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JARA - Fundamentals of Future Information Technologies, Jülich-Aachen Research Alliance, Germany
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We present a model to describe the response of chip-based nanocavity sensors during extracellular recording

of action potentials. These sensors feature microelectrodes which are embedded in liquid-filled cavities. They can

be used for the highly localized detection of electrical signals on a chip. We calculate the sensor’s impedance and

simulate the propagation of action potentials. Subsequently we apply our findings to analyze cell-chip coupling

properties. The results are compared to experimental data obtained from cardiomyocyte-like cells. We show

that both the impedance and the modeled action potentials fit the experimental data well. Furthermore, we find

evidence for a large seal resistance of cardiomyocytes on nanocavity sensors compared to conventional planar

recording systems.
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I. INTRODUCTION

The electrophysiological activity of individual cells is

generally observed using the patch clamp technique [1].

This technique and related methods [2] yield very high

signal-to-noise ratios and are ideally suited to study the

activity of ion channels. However, these techniques are limited

with regard to long-term measurements and the number of

recording units in a single experiment. Extracellular elec-

trophysiological methods, on the other hand, yield weaker

signals but allow long-term and multisite recordings of cellular

networks due to reduced interference with cell viability. A

well-established method for extracellular measurements relies

on microelectrode arrays (MEAs) [3–6]. Fields of application

for in vitro MEA systems include pharmacological high-

throughput screening, cell-based biosensors, and research on

information processing in neuronal networks [7–13]. During

the last years, the integration of complementary metal oxide

semiconductor technology (CMOS) with MEAs has led to the

development of very high-density recording units, opening up

new opportunities for the investigation of communication in

cellular networks [14,15]. Nevertheless, the simple fabrication

of low-impedance and high-spatial-resolution electrodes still

remains an experimental challenge. Attempts to lower the

impedance, including the use of advanced interface materials

[16–18] and patterning of metal electrodes [19–22], have led

to promising results. However, they often require sophisticated

techniques of production or lack mechanical stability and

longevity. We have recently introduced a sensor design which

includes a fluid-filled nanocavity covering a metal electrode

[23,24]. This approach decreases the impedance of the sensor

due to an increase of the electrode-electrolyte interface area.

The spatial resolution of such nanocavity sensors is preserved
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by the small aperture which connects the nanofluidic cavity

with the chip’s surface. Modeling the signal transduction at

the cell-sensor interface is important to optimize the system’s

design and to understand how a cell’s action potential is

related to the measured signal [25–27]. In this paper we

present a model to describe the impedance and the cell-sensor

coupling of a nanocavity electrode. Cell-sensor interfaces

have been studied in the equivalent circuit approach, namely

the area and the point-contact model and by solving the

Poisson-Boltzmann-Planck equation [28–31]. To investigate

the nanocavity sensor’s response we will rely on the equivalent

circuit approach. We calculate the response of the sensors to a

simulated action potential and compare the result with signals

of HL-1 cells measured with nanocavity electrodes. The HL-1

cell line has been derived by Claycomb et al. from mouse

cardiomyocyte tumor cells (AT-1) [32]. It exhibits spontaneous

contraction and firing of action potentials in cell culture.

Thus it is a well suited model system to study bioelectronic

devices [33,34]. We demonstrate the validity of our model

and we show evidence for an improved seal resistance of

HL-1 cells on nanocavity sensors compared to planar cell-chip

interfaces.

II. EXPERIMENTAL METHODS

We fabricated nanocavity electrode arrays by standard

optical lithography and sacrificial etching of chromium layers.

A detailed description of the fabrication process is given

elsewhere [24]. Briefly, gold electrodes, feed lines, bond pads,

and chromium sacrificial layers were fabricated on silicon-

silicon oxide wafers using a two-step optical lithography

process. The whole structure was insulated against electrolytes

via the plasma-enhanced chemical vapor deposition of 800 nm

silicon oxide and silicon nitride layers. The apertures and

bond pads of the device were opened by reactive ion etching.

