How would be the orientation of the spin influenced after

the two transitions? What is the probability that the spin flip

process would take place (the probability to find the spin in

the −x direction) due to this process?

These questions can be answered by the second order wave

function (8), since it describes two photon transitions, which

lead to the Raman process. To obtain this function, we have to

calculate the dipole matrix elements of the transitions caused

by the laser pulse, and the time-dependent parts Ŵ
(2)
j,f (t).

A. The second order wave function

The second order wave function �2(t), which describes the

stimulated Raman scattering process, induced by circularly

polarized light in our system, is derived in Appendix B:

�2(t) =
|d0|2√

2

(

Ŵ
(2)
3/2(t)

1
3

Ŵ
(2)
3/2(t) + 2

3
Ŵ

(2)
1/2(t)

)

Y00R1s . (12)

The functions Ŵ
(2)
3/2(t) and Ŵ

(2)
1/2(t) are the time-dependent parts,

which enter Eq. (8), when the intermediate state is 2p3/2

or 2p1/2, correspondingly. These functions depend on the

energies of initial, intermediate, and final states. Since we

assumed that the SOC in our system is considerable and the

2p state is split, Ŵ
(2)
3/2(t) 
= Ŵ

(2)
1/2(t). For the exact definition of

d0, see Appendix B.

The second order wave function �2(t) is a spinor with

nonequal time-dependent spin-up and -down parts [Ŵ
(2)
3/2(t) 
=

1
3

Ŵ
(2)
3/2(t) + 2

3
Ŵ

(2)
1/2(t)]. It means that the spin does not remain

in the x direction (the corresponding spinor would be with

equal up and down parts), but performs a rotation in time.

�2(t) is zero before the action of the pulse begins, changes

smoothly during the excitation, and remains nonzero after the

pulse is gone. The time evolution of the function |�2(t)|2,

which is the probability of the Raman scattering process,

is depicted on Fig. 2 at laser frequency ω0 = ω1s,2p1/2 −
λ/2 = ω1s,2p3/2 + λ/2, i.e., between the resonance frequency

ω1s,2p1/2 = (ǫ2p1/2 − ǫ1s) of the 1s state with the 2p1/2 state,

and the resonance frequency ω1s,2p3/2 = (ǫ2p3/2 − ǫ1s) of the 1s

state with the 2p3/2 state. Therefore, it follows from Eq. (12)

that the Raman scattering process starts with the action of

the pulse and, while the system undergoes this process, the

alignment of the spin is changing. Since �2(t) is nonzero after

the action of the pulse, in the end the spin is rotated relative to

the initial position.

B. The probability of the spin flip

� ln
2 (t) ∝ Y00R1s

(

1√
2

1√
2

)

. (13)

The probability of the spin flip, wsf(t), that the spin is in the

reversed position relative to the initial one after the action of

light, is the projection of the wave function of an electron on

FIG. 2. (Color online) The time evolution of the probability of

the Raman scattering process at λ ≈ 27 meV.

the 1s state with the spinor 1√
2
( 1

−1 ), corresponding to a spin in

the −x direction,

wsf(t) =

∣

∣

〈

�0 + �1(t) + �2(t)
∣

∣1s, 1√
2

(

1

−1

)〉∣

∣

2

|�0 + �1(t) + �2(t)|2
. (14)

The projections of �0 and �1(t) [Eq. (A3)] onto |1s, 1√
2
( 1

−1 )〉
are zero. The probability of the spin flip is simply

wsf(t) =

∣

∣〈�2(t)
∣

∣1s, 1√
2

(

1

−1

)〉∣

∣

2

|�0 + �2(t)|2
. (15)

We are interested in the final probability of the spin-flip

process in our system. That is, the probability that spin is

reversed after the excitation has already acted on a system,

causing the two transitions. For this purpose, we define the

time τp, when the action of the pulse finishes [E(t > τp) = 0].

We use τp = 4T , when e−t2/T 2

, which describes the amplitude

of our pulse, becomes negligible.

Figure 3 shows the probability of the spin-flip process in our

system after the action of the laser pulse, wsf(τp), depending on

the excitation frequency at three different values of the SOC.

It can be seen that the SOC plays a crucial role in our model.

The spin-flip probability is lower at low values of the SOC.

But if the SOC is too large, then the probability of the effect

is quite low for the excitation frequencies between ǫ2p3/2 and

ǫ2p1/2 .

It follows from Eq. (12) that if λ = 0, no rotation of the

spin would be observed. Zero or negligible SOC means that

ǫ2p3/2 ≈ ǫ2p1/2 and, consequently, Ŵ
(2)
3/2(t) ≈ Ŵ

(2)
1/2(t). Therefore,

at any time t the spin-up and -down parts of the spinor (12)

would be equal to each other, which is the condition that the

spin is in the x direction, and no rotation would be observed.

It explains why if λ is too low, the effect starts to disappear. If

the SOC is much higher than the spectral width (≈20 meV for

T = 100 fs), the two resonances become isolated.

Another important issue for the effect is the polarization

of the laser light. If the light was linear, there would be no

spin rotation in the system. It is shown in Appendix C that

in the case of the excitation with linear light in any direction,

the spinor of the second order wave function would always

094419-4



THEORETICAL INVESTIGATION OF THE INVERSE . . . PHYSICAL REVIEW B 85, 094419 (2012)

FIG. 3. (Color online) The total probability of the spin flip after

the action of the laser pulse depending on the frequency of excitation

at different values of λ.

correspond to the alignment of the spin in the x direction and

no rotation would be observed.

