001     20702
005     20230426083034.0
024 7 _ |2 DOI
|a 10.1103/PhysRevB.84.115449
024 7 _ |2 WOS
|a WOS:000295220300016
024 7 _ |2 Handle
|a 2128/10863
037 _ _ |a PreJuSER-20702
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Condensed Matter
100 1 _ |0 P:(DE-HGF)0
|a Brumme, T.
|b 0
245 _ _ |a Dynamical bistability of single-molecule junctions: A combined experimental and theoretical study of PTCDA on AG(111)
260 _ _ |a College Park, Md.
|b APS
|c 2011
300 _ _ |a 115449
336 7 _ |0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
|a Journal Article
336 7 _ |2 DataCite
|a Output Types/Journal article
336 7 _ |0 0
|2 EndNote
|a Journal Article
336 7 _ |2 BibTeX
|a ARTICLE
336 7 _ |2 ORCID
|a JOURNAL_ARTICLE
336 7 _ |2 DRIVER
|a article
440 _ 0 |0 4919
|a Physical Review B
|v 84
|x 1098-0121
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a This work has been supported by the German Priority Program "Quantum Transport at the Molecular Scale (SPP1243)." The authors acknowledge the Center for Information Services and High Performance Computing (ZIH) at the Dresden University of Technology for computational resources. G.C. acknowledges the South Korean Ministry of Education, Science, and Technology Program, Project WCU ITCE No. R31-2008-000-10100-0. T. B. would like to acknowledge an especially fruitful discussion with Florian Pump.
520 _ _ |a The dynamics of a molecular junction consisting of a PTCDA molecule between the tip of a scanning tunneling microscope and a Ag(111) surface have been investigated experimentally and theoretically. Repeated switching of a PTCDA molecule between two conductance states is studied by low-temperature scanning tunneling microscopy for the first time and is found to be dependent on the tip-substrate distance and the applied bias. Using a minimal model Hamiltonian approach combined with density-functional calculations, the switching is shown to be related to the scattering of electrons tunneling through the junction, which progressively excite the relevant chemical bond. Depending on the direction in which the molecule switches, different molecular orbitals are shown to dominate the transport and thus the vibrational heating process. This in turn can dramatically affect the switching rate, leading to nonmonotonic behavior with respect to bias under certain conditions. In this work, rather than simply assuming the density of states to be constant as in previous works, it was modeled by Lorentzians. This allows for the successful description of this nonmonotonic behavior of the switching rate, thus demonstrating the importance of modeling the density of states realistically.
536 _ _ |0 G:(DE-Juel1)FUEK412
|2 G:(DE-HGF)
|a Grundlagen für zukünftige Informationstechnologien
|c P42
|x 0
542 _ _ |i 2011-09-26
|2 Crossref
|u http://link.aps.org/licenses/aps-default-license
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |2 WoSType
|a J
700 1 _ |0 P:(DE-HGF)0
|a Neucheva, O.A.
|b 1
700 1 _ |0 P:(DE-HGF)0
|a Toher, C.
|b 2
700 1 _ |0 P:(DE-HGF)0
|a Gutiérrez, R.
|b 3
700 1 _ |0 P:(DE-Juel1)VDB85047
|a Weiss, C.
|b 4
|u FZJ
700 1 _ |0 P:(DE-Juel1)VDB73384
|a Temirov, R.
|b 5
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Greuling, A.
|b 6
700 1 _ |0 P:(DE-HGF)0
|a Kaczmarski, M.
|b 7
700 1 _ |0 P:(DE-HGF)0
|a Rohlfing, M.
|b 8
700 1 _ |0 P:(DE-Juel1)128791
|a Tautz, F.S.
|b 9
|u FZJ
700 1 _ |0 P:(DE-HGF)0
|a Cuniberti, G.
|b 10
773 1 8 |a 10.1103/physrevb.84.115449
|b American Physical Society (APS)
|d 2011-09-26
|n 11
|p 115449
|3 journal-article
|2 Crossref
|t Physical Review B
|v 84
|y 2011
|x 1098-0121
773 _ _ |a 10.1103/PhysRevB.84.115449
|g Vol. 84, p. 115449
|0 PERI:(DE-600)2844160-6
|n 11
|q 84<115449
|p 115449
|t Physical review / B
|v 84
|y 2011
|x 1098-0121
856 7 _ |u http://dx.doi.org/10.1103/PhysRevB.84.115449
856 4 _ |u https://juser.fz-juelich.de/record/20702/files/PhysRevB.84.115449.pdf
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20702/files/PhysRevB.84.115449.gif?subformat=icon
|x icon
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20702/files/PhysRevB.84.115449.jpg?subformat=icon-180
|x icon-180
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20702/files/PhysRevB.84.115449.jpg?subformat=icon-700
|x icon-700
|y OpenAccess
856 4 _ |u https://juser.fz-juelich.de/record/20702/files/PhysRevB.84.115449.pdf?subformat=pdfa
|x pdfa
|y OpenAccess
909 C O |o oai:juser.fz-juelich.de:20702
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
910 1 _ |0 I:(DE-588b)5008462-8
|6 P:(DE-Juel1)128791
|a Forschungszentrum Jülich
|b 9
|k FZJ
913 1 _ |0 G:(DE-Juel1)FUEK412
|a DE-HGF
|b Schlüsseltechnologien
|k P42
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|v Grundlagen für zukünftige Informationstechnologien
|x 0
913 2 _ |0 G:(DE-HGF)POF3-529H
|1 G:(DE-HGF)POF3-520
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 LIC:(DE-HGF)APS-112012
|2 HGFVOC
|a American Physical Society Transfer of Copyright Agreement
915 _ _ |0 StatID:(DE-HGF)0510
|2 StatID
|a OpenAccess
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
920 1 _ |0 I:(DE-Juel1)PGI-3-20110106
|g PGI
|k PGI-3
|l Funktionale Nanostrukturen an Oberflächen
|x 0
920 1 _ |0 I:(DE-82)080009_20140620
|g JARA
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|x 1
970 _ _ |a VDB:(DE-Juel1)136364
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)PGI-3-20110106
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)VDB881
999 C 5 |a 10.1103/PhysRevLett.49.57
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.physrep.2004.08.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/nnano.2006.130
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1088/0957-4484/19/6/065401
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00339-008-4837-z
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1168255
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |1 S. Chang
|y 2009
|2 Crossref
|o S. Chang 2009
999 C 5 |a 10.1103/PhysRevB.83.155402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1038/344524a0
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1076768
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1102370
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.86.672
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1129788
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1073/pnas.0603643103
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja062874c
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1126/science.1144366
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/nl1014348
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.125414
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1063/1.2007631
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.102.246101
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.70.125406
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.55.4825
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1007/s00339-008-4826-2
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevLett.85.4566
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/S0039-6028(97)00888-1
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1016/j.progsurf.2007.09.001
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.76.115421
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1103/PhysRevB.74.041402
|9 -- missing cx lookup --
|2 Crossref
999 C 5 |a 10.1021/ja104332t
|9 -- missing cx lookup --
|2 Crossref


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21