We used sacrificial layer etching of the chromium layer

to open the nanocavity covering the gold electrode. The

nanocavities above the electrodes have a diameter of 30 µm

and a height of 70 nm. The size of the central aperture is

5 µm in diameter and 800 nm in height. HL-1 cells, kindly
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provided by William Claycomb, represent a hybrid between

embryonic and adult myocytes. They form confluent layers

and are connected via gap junctions. HL-1 cells generate action

potentials spontaneously, pervading the entire cell population

[32]. We have cultured cells and seeded them onto chips as

previously described [24]. Briefly, the cells were kept in a T25

flask with a supplemented Claycomb medium (supplemented

with 10% FBS, 100 µgml−1 penicillin-streptomycin, 0.1 mM

norepinephrine, and 2 mM L-glutamine) in an incubator at

37◦C. After coalescing of the the cells to a confluent layer

they were passaged using standard procedures. Approximately

3000 cells were plated in 50 µl of the medium onto the

nanocavity chip. After 4 h of incubation, the chips were

topped up with fresh medium. The medium was changed daily

and the chips were measured after three to four days when

cells had reached confluence. Cellular activity was recorded

from the potential between the nanocavity electrodes versus an

extracellular Ag–AgCl reference electrode using a home-built

64-channel voltage amplifier system. The amplifier consists

of a preamplifier and a main stage with a total amplification

factor of 1022. Electrode signals were sampled with a rate of

10 kHz with the MED64 CONDUCTOR 3.1 software. Impedance

measurements were performed with a potentiostat Autolab,

PGSTAT 300.

III. SENSOR IMPEDANCE

The cell-sensor interface for dish electrodes has been

studied in one dimension [35] as well as in two dimen-

sions [28,30]. Common models to calculate the electrical

properties of a given cell-sensor interface are the point-contact

and the area-contact models [26,30,31,35,36]. Both models

represent elements of the membrane, the electrode, and the

chip either as resistors or capacitors. The area-contact model

dissects the cell and the chip into infinitesimal units, which

are related to each other by Kirchhoff’s laws taking the

spatial distribution of electrical elements into account. The

point-contact model is an approximation of the area-contact

model. It ignores the spatial dependency of voltages and

currents. To describe the nanocavity device we will use a

combination of both the area- and the point-contact models. We

describe the cavity by a continuous two-dimensional system

and the rest of the cell-sensor interface by a point-contact

model. The description of the cavity which we introduce

is similar to Heaviside’s Bessel cable in two dimensions.

This model has been used to describe the signal propagation

along cellular membranes [37] and between cells in a thin

layer [38,39]. An electrode immersed into an aqueous solution

can be seen as an interface, which separates electron charge

carriers from ionic charge carriers. Given that applied voltages

are small enough to avoid electrochemical processes at the

electrode, the interface can be described by a constant phase
element

Z(ω) =
Z0

(iω)β
. (1)

Z0 is a constant that depends on the electrode material, the

exposed surface area, and the environment. For systems with

gold-platinum electrodes and water the value of β is around 0.8

or 0.9 [40,41]. The alleged reason for this power-law behavior

is a nonsmooth and fractal surface topology of the electrode

material [42–44]. With a model of the cell-sensor interface

(Fig. 1), we can write an equation for an infinitesimal element

in the cavity [Fig. 1(c)]

Zcav + dZcav =
(

1

Zcav

+
1

dX

)−1

+ dR, (2)

where dX and dR are described at position s in a cylin-

drical system. s is the distance to the entry point of the

cavity, which itself is located at a radius r0. Zcav(s) is the

impedance of a ring electrode covered with a nanocavity

with inner radius r0 and outer radius r0 + s. We can also

write

dR = ρ
ds

2π (s + r0)h
≡

a

s + r0

ds, (3)

where h is the height of the nanocavity, ρ is the resistivity of

the electrolyte, and a is a constant proportional to the inverse

height. Also

dX =
1

2πCh(s + r0)(iω)βds
≡

b(ω)

(s + r0)ds
, (4)

where Ch is the quasicapacitance per unit area and β the

exponent of the constant phase element. We introduce a new

variable b(ω) to include these parameters and to simplify the

equation. Equation (2) can be expressed along an infinitesimal

element ds as a differential equation

Z′
cav(s) =

a

s + r0

−
Zcav(s)2(s + r0)

b
, (5)

which describes the impedance of a nanocavity electrode with

an inner radius r0 as a function of s. The boundary condition

is Zcav(s = 0) → ∞: an infinitesimally thin electrode ring has

an infinite impedance. The solution to the differential equation

is

Zcav(s) =
√

ab

(s + r0)

−iI1

(√

a
b
r0

)

Y0

[

i
√

a
b
(s + r0)] + Y1

(

i
√

a
b
r0

)

I0

[√

a
b
(s + r0)

]

I1

[√

a
b
(s + r0)

]

Y1

(

i
√

a
b
r0

)

− I1

(√

a
b
r0

)

Y1

[

i
√

a
b
(s + r0)

] , (6)

where In are modified Bessel functions of the first kind of

order n, Yn are Neumann functions (Bessel functions of the

second kind) of order n (see Appendix A for the derivation

and Appendix B for a discussion of the solution’s asymptotic
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FIG. 1. The cell-sensor interface. (a) The coupling of the cell

to the measurement system is shown. VM is the cell’s potential in

reference to extracellular space. Zjm describes the impedance of

the cell membrane covering the aperture of the sensor, Rj is the

seal resistance, scaling the leakage current from the junction to the

electrolyte. ZS is the impedance of the nanocavity sensor and ZM is

the impedance of the measurement setup. VS is the voltage measured

with the voltage amplifier. (b) The system is shown in more detail.