C. The laser-induced magnetization

We derive the induced magnetization �M(t) as a function of

time for this model. A “direction” (ex,ey,ez) of a spin (which

is actually where its mean value maximum points to) with

a wave function � ′ can be determined with the help of the

Pauli matrices σα (α stands for x,y,z): eα = 〈� ′|σα|� ′〉/|� ′|2.

Taking into account that the electron remains in the initial

state with a certain probability, we substitute � ′ = �0 + �2(t)

and obtain the new “orientation” of the spin in the s state

due to the Raman process. After the subtraction of the

initial magnetization and multiplication by the spin magnetic

momentum µ, the induced magnetization is obtained:

�M(t) = µ

(

〈�0 + �2(t)|σ |�0 + �2(t)〉
|�0 + �2(t)|2

− 〈�0|σ |�0〉
)

≈ µ(〈�0|σ |�2(t)〉 + 〈�2(t)|σ |�0〉
+ 〈�2(t)|σ |�2(t)〉). (16)

Function �2(t) is proportional to the peak light intensity,

�2(t) ∝ N 2 ∝ E2 [Eqs. (8) and (9)], so are the former two

terms. The last term is proportional to the peak intensity

squared and can be ignored. Thus, we obtain that the induced

magnetization is linear with the light intensity as seen in

experiments7 due to the interference between the initial and

final state, although the probability of such a process is

proportional to the intensity squared:

�M(t) ≈ µ (〈�0|σ |�2(t)〉 + 〈�2(t)|σ |�0〉) . (17)

The quantity which the magnetization depends on is the second

order wave function �2(t). This function develops during the

action of the pulse and remains constant after the action.

Therefore, magnetization in the system is induced via the

optical transitions due to the excitation and remains altered

after it. As an example the time dependence of the altered

components of the magnetization vector due to the excitation

with the frequency ω0 = 10.20 eV at λ = 27.2 eV is shown

on the Fig. 4.

FIG. 4. (Color online) The time dependence of the components

of the induced magnetization �Mx,y,z at the laser excitation with the

frequency ω0 = 10.2 eV at λ = 27.2 eV.

In contrast to the equation �M(t) ∝ E∗(t) × E(t), which is

usually used to describe the IFE, despite however not providing

the answer as to why the change of magnetization is nonzero

after the laser pulse has faded away [E(τp) = 0 ⇒ �M(τp) 
=
0 ?], Eq. (16) explains the generation of an effective magnetic

field after the excitation by ultrashort laser pulses. According to

this relation the magnetization also depends on the electric field

E(t) via �2(t), but this dependence is much more complicated.

In fact, the equation �M(t) ∝ E∗(t) × E(t) is the limit for the

case of excitation by very long pulses, when thermodynamic

relations can be applied, which was the condition at the time,

when it was derived.3,4,28,29

D. The influence of the Raman scattering process

on the spin orientation

We study the final spin orientation after the Raman

scattering process depending on the excitation frequency. We

substitute � ′ = �0 + �2(τp) to eα = 〈� ′|σα|� ′〉/|� ′|2 and

obtain the expectation value of the spin orientation after the

excitation has finished.

We vary the laser frequency ω0 between ω1s,2p3/2 − 3λ and

ω1s,2p1/2 + 3λ, covering the region, when the frequency is close

to the resonances [“blue” region “b” on Fig. 5(a)] and far away

from them [“green” regions “c” on Fig. 5(a)]. We obtain that

the frequency dependence of the final spin orientation can be

separated into two regimes:

(1) The excitation frequency is close to the resonance. This

case is shown on Fig. 5(b). Each blue arrow corresponds to the

final spin orientation at a different laser frequency ω0, which is

varied within the blue region b on Fig. 5(a). When ω0 is at the

“left” boundary of the region b, the spin orientation is close to

the initial one. It moves counterclockwise on the plot with the

increase of the frequency and arrives again to the position close

to the initial one, when the frequency approaches the “right”

boundary. At this regime, first, the effect is quite strong (�M

is large). Second, the direction of the spin is highly affected
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FIG. 5. (Color online) (a) The scale within which the laser

frequency is varied. Blue region b corresponds to the plot (b), and

green regions c correspond to the plot (c). The blue stars show

the exact positions of the resonances (left: ω0 = ω1s,2p3/2 , right:

ω0 = ω1s,2p1/2 ). (b) The final direction of the spin due to the Raman

process depending on the frequency of excitation in the resonant

region b. It moves counterclockwise on the plot, when ω0 increases.

(c) The final position of the spin due to the Raman process depending

on the frequency of excitation in nonresonant regions c, xy plane, the

plot is stretched in the y direction. The initial position of the spin is

shown with the bold black arrow. λ = 27.2 meV.

by the excitation frequency. Third, the spin alignment is not in

the xy plane.

(2) The situation is quite different, when the frequency

is away from the resonances. When the frequency is varied

within the regions c on Fig. 5(a), the final spin orientation is

always in the xy plane, which is depicted on Fig. 5(c). The

effect is much lower in comparison to the resonance regime

(1). The final spin direction still depends on the frequency

but much less. The plots are similar for the situations, when

the frequency decreases in the left region c, and increases in

the right region c. When the frequency goes away from the

resonance, the final spin position approaches the initial one

from the same “side” in both cases.

