000020776 001__ 20776
000020776 005__ 20210129210752.0
000020776 0247_ $$2pmid$$apmid:22285876
000020776 0247_ $$2DOI$$a10.1016/j.mri.2011.12.012
000020776 0247_ $$2WOS$$aWOS:000303086700006
000020776 0247_ $$2altmetric$$aaltmetric:21807970
000020776 037__ $$aPreJuSER-20776
000020776 041__ $$aeng
000020776 082__ $$a610
000020776 084__ $$2WoS$$aRadiology, Nuclear Medicine & Medical Imaging
000020776 1001_ $$0P:(DE-Juel1)138244$$aFarrher, E.$$b0$$uFZJ
000020776 245__ $$aNovel multisection design of anisotropic diffusion phantoms
000020776 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000020776 300__ $$a518 - 526
000020776 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020776 3367_ $$2DataCite$$aOutput Types/Journal article
000020776 3367_ $$00$$2EndNote$$aJournal Article
000020776 3367_ $$2BibTeX$$aARTICLE
000020776 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020776 3367_ $$2DRIVER$$aarticle
000020776 440_0 $$04146$$aMagnetic Resonance Imaging$$v30$$x0730-725X$$y4
000020776 500__ $$aEF thanks Mr. J. Lindemeyer, Dr. I.I. Maximov, Dr. V. Gras and Dr. D. Pflugfelder for valuable discussions. EF thanks Ms. M. Kubach and Mr. F. Keil for providing access to the toolkit QuanTooM. FG thanks Dr. E. Fieremans and Dr. O. Poznansky for valuable discussions. We thank Dr. H. Plug (DSM, Geleen, The Netherlands) for supplying us with the Dyneema fibers for this study. EF and FG thank Mr. J.-E. Batta for a helpful contribution to the development of the phantom during his research stay in Forschungszentrum Julich funded by the ALFA II EU project NANOGASTOR. FG thanks NANOGASTOR and Professor J. Karger for a valuable support of this project.
000020776 520__ $$aDiffusion-weighted magnetic resonance imaging provides access to fiber pathways and structural integrity in fibrous tissues such as white matter in the brain. In order to enable better access to the sensitivity of the diffusion indices to the underlying microstructure, it is important to develop artificial model systems that exhibit a well-known structure, on the one hand, but benefit from a reduced complexity on the other hand. In this work, we developed a novel multisection diffusion phantom made of polyethylene fibers tightly wound on an acrylic support. The phantom exhibits three regions with different geometrical configuration of fibers: a region with fibers crossing at right angles, a region with parallel fibers and homogeneous density, and, finally, a region with parallel fibers but with a gradient of fiber density along the axis of symmetry. This gives rise to a gradual change of the degree of anisotropy within the same phantom. In this way, the need to construct several phantoms with different fiber densities is avoided, and one can access different fractional anisotropies in the same experiment under the same physical conditions. The properties of the developed phantom are demonstrated by means of diffusion tensor imaging and diffusion kurtosis imaging. The measurements were performed using a diffusion-weighted spin-echo and a diffusion-weighted stimulated-echo pulse sequence programmed in-house. The influence of the fiber density packing on the diffusion parameters was analyzed. We also demonstrate how the novel phantom can be used for the validation of high angular resolution diffusion imaging data analysis.
000020776 536__ $$0G:(DE-Juel1)FUEK409$$2G:(DE-HGF)$$aFunktion und Dysfunktion des Nervensystems (FUEK409)$$cFUEK409$$x0
000020776 536__ $$0G:(DE-HGF)POF2-89573$$a89573 - Neuroimaging (POF2-89573)$$cPOF2-89573$$fPOF II T$$x1
000020776 588__ $$aDataset connected to Web of Science, Pubmed
000020776 650_2 $$2MeSH$$aAlgorithms
000020776 650_2 $$2MeSH$$aAnisotropy
000020776 650_2 $$2MeSH$$aBrain Mapping: methods
000020776 650_2 $$2MeSH$$aDiffusion Magnetic Resonance Imaging
000020776 650_2 $$2MeSH$$aEquipment Design
000020776 650_2 $$2MeSH$$aImaging, Three-Dimensional
000020776 650_2 $$2MeSH$$aNerve Fibers, Myelinated: ultrastructure
000020776 650_2 $$2MeSH$$aPhantoms, Imaging
000020776 650_2 $$2MeSH$$aPolyethylene
000020776 650_7 $$09002-88-4$$2NLM Chemicals$$aPolyethylene
000020776 650_7 $$2WoSType$$aJ
000020776 65320 $$2Author$$aDiffusion tensor imaging
000020776 65320 $$2Author$$aDiffusion kurtosis imaging
000020776 65320 $$2Author$$aFiber phantom
000020776 65320 $$2Author$$aStimulated echo
000020776 65320 $$2Author$$aQ-ball imaging
000020776 65320 $$2Author$$aSpherical harmonic deconvolution
000020776 65320 $$2Author$$aHigh angular resolution diffusion imaging
000020776 7001_ $$0P:(DE-Juel1)VDB18957$$aKaffanke, J.$$b1$$uFZJ
000020776 7001_ $$0P:(DE-Juel1)VDB105045$$aCelik, A.A.$$b2$$uFZJ
000020776 7001_ $$0P:(DE-Juel1)VDB18939$$aStöcker, T.$$b3$$uFZJ
000020776 7001_ $$0P:(DE-Juel1)VDB101446$$aGrinberg, F.$$b4$$uFZJ
000020776 7001_ $$0P:(DE-Juel1)131794$$aShah, N.J.$$b5$$uFZJ
000020776 773__ $$0PERI:(DE-600)1500646-3$$a10.1016/j.mri.2011.12.012$$gVol. 30, p. 518 - 526$$p518 - 526$$q30<518 - 526$$tMagnetic resonance imaging$$v30$$x0730-725X$$y2012
000020776 8567_ $$uhttp://dx.doi.org/10.1016/j.mri.2011.12.012
000020776 909CO $$ooai:juser.fz-juelich.de:20776$$pVDB
000020776 9132_ $$0G:(DE-HGF)POF3-573$$1G:(DE-HGF)POF3-570$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lDecoding the Human Brain$$vNeuroimaging$$x0
000020776 9131_ $$0G:(DE-HGF)POF2-89573$$1G:(DE-HGF)POF3-890$$2G:(DE-HGF)POF3-800$$3G:(DE-HGF)POF3$$4G:(DE-HGF)POF$$aDE-HGF$$bProgrammungebundene Forschung$$lohne Programm$$vNeuroimaging$$x1
000020776 9141_ $$y2012
000020776 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020776 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020776 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020776 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020776 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020776 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020776 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020776 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020776 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000020776 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020776 915__ $$0StatID:(DE-HGF)1110$$2StatID$$aDBCoverage$$bCurrent Contents - Clinical Medicine
000020776 9201_ $$0I:(DE-Juel1)INM-4-20090406$$gINM$$kINM-4$$lPhysik der Medizinischen Bildgebung$$x0
000020776 970__ $$aVDB:(DE-Juel1)136475
000020776 980__ $$aVDB
000020776 980__ $$aConvertedRecord
000020776 980__ $$ajournal
000020776 980__ $$aI:(DE-Juel1)INM-4-20090406
000020776 980__ $$aUNRESTRICTED