The cell with Hodgkin-Huxley elements embedded in the membrane

sits on the nanocavity electrode. V i
m is the Nernst voltage of the free

membrane of the ion type i, gi
m is the membrane conductivity per

unit area for this specific ion. cm is the capacitance per unit area

of the cell membrane. Analogously, V i
jm is the Nernst voltage of

the attached membrane, gi
jm the attached membrane’s conductivity,

and cjm the capacitance. Also shown is a voltage amplifier attached

to the electrode. Zc is the impedance of the central spot of the

microelectrode and Rj is the leak resistance within the junction.

h is the height of the nanocavity. (c) A segment of the nanocavity

in the radial direction is shown. dR is the ohmic resistivity of the

electrolyte and dX the constant phase impedance of the electrode.

Both R(r) and X(r) are functions of the distance r to the center of

the electrode.

behavior). To calculate the total impedance of the sensor ZS

we have to add the impedance of the central spot

ZS =
(

1

Zcav(rmax − r0)
+ (iω)βChπr2

0

)−1

. (7)

r0 is the radius of the central opening, rmax the total electrode

radius. This equation describes the impedance of a nanocavity

microelectrode exclusively as a function of the geometry,

the conductivity of the electrolyte, and the parameters of the

electrode’s impedance. We can use it to fit the experimental

data (Figs. 2 and 3).

IV. SIGNAL PROPAGATION

A. Propagation of action potentials

Cells can generate action potentials due to voltage-

dependent ion channels embedded in their membranes. The

total current density through the cell’s membrane is the sum

of capacitive and ionic current densities [30,45] and depends

on the cellular potential VM

jm = cm

dVM

dt
+

∑

i

gi
m

(

VM − V i
0

)

, (8)

where jm is the current density through the membrane, cm the

membrane capacitance per unit area, and gi
m the conductance

with respect to the ion type i per unit area. The equilibrium

(Nernst) voltage of ion type i is V i
0 . In the typical case

without current clamp control, the ionic current through

the membrane cancels the capacitive current. Thus, it is

difficult to measure an extracellular signal in the vicinity of a

membrane in Hodgkin-Huxley equilibrium. Inhomogeneities

of the membrane attached to a sensor are a prerequisite for the

recording of cellular activity [29]. Inhomogeneities of cardiac

cells on sensors are discussed elsewhere in detail [33,34].

A scaled conductance of the ion channels in the attached

FIG. 2. Shown is a Bode plot of experimental data (symbols)

and model fits (solid lines). The absolute value and the phase of the

impedance as a function of the frequency are shown. The squares are

measured values of the impedance. The circles are measured values of

the phase. The solid lines are the absolute value and phase of Eq. (7).

The microelectrode used for this measurement has a central opening

with radius r0 = 2.5 µm and a total radius of r = 15 µm. The theory

curves are calculated for a = 6 × 105 �, Ch = 59 µFcm−2, and

β = 0.89.
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FIG. 3. Shown is a plot of the phase as a function of the absolute

value of the impedance. We compare experimental data (circles) with

a fit from Eq. (7) (solid line). The parameters are the same as in Fig. 2.

membrane by a factor χi where i = Na, K, Ca

gi
jm = χig

i
m (9)

leads to

jjm = cm

dVM

dt
+

∑

i

χig
i
m

(

VM − V i
0

)

, (10)

which we will take as an ansatz to simulate the measured

signals. Here we assume that the equilibrium Nernst potential

within the cleft is identical to the free membrane potential V i
0

and that the capacitance per unit area of the free membrane

cm is identical to the capacitance per area of the attached

membrane cjm. Using the equivalent circuit in Fig. 1(a),

the theoretical impedance function of the nanocavity sensor,

Eq. (7), and an impedance of the voltage amplifier ZM

consisting of a capacitance of 150 pF and a resistance of

100 M� in parallel, we can calculate signals for any cell type

given that the ion channel kinetics are known. We choose

a model of human myocardial cells as an approximation

for HL-1 cells [46]. It is a Hodgkin-Huxley model for 12

different ion channels consisting of 28 differential equations.