The classical interpretation of the IFE3,4 is that the circularly

polarized laser pulse acts as an external magnetic field in

the direction of light propagation z, so it is expected that

a spin would start a precession in the xy plane. We have

shown that the interpretation of the effect should be different

on subpicosecond time scales.28 The change of the initial

magnetic state due to laser-induced transitions should be

considered, and spin precessions start, because the system is

brought away from the ground state. The present example

shows that the new spin position after the action of the light

is in the xy plane, when the frequency is away from the

resonances; however this does not hold for the resonance

case. This discrepancy from the classical view may come from

the fact that it was developed under the assumption that the

excitation is away from any resonance in the system.4

The final value of �Mx,y,z depends not only linearly on the

peak intensity of light, but also on the pulse shape [Eqs. (8) and

(9)] and the frequency of excitation (Fig. 5). This statement is

supported by the observation in Ref. 14 that the initial phase

and amplitude of the oscillation of the polarization of the probe

pulse, which is connected with the induced magnetization,

depends on the pump wavelength. This result opens large

opportunities for tuning spin dynamics by the frequency chirp

of a pump laser.

We showed that a laser pulse causes optical transitions,

which change the orientation of the spin. Therefore, the laser

light can directly transfer the momentum to the spin. The

SOC is essential for this process. The existence of this effect

is confirmed by the observations of very related processes

in quantum wells33 and quantum dots34–36 with an applied

external magnetic field in the Voigt geometry.

IV. LASER-INDUCED MAGNETIZATION DYNAMICS

IN ISOLATED ATOMS

The next system, in which we investigate the laser-induced

ultrafast magnetization phenomenon, is an atomic gas (isolated

atoms). A laser pulse causes transitions from the ground state

to the excited states of an atom. The excited states are split due

to the fine structure. The aim is to look at how this transition

influences a magnetic state of an electron brought back to the

ground state. We present our results on the cobalt atom, but

the same considerations can be applied to any atom.

The essential difference of a many-electron system to a

one with a spin 1/2 is that its spin is composed of several

electron spins according to Hund’s rules. Therefore, spin is

not a fundamental quantity anymore, and the expectation value

of the spin orientation cannot be accessed straightforwardly.

The information, which can be obtained, is the probability that

the spin is in a certain state and the mean value of the spin

〈Sα〉 in a chosen direction α. It means that the direction of

the maximum mean value of the spin projection cannot be

calculated and 〈Sx〉2 + 〈Sy〉2 + 〈Sz〉2 is not conserved in the

case of a spin larger than 1/2. The same holds for the total

momentum J > 1/2.

The ground state of Co is 3d74s2 with the total momentum

J = 9/2, the orbital momentum L = 3, and the spin S = 3/2.

We assume that in the initial state the projection of the

094419-6



THEORETICAL INVESTIGATION OF THE INVERSE . . . PHYSICAL REVIEW B 85, 094419 (2012)

FIG. 6. (Color online) Co atom excited by a circularly left-

polarized pulse.

total momentum is defined in the x direction: Jx = 9/2.

We consider the action of the same laser pulse as in the

previous section: 100-fs long, Gaussian shaped, left polarized,

propagating in the z direction, being perpendicular to the initial

alignment of the magnetic momentum. We account for all

excited states to which the laser can cause transitions from the

ground state (Fig. 6).

First, we have to find the ground state of the system �0 by

the solution of the equation

ĵx�0 = (9/2)�0, (18)

where ĵx is the momentum operator with (2J + 1)(2J + 1)

elements. Since we work in the z representation, the only

nonzero elements of the ĵx matrix are subdiagonal and

superdiagonal ones:

〈m + 1|ĵx |m〉 = 1
2

√
(J − m)(J + m + 1),

〈m − 1|ĵx |m〉 = 1
2

√
(J + m)(J − m + 1), (19)

〈q|ĵx |m〉 = 0, q 
= m ± 1.

The resulting ground state wave function in the Jz representa-

tion is

�0 =









ψ9/2

ψ7/2

...

ψ−9/2









(20)

with 2J + 1 elements. It is the superposition of the eigen-

functions of the states with Jz = m. For example, (

0

1

.

.

.

0

) is the

eigenfunction of the state Jz = 7/2.

The transitions from the state {n,J,Jz = m} via an ab-

sorption of a left-polarized photon are allowed to the states

{n′,J ′ = J,J ± 1,J ′
z = m + 1}. The reversed process of the

stimulated emission leads to the transitions back to {n,J,m}
with a dipole matrix element, which is the conjugate complex

of the dipole matrix element of the first transition.

As �n′J ′

2 (t) we designate the wave function, which de-

scribes the process with two transitions {n,J,Jx = 9/2} →

{n′,J ′ = J,J ± 1,J ′
x} → {n,J,J ′′

x }. Applying Eq. (8), we ob-

tain

�n′J ′

2 (t) =

















|〈n′J ′ 11/2|r+|nJ 9/2〉|2ψ9/2

...

|〈n′J ′ m + 1|r+|nJ m〉|2ψm

...

|〈n′J ′ − 7/2|r+|nJ − 9/2〉|2ψ−9/2

















Ŵ
(2)
n′J ′ (t),

(21)

where r+ = (x + iy)/
√

2 and Ŵ
(2)
n′J ′ (t) is the time-dependent

part, which depends also on the energy difference of the

states {n,J } and {n′,J ′}. The dipole matrix elements 〈J ′ m +
1|r+|J m〉 can be found using the relations37

〈J m + 1|r+|J m〉

=

√

(J − m)(J + m + 1)

J (J + 1)(2J + 1)
〈J |r|J 〉,

〈J − 1 m + 1|r+|J m〉

=

√

(J − m)(J − m − 1)

J (2J − 1)(2J + 1)
〈J − 1|r|J 〉, (22)

〈J + 1 m + 1|r+|J m〉

= −

√

(J + m + 1)(J + m + 2)

(J + 1)(2J + 1)(2J + 3)
〈J + 1|r|J 〉.

We sum up contributions from all possible transitions which

lead to the Raman processes and obtain the corresponding

second order function

�R
2 (t) =

∑

n′J ′

�n′J ′

2 (t) =









φ9/2

φ7/2

...

φ−9/2









. (23)

The resulting wave function (

φ9/2

φ7/2

.

.

.

φ−9/2

) is not proportional to

the wave function of the ground state, (

ψ9/2

ψ7/2

.

.

.

ψ−9/2

), because each

element of the latter spinor was multiplied by a different factor.

Consequently, the spinor of the resulting wave function does

not correspond to the state with Jx = 9/2 anymore, and the

projection of the magnetic momentum of the final state is

different from the initial one. Therefore, the magnetic state of

the system is altered after experiencing the Raman process.

In order to find out how the projection of magnetic mo-

mentum has changed, the selection rules should be examined.

For the Jx component under an excitation with the vector

(x + iy)/
√

2, they are: for the transition to the intermediate

level, the allowed values of the new x projection J ′
x are

Jx,Jx ± 1; and for ones to the final (ground) state, J ′′
x =

Jx,Jx ± 1,Jx ± 2. But Jx = 9/2 is the maximum value of

the projection of J = 9/2, and J ′′
x = Jx + 1,Jx + 2 are not

possible in our case. Therefore, the possible values of the new
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magnetic momentum projection are J ′′
x = 9/2,7/2,5/2 after

the excitation.

The new projection of magnetic momentum can take each

of that values with a certain probability, which depends on

the function �2(t). As �0,J x=mx
we designate the normal-

ized eigenfunction of the state {J = 9/2,Jx = mx}. Then,

the probability, that an electron experiences the stimulated

Raman scattering process and comes to the ground state with

the projection of the magnetic momentum Jx = mx , is the

projection of the function �2(t) on �0,J x=mx
:

wmx
(t) =

∣

∣

〈

�R
2 (t)

∣

∣�0,Jx=mx

〉∣

∣

2

|�0 + �1 + �2|2
, (24)

where wmx

= 0 for mx = 9/2,7/2,5/2. The sum of the

functions wmx
(t) is the probability of the Raman-like process,

w5/2(t) + w7/2(t) + w9/2(t) = |�R
2 |2. In order to calculate

them, we have to know the energies of the excited states

{n′J ′} of Co and the corresponding dipole matrix elements,

〈n′J ′|r|nJ 〉. We took this data from the NIST Atomic Spectra
Database.38

We calculated the probabilities w5/2(τp), w7/2(τp), and

w9/2(τp) that the x projection of the magnetic momentum

changed to 5/2 or 7/2 or came back to the same state

(Jx = 9/2) after the laser excitation, accordingly. The results

are depicted on Fig. 7 depending on the laser frequency for

the excitation by Gaussian-shaped laser pulse with the electric

field amplitude E = 5 × 107 V/m, which is a typical value

in modern ultrafast magnetization experiments.2 For each fre-

quency, the contribution of every allowed excited level is taken

into account (see Fig. 6). The three strongest lines on Fig. 7

correspond to the frequencies of the laser in resonance with

the most intense transitions in Co (therefore, the probability of

the effect becomes higher for these frequencies). Although the

case when the projection of the magnetic momentum does not

change is most probable, the probability that the value of Jx

FIG. 7. (Color online) The probabilities of possible values of a

new magnetic momentum projection Jx after the Raman scattering

process in a Co atom depending on the frequency of excitation. The

inset zooms-in on the region where w5/2 can be discerned.

FIG. 8. (Color online) The components of altered magnetization

�M(τp) after the Raman scattering process in a Co atom depending

on the frequency of excitation. The inset zooms-in on the region

where the �Mx component can be discerned.

changes to 7/2 is essential and is nonzero even for the value of

5/2 (see the inset of Fig. 7). It means that the magnetic state of

an atom is changed with a certain probability due to transitions

caused by laser excitation. Applying analogous considerations

as in the previous section, it can be easily shown that the

effect is present in isolated atoms, only when the laser light is

polarized.

The induced magnetization �M(t) can be derived by the

analogy to the previous section [Eq. (16)].

�Mα(t) ≈ −µBgJ (〈�0|ĵα|�2(t)〉 + 〈�2(t)|ĵα|�0〉). (25)

Here α stays for x,y, and z, ĵα is the momentum operator,

µB is Bohr magneton, and gJ is Landé g factor, which for the

ground state of Co equals to 5/6. The components of �M(τp)

are depicted on the Fig. 8 at the time t = τp, i.e., after the action

of the light, depending on the frequency ω0 of the excitation.

The properties of the excitation are the same as for the previous

plot. The x component of �M(τp) is very weak compared to

the other components (see the inset of Fig. 8). It results from

the selection rules, which do not allow Jx to change more than

by 2 and be lower than 5/2 in such a Raman process. This

result is in line with the results from Sec. III D.