We consider all of the sodium currents to scale with a common

FIG. 4. The electrical activity of HL-1 cells growing on the

surface of a chip with nanocavity microelectrodes has been recorded.

We show four different signals, which are not only qualitatively but

quantitatively different. The used microelectrodes are geometrically

identical. They have a central opening with radius r0 = 2.5 µm and a

total radius of r = 15 µm. The measurements have been performed

in Claycomb’s medium against a Ag–AgCl reference electrode.

χNa. The calcium currents with χCa and the potassium currents

with χK. We have chosen a Gaussian stimulation signal Istim(t)

to excite the action potential of the model cell. The model

works with absolute currents. Estimating the radius of an HL-1

cell to be 7 µm [47] and knowing the electrode opening radius

of 2.5 µm we assume χtotal ≈ 5% of the total current Itotal

through the membrane to be important for the signal

Ijm = χtotalItotal. (11)

To calculate signals we have to convolve the model action

potential with the response function parametrized in time.

However, it is simpler to multiply the Fourier-transformed

action potential of the cell with the response function of the

measurement system and to transform the result back. The

free parameters for our model are the three scaling parameters

χi and the seal resistance Rj . The amplifier and the sensor

impedance are kept constant for all simulated signals. For

comparison we measured a total number of 57 signals on

five different chips, each with 36 nanocavity electrodes. We

present an overview of the signals, which we measured (Fig. 4)

and explain them within the framework of our model. The

results of our simulation are shown in Fig. 5. Signal 1 has a

large amplitude. We can find signals of similar magnitude and

shape in about 10% of our data. They require a very strong

sodium peak χNa = 2.7, χK = 1.2, and χCa = 1.0 and a large

seal resistance Rj = 50 M�. Similar signals are observed in

field-effect transistor experiments with rat cardiac muscle cells

as well [33,34]. The simulation of signal 2 requires a seal

resistance of Rj = 30 M�, χNa = 2.1, χK = χCa = 1.0. The

amplitude of this signal is smaller, especially the overshooting

to positive voltages after the strong negative sodium peak. It is

a typical signal which appears in about 50% of all cases. The

typical amplitude is about 0.5 mV. Signal 3 can be modeled

with Rj = 20 M�, χNa = 1.35, and χK = 1. Here we have to

split the calcium currents into two parts. The L-type calcium

FIG. 5. Simulated signals for the same type of electrode as in

Figs. 2 and 4. The presented signals have been calculated from the

circuitry in Fig. 1 and a model for human myocardial cells [46]. Free

parameters to reproduce the experimental data are the scaling of the

ion channels χi and the quality of the seal between the cell and sensor

measured with Rj . Signal 1 has been calculated with Rj = 50 M�,

χNa = 2.7 and χK = 1.2 χCa = 1.0. Signal 2 has been calculated with

Rj = 30 M�, χNa = 2.1, χK = 1.0, and χCa = 1.0. Signal 3 shows

a leaky cell with Rj = 20 M�, χNa = 1.35, χK = 1, and χ 2
Ca = 2.3.

The background calcium current is very strong χ 1
Ca = 14. Signal 4 is

calculated with Rj = 35 M�, χNa = 1.3, and χK = χCa = 1.
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current and sarcolemmal calcium pump current scale with

χ2
Ca = 2.3, the background calcium current is quite strong

χ1
Ca = 14. Very large inhomogeneities in the calcium-current

contributions have been described previously [33,34]. Signals

of this shape appear in about 10% of the measurements.

This might be an indication of cell damage from the large

leakage current. Signal 4 is a typical example of a weak signal

with an amplitude around 0.3 mV that appeared in 30% of

our measurements. Rj = 35 M�, χNa = 1.3, χK = χCa = 1.

Signals of this type have no visible overshoot after the

sodium peak. The seal resistance for the simulated signals

above are in the range of a few tens of M�s. Previously

reported seal resistances for plain chips are a factor of 10

smaller [33,48]. So far, high seal resistances without active

suction or penetration of the probe have only been shown for

spine-shaped gold protrusions [49]. We explain the excellent

sealing of the electrode by the small opening which can be

covered completely by the cell. Electron microscopy studies

of the cell-chip interface reveal that the cell membrane seals

the opening very well [24]. It did not escape out attention

that we have not found any signals which stand out with their

potassium contributions although we find examples for strong

calcium and strong sodium currents. The absence of potassium

signals has been described by [33] as well.