Strictly speaking, the effect considered in the systems in

Secs. III and IV is not the stimulated Raman scattering in the

case of zero Zeeman splitting. Stimulated Rayleigh scattering

may be a proper term providing the scattering takes place on

a particle, which is much smaller compared to the light wave

length. However, we always assumed that the spins are initially

aligned in a certain direction. This is achieved in experiments

by the application of an external magnetic field or taking a

magnetically ordered material. Therefore, the magnetic states

of a ground state manifold are energetically separated, and the

effect is the stimulated Raman scattering.
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V. TWO MAGNETIC SUBLATTICES

We briefly discuss in this section the connection between

the laser-induced spin excitations, studied above, and the sub-

sequent magnetization dynamics. We consider as an example

an antiferromagnetic system with two magnetic vectors M10

and M20, aligned initially antiparallel to each other, resulting in

a total magnetic momentum M0 = M10 + M20. A circularly

polarized laser pulse coherently acts on this system during

several tenths of a femtosecond. Each subsystem is in a

new magnetic state after the excitation. The new magnetic

vectors are M1l and M2l . If the spin systems were initially

aligned not in the same directions, then they are rotated by

different angles after the action of circularly polarized light

(cf. Appendix D). This may simulate two antiferromagnetic

sublattices. Therefore, M1l and M2l are not collinear anymore.

Also, in general |M1(2)0| 
= |M1(2)l|, as has been shown in

Sec. IV.

The two antiferromagnetically coupled subsystems obtain

two magnetic vectors now, which are angularly distorted,

resulting in the net magnetic moment Ml = M1l + M2l .

Therefore, the total system is away from the ground state

and is in a new magnetic state now. It leads to the IFE-2uf

process. The antiferromagnetically coupled magnetic vectors

start to precess. The system may also relax from this new state

(due to some dissipation effects, damping, and so on) to some

stationary state at the next several tenths of a picosecond (the

decay observed in experiments).1,2

The final state of a magnetic system can be accessed using

the introduced theory. The knowledge of the magnetic state, in

which the system is brought due to the excitation, allows one

to describe the whole IFE-2uf process.11

CONCLUSIONS

We described the mechanism of the ultrafast inverse

Faraday effect via the stimulated Raman scattering process.

We solved the time-dependent Schrödinger equation to study

the action of the laser light in order to derive correctly the

dynamics of the wave functions of involved electrons during

the excitation. The simplicity of the investigated systems

allowed us to get a detailed insight into the transitions

responsible for the change of magnetic states. We showed

that a laser pulse excites two electron transitions in the

systems: from the initial to the intermediate state and from

the intermediate to the ground state, which with a certain

probability obtains different magnetic signature then before

the excitation. Magnetization due to the action of the pulse is

related to this probability. However, it is linearly dependent

on the laser peak intensity due to the interference between

the initial and final states. The splitting of the intermediate

state and the polarization of the laser light were shown to be

important for this process. In principle, our formalism is not

restricted to the situation when photon is emitted back to the

ground state, and can be applied to the situation when initial

and final states are different. However, it would make the

study more complicated, whereas our goal was to investigate

the mechanism on the clearest basis. We hope that this study

would encourage further work in understanding the role of the

second order transitions for the magneto-optical effects. As

a possibility for future studies, we suggest the investigation

of contributions of other interactions which are specific for a

solid state and essential for its magnetic state, such as crystal

field or Zeeman splitting.
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APPENDIX A: THE SOLUTION OF THE

TIME-DEPENDENT SCHRÖDINGER EQUATION

We derive the solution of Eq. (5) for the case when the

function f (t/T ), which describes the time dependence of the

amplitude of the electric field E [see Eq. (1)], is a Gaussian

function: f (t/T ) = e−t2/T 2

/
√

π3. Expanding the brackets in

Eq. (5), we obtain

i
∂�

∂t
=

[

∑

α

[pα − A(rα,t)/c]2/2 + Vint

]

�

=

[

H0 −
1

c

∑

α

A(rα,t)pα +
1

2c2

∑

α

A(rα,t)2

]

�

= [H0 + Hp]� (A1)

The solution is found using the Volterra iteration method

and is the expansion

�(t) = e−iH0t [�0 + �1(t) + �2(t) + · · · ]

= e−iH0t

[

1 − i

∫ t

−∞
H̄p(t ′)dt ′ −

∫ t

−∞
H̄p(t ′)dt ′

×
∫ t ′

−∞
H̄p(t ′′)dt ′′ + · · ·

]

�0 (A2)

with H̄p(t) = eiH0tHp(t)e−iH0t .

The Raman process, which we are interested in, is of the

second order in the inverse speed of light 1/c. Therefore, the

terms up to the third one in the expansion (A2) are important.

In the case of a discrete spectrum, the first order wave

function is the summation over all possible final states, which

a one photon transition can lead to,

�1(t) =
∑

f

I1,f (t)φf (A3)

with the transition amplitudes I1,f ,

I1,f (t) = −i

∫ t

−∞
dt ′ei(ǫf −ǫ0)t ′〈φf |Hp(t ′)|�0〉, (A4)

where ǫf and ǫ0 are the energies of the final state f and the

ground state 0, respectively, and φf is the wave function of the

f state. The transition amplitudes (A4) are

I1,f (t) =
i

c
〈φf |z

∑

α

pα|�0〉

×
∫ t

−∞
dt ′ei(ǫf −ǫ0)t ′ cos(ω0t)N e−t2/T 2

. (A5)
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The matrix element of the momentum operator can be

conveniently expressed by the dipole operator D =
∑

α rα

using the relation i
∑

α pα = (ǫf − ǫ0)D; then

I1,f (t) =
(ǫf − ǫ0)

c
〈φf |zD|�0〉

×
∫ t

−∞
dt ′ei(ǫf −ǫ0)t ′ cos(ω0t)N e−t2/T 2

. (A6)

For convenience we introduce the function Ŵ
(1)
f (t), which is

defined by the relation

I1,f (t) = 〈φf |zD|�0〉Ŵ(1)
f (t). (A7)

Using the solution of the Fourier integral39

∫ s

−∞
ds ′eiw±s ′

e−s ′2 =
√

π

2
e− w2

±
4 erfc

(

i

2
w± − s

)

, (A8)

and replacing s by t/T and w± by T (ǫf − ǫ0 ± ω0), we obtain

the time dependence of

Ŵ
(1)
f (t) =

NT (ǫf − ǫ0)

2πc

×
[

e−
[T (ω0f +ω0)]2

4 erfc

(

i

2
T (ω0f + ω0) −

t

T

)

+ e−
[T (ω0f −ω0)]2

4 erfc

(

i

2
T (ω0f − ω0) −

t

T

)]

. (A9)

with ω0f = ǫf − ǫ0 and N being the normalization factor of

the wave train.

Finally, the time evolution of the function �1(t) is

�1(t) =
∑

f

d0f Ŵ
(1)
f (t)φf , (A10)

where d0f = 〈φf |zD|�0〉 is the dipole matrix element of the

transition from the ground state 0 to the final state f .

In the similar way the second order wave function can be

found:

�2(t) = −i

∫ t

−∞
dt ′H̄p(t ′)�1(t ′)

= −i

∫ t

−∞
dt ′H̄p(t ′)

∑

j

d0jŴ
(1)
j (t ′)φj

=
∑

j,f

I2,j,f (t)φf (A11)

with the transitions amplitudes

I2,j,f (t) = −i

∫ t

−∞
dt ′

∑

j,f

〈φj |Hp|φf 〉d0jŴ
(1)
j (t ′). (A12)

The summation is over all possible intermediate j and final f

states, to which the transitions are allowed. Therefore, the time

evolution of the second order wave function can be expressed

as

�2(t) =
∑

j,f

d0jdjf Ŵ
(2)
j,f (t)φf . (A13)

The function Ŵ
(2)
j,f (t) is obtained by the substitution of Hp and

Ŵ
(1)
j (t) into Eq. (A12):

Ŵ
(2)
j,f (t) =

2(ǫf − ǫj )(ǫj − ǫ0)
√

π

(

NT

2πc

)2

×
∫ t/T

−∞
ds ′

[

ei(ǫf −ǫj )T s ′
cos(ω0T s ′)e−s ′2

×
[

e−
[T (ω0j +ω0)]2

4 erfc

(

i

2
T (ω0j + ω0) − s ′

)

+ e−
[T (ω0j −ω0)]2

4 erfc

(

i

2
T (ω0j − ω0) − s ′

)]]

.

(A14)

We neglected the term A2/2c2 in the Hamiltonian function

Hp(t) for the following reason. If we substitute this part to the

integral (A4), we obtain

−i

∫ t

−∞
dt ′ei(ǫf −ǫ0)t ′〈φf |

1

2c2
A2|�0〉

= −
i

4c2

∫ t

−∞
dt ′(Nf )2ei(ǫf −ǫ0)t ′〈φf |1 + cos(2ω0t)|�0〉.

(A15)

The transition matrix element is diagonal in the electronic

states and does not give rise to any transitions.

APPENDIX B: THE CALCULATION OF THE SECOND

ORDER WAVE FUNCTION IN THE HYDROGEN

ATOMLIKE SYSTEM

In order to derive the dipole matrix elements, one has first

to recall the wave functions of levels in a hydrogen atom.37

The wave functions of the 1s state are

�1s
jjz

= R1sψjjz
, (B1)

where j = 1/2 is the total orbital momentum, jz = ±1/2 is

the projection of the momentum on the z direction, R1s = 2e−r

is the radial part, and ψjjz
is the spherical part.

ψ1/2,±1/2 = Y00χ±, (B2)

where Y00 = Yl=0,ml=0 =
√

1
4π

is the spherical harmonic func-

tion, and χ± are the spinor functions: χ+ = (
1

0 ), χ− = (
0

1 ).

Similarly, the wave functions of the 2p state are

�
2p

jjz
= R2pψjjz

(B3)

with the radial function R2p = 1

2
√

6
re−r/2 and the spherical

functions

ψ3/2,3/2 = Y11χ+, ψ3/2,1/2 =
√

2

3
Y10χ+ +

√

1

3
Y11χ−,

ψ3/2,−1/2 =
√

2

3
Y10χ− +

√

1

3
Y1−1χ+, ψ3/2,−3/2 = Y1−1χ−,

(B4)

ψ1/2,1/2 =
√

1

3
Y10χ+ −

√

2

3
Y11χ−,

ψ1/2,−1/2 =
√

1

3
Y10χ− −

√

2

3
Y1−1χ+,
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with the spherical harmonics

Y10 =
√

3

4π

z

r
, Y11 =

√

3

8π

y − ix

r
,

(B5)

Y1−1 =
√

3

8π

y + ix

r
.

The dipole matrix elements of the transitions from the 1s to

2p state are
∫

d3r�
2p ∗
j ′j ′

z
zD�1s

jjz
. We assumed that the spin is

initially in the x direction. It means that the ground state wave

function is

�0 = Y00R1s

1
√

2
(χ+ + χ−). (B6)

Therefore, the dipole matrix elements of transitions from the

ground state to the excited states in our system are

∫

d3r�
2p ∗
jjz

x + iy
√

2
�0

=
∫

d3rR2pψ∗
jjz

x + iy
√

2
Y00R1s

1
√

2
(χ+ + χ−). (B7)

The spinors, entering the integrals, obey the relations χ∗
±χ∓ =

0, χ∗
±χ± = 1. Examining the wave functions of the 2p state

[Eq. (B4)], one can see that there are three types of integrals

entering (B7):

∫

d3rY ∗
11R2p

x + iy
√

2
Y00R1s

=
∫

d3r
1

√
2

1

2
√

6
re−r/2

√

3

8π

y + ix

r
(x + iy)