B. Influence of the geometry on signal propagation

From the equation describing the nanocavity impedance,

Eq. (7), we can study how changing the radius influences the

impedance of the electrode and the signal transfer from the cell

to the sensor. The signal transfer function of an attached cell

can be calculated if the junction membrane impedance Zjm(ω)

is known. We use a linear model where this impedance consists

of a parallel capacitance and a resistance which is described in

detail in [30]. We want to ascertain the signal transfer function

h(ω) which is in frequency space defined by

VS(ω) = h(ω)VM (ω) (12)

for different electrode sizes. Figure 6 shows the signal transfer

function for sensors with electrode radii of 10, 15, and 50 µm.

FIG. 6. Three response functions calculated for three different

electrode radii. The graphs show the absolute values |h(f )| and the

phases arg(h(f )) as indicated by the arrows. All other parameters,

Ch = 59 µFcm−2, a = 6 × 105 �, Rload = 108 �, Cload = 150 pF,

Rj = 15 M�, β = 0.89, Rjm = 20 G�, and Cjm = 2.5 pF are kept

constant.

The diameter of the inner opening is 5 µm. We can see that

the nanocavity sensor system is a high pass filter with a

step-like shape. The slope of the step depends weakly on

the electrode diameter. The value to which |h(ω)| converges

depends on the seal resistance, the sensor impedance, and

the impedance of the measurement setup. Greater electrode

diameters increase the maximum value of |h(ω)| and shift

the cutoff frequency of the high pass filter toward smaller

frequencies. In this sense, a larger electrode diameter improves

the sensor performance at constant aperture size.

V. CONCLUSION AND OUTLINE

In summary, we have calculated the complex impedance

of a nanocavity sensor, which is in good agreement with

experimental data obtained from impedance spectroscopy

measurements. Furthermore, we have presented a model for

analyzing the signal transfer of cells growing on top of

the sensor array. Action potentials have been calculated and

compared with the measurements from HL-1 cells in vitro. We

have confirmed the validity of our model and demonstrated

the influence of the geometry of such devices. As a result of

our analysis we find that the seal resistance between the cell

and the chip is a factor of 10 greater than in the plain standard

electrode system. Thus, cell signals can reliably be measured

with a high spacial resolution. A next step is the application

of our model to dual-electrode nanocavity devices [23]. These

sensors feature a top electrode at the ceiling of the cavity and

allow signal-correlation analysis, which will possibly result in

an improved signal-to-noise-ratio for extracellular recording

of action potentials.
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APPENDIX A: DERIVATION OF THE IMPEDANCE

EQUATION (6)

Equation (5) is a Riccati equation of the form

z′(s) = f (s)z2(s) + h(s), (A1)

with f (s) = −(s + r0)/b and h(s) = a/(s + r0). The Riccati

differential equation can be transformed into a second-order

differential equation

y ′′(s) −
f ′(s)

f (s)
y ′(s) + f (s)h(s)y(s) = 0, (A2)

such that z(s) = −y ′(s)/[f (s)y(s)] is the solution of the

original Riccati equation [50]. After this transformation we
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(

(

(

(

FIG. 7. This figure shows the error measure Eq. (B7) for the

approximations Eq. (B4) (dashed line) and Eq. (B5) (solid line).

Since λ depends on ω, the quality of the approximation Eq. (B4) is

deteriorating for greater frequencies. We can see that for the presented

nanocavity sensors, Eq. (B5) is a good approximation.

get

y ′′(s) −
y ′(s)

s + r0

−
a

b
y(s) = 0. (A3)

The substitution x = i
√

a/b(s + r0) leads to the slightly

modified Bessel equation

x2 d2y

dx2
− x

dy

dx
+ x2y = 0, (A4)

solved by y(x) = x[c1J1(x) + c2Y1(x)], where Jn and Yn

are Bessel functions of the first and second kinds of order

n. Putting everything together, with dy/dx = x[c1J0(x) +
c2Y0(x)], we get

z(s) =
√

ab\ i

s + r0

J0(x(s)) + αY0(x(s))

J1(x(s)) + αY1(x(s))
with α = c2/c1.

(A5)

To fix the constant α a boundary condition is necessary. In the

limit

z(s → 0) =
√

ab
[

I0

(√

a
b
r0

)

+ αY0

(

i
√

a
b
r0

)]

r0

[

I1

(√

a
b
r0

)

− iαY1

(

i
√

a
b
r0

)] , (A6)

where In(x) = i−nJn(ix), the condition of a vanishing denom-

inator fixes α so that we obtain the final result which is given

in Eq. (6).

APPENDIX B: ASYMPTOTIC BEHAVIOR

To study the asymptotic behavior of the solution Eq. (6),

we rewrite it in units of a and in the parameters λ(ω) =
√

a
b(ω)

(r0 + s) and ν = r0

r0+s
, which are both dimensionless