√

1

4π
2e−r

= −i
215/2

35
d0 (B8)

∫

d3rY ∗
10R2p

x + iy
√

2
Y00R1s ∝

∫

d3r z(x + iy) = 0

(B9)
∫

d3rY ∗
1−1R2p

x + iy
√

2
Y00R1s ∝

∫

d3r(y − ix)(x + iy)

= −i

∫

d3r(x2 − y2) = 0. (B10)

Therefore, there are only three nonzero dipole matrix

elements of the transitions from the ground state to the excited

states induced by circularly polarized laser light:

d01 =
∫

d3r�
2p ∗
3/2,3/2

x + iy
√

2
�0

=
1

√
2

∫

d3r�
2p ∗
3/2,3/2

x + iy
√

2
�1s

1/2,1/2 =
1

√
2
d0; (B11)

another to {2p,j = 3/2,jz = 1/2}:

d02 =
∫

d3r�
2p ∗
3/2,1/2

x + iy
√

2
�0

=
1

√
2

∫

d3r�
2p ∗
3/2,1/2

x + iy
√

2
�1s

1/2,−1/2 =
1

√
2

√

1

3
d0;

(B12)

and one to {2p,j = 1/2,jz = 1/2}:

d03 =
∫

d3r�
2p ∗
1/2,1/2

x + iy
√

2
�0

=
1

√
2

∫

d3r�
2p ∗
1/2,1/2

x + iy
√

2
�1s

1/2,−1/2 = −
1

√
2

√

2

3
d0.

(B13)

Likewise, there are three allowed transitions from the exited

states back to the 1s state:

(1) to the spin-up state from the {2p,j = 3/2,jz = 3/2}
state with the dipole matrix element d10 = d∗

0 ,

(2) to the spin-down state from {2p,j = 3/2,jz = 1/2}
with d20 =

√
1/3d∗

0 , and

(3) to the spin-down state from {2p,j = 1/2,jz = 1/2}
with d30 = −

√
2/3d∗

0 .

The time-dependent parts Ŵ(2)(t), which enter Eq. (8),

depend on the energies of initial, intermediate, and final

states. Since we assumed that the SOC in our system is

considerable and the 2p state is split, two functions Ŵ(2)(t)

can be distinguished: the one for the transitions to the excited

states with j = 3/2, designated as Ŵ
(2)
3/2(t), and for j = 1/2,

designated as Ŵ
(2)
1/2(t). Applying Eq. (8) to our system, we

obtain the second order wave function, which describes the

stimulated Raman scattering process:

�2(t) = d01d10Ŵ
(2)
3/2(t)�1s

1/2 + d02d20Ŵ
(2)
3/2(t)�1s

−1/2

+ d03d30Ŵ
(2)
1/2(t)�1s

−1/2

=
1

√
2

(

|d0|2Ŵ(2)
3/2(t)χ+ +

1

3
|d0|2Ŵ(2)

3/2(t)χ−

+
2

3
|d0|2Ŵ(2)

1/2(t)χ−

)

Y00R1s

=
|d0|2√

2

(

Ŵ
(2)
3/2(t)

1
3

Ŵ
(2)
3/2(t) + 2

3
Ŵ

(2)
1/2(t)

)

Y00R1s . (B14)

APPENDIX C: THE EFFECT OF LINEAR

POLARIZED LIGHT

If the light was linear, there would be no spin rotation in

the system. For example, for linear light in the x direction, the

integrals entering (B7) are
∫

d3rY ∗
11R2pxY00R1s

=
∫

d3r
1

√
6

√

1

4π
re−3r/2

√

3

8π

y + ix

r
x = idx,

∫

d3rY ∗
10R2pxY00R1s

∝
∫

d3r zx = 0, (C1)

∫

d3rY ∗
1−1R2pxY00R1s

=
∫

d3r
1

√
6

√

1

4π
re−3r/2

√

3

8π

y − ix

r
x = −idx .
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And the second order wave function in the case of linear light

would be

� ln
2 (t) =

|dx |2√
2

(

Ŵ
(2)
3/2(t) + 1

3
Ŵ

(2)
3/2(t) − 2

3
Ŵ

(2)
1/2(t)

Ŵ
(2)
3/2(t) + 1

3
Ŵ

(2)
3/2(t) − 2

3
Ŵ

(2)
1/2(t)

)

Y00R1s

= |dx |2
(

4

3
Ŵ

(2)
3/2(t) −

2

3
Ŵ

(2)
1/2(t)

)

Y00R1s

( 1√
2

1√
2

)

.

(C2)

The spinor of the function would always correspond to the

alignment of the spin in the x direction, and no rotation could

be observed. It can be easily reproduced for linear light in any

direction.

APPENDIX D: THE ACTION OF POLARIZED LIGHT

ON ANTICOLLINEAR SYSTEMS

We show in this Appendix that if the alignments of spin

systems were initially anticollinear, then the systems are

rotated by different angles due to the action of circularly

polarized light. We check it with two equal hydrogen atomlike

models. The spin of the first one is aligned initially in the

x direction, and the spin of the second one is in the −x

direction. The wave function, describing the 1s state of the

first system during and after the action of the pulse, is

�+x
1s (t) = �+x

0 + �+x
2 (t), which is according to Eqs. (B6) and

(B14)

�+x
1s (t) =





1√
2

+ |d0|2Ŵ(2)
3/2(t)

√
2

1√
2

+
|d0|2

(

1
3

Ŵ
(2)
3/2(t) + 2

3
Ŵ

(2)
1/2(t)

)

√
2



Y00R1s . (D1)

The initial wave function �−x
0 of the system with spin aligned

in the −x direction is

�−x
0 =

(

�1s
1/2

−�1s
−1/2

)

=
( 1√

2

− 1√
2

)

Y00R1s . (D2)

The procedure to obtain the second order wave function �−x
2 (t)

described in Appendix B would be equal for this system except

that the function �1s
−1/2 in Eq. (B14) enters with the negative

sign. Therefore, the wave function �−x
1s (t) = �−x

0 + �−x
2 (t)

of the second system is

�−x
1s (t) =







1√
2

+ |d0|2Ŵ(2)
3/2(t)

√
2

− 1√
2

−
|d0|2

(

1
3

Ŵ
(2)
3/2(t)+ 2

3
Ŵ

(2)
1/2(t)

)

√
2






Y00R1s . (D3)

We calculate the expectation value of the orientation of both

systems due to the action of light (e±
x ,e±

y ,e±
z ) with the help of

Pauli matrices σα (α stands for x,y,z) as follows:

e±
α =

〈

�x±
1s (t)

∣

∣σα

∣

∣�x±
1s (t)

〉

∣

∣�x±
1s (t)

∣

∣

2
. (D4)

Substituting ψ
↑
1s(t) for (1/

√
2)[1 + |d0|2Ŵ(2)

3/2(t)] and ψ
↓
1s(t) for

(1/
√

2){1 + |d0|2[ 1
3

Ŵ
(2)
3/2(t) + 2

3
Ŵ

(2)
1/2(t)]}, the components of

the vectors e+ and e− are

e+
x = −e−

x =
1

2

ψ
↑
1s(t)ψ

↓∗
1s (t) + c.c.

|ψ↑
1s(t)|2 + |ψ↓

1s(t)|2
,

e+
y = −e−

y =
1

2

i[ψ
↑
1s(t)ψ

↓∗
1s (t) − c.c.]

|ψ↑
1s(t)|2 + |ψ↓

1s(t)|2
, (D5)

e+
z = e−

z =
1

2

|ψ↑
1s(t)|2 − |ψ↓

1s(t)|2

|ψ↑
1s(t)|2 + |ψ↓

1s(t)|2
.

Thus, the projections of the two spins on the xy plane are

opposite, and the projections on the z axis are equal. This

example shows that although two equal antiparallel spin

systems were collinear, the action of circularly polarized light

led to the deviation from their initial state by different angles.

1Alexey V. Kimel, Andrei Kirilyuk, and Theo Rasing, Laser Photon.

Rev. 1, 275 (2007).
2Andrei Kirilyuk, Alexey V. Kimel, and Theo Rasing, Rev. Mod.

Phys. 82, 2731 (2010).
3L. P. Pitaevskii, Sov. Phys. JETP 12, 1008 (1961).
4P. S. Pershan, J. P. van der Ziel, and L. D. Malmstrom, Phys. Rev.

143, 574 (1966).
5Y. R. Shen, The Principles of Nonlinear Optics (Wiley, New York,

1984).
6A. V. Kimel, A. Kirilyuk, A. Tsvetkov, R. V. Pisarev, and

Th. Rasing, Nature (London) 429, 850 (2004).
7A. V. Kimel, A. Kirilyuk, P. A. Usachev, R. V. Pisarev, A. M.

Balbashov, and Th. Rasing, Nature (London) 435, 655 (2005).
8A. V. Kimel, C. D. Stanciu, P. A. Usachev, R. V. Pisarev, V. N.

Gridnev, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 74, 060403R

(2006).
9Fredrik Hansteen, Alexey Kimel, Andrei Kirilyuk, and

Theo Rasing, Phys. Rev. B 73, 014421 (2006).

10C. D. Stanciu, F. Hansteen, A. V. Kimel, A. Tsukamoto, A. Itoh,

A. Kirilyuk, and Th. Rasing, Phys. Rev. Lett. 98, 207401 (2007).
11A. M. Kalashnikova, A. V. Kimel, R. V. Pisarev, V. N. Gridnev, P. A.

Usachev, A. Kirilyuk, and Th. Rasing, Phys. Rev. B 78, 104301

(2008).
12T. Satoh, Sung-Jin Cho, R. Iida, T. Shimura, K. Kuroda, H. Ueda,

Y. Ueda, B. A. Ivanov, F. Nori, and M. Fiebig, Phys. Rev. Lett. 105,

077402 (2010).
13A. H. M. Reid, A. V. Kimel, A. Kirilyuk, J. F. Gregg, and

Th. Rasing, Phys. Rev. B 81, 104404 (2010).
14R. Iida, T. Satoh, T. Shimura, K. Kuroda, B. A. Ivanov, Y. Tokunaga,

and Y. Tokura, Phys. Rev. B 84, 064402 (2011).
15A. V. Kimel, B. A. Ivanov, R. V. Pisarev, P. A. Usachev, A. Kirilyuk,

and Th. Rasing, Nat. Phys. 5, 727 (2009).
16J.-Y. Bigot, M. Vomir, L. H. F. Andrade, and E. Beaurepaire, Chem.

Phys. 318, 137 (2005).
17Jean-Yves Bigot, Mircea Vomir, and Eric Beaurepaire, Nat. Phys.

5, 515 (2009).

094419-12



THEORETICAL INVESTIGATION OF THE INVERSE . . . PHYSICAL REVIEW B 85, 094419 (2012)

18C. Boeglin, E. Beaurepaire, V. Halté, V. Lopez-Flores, C. Stamm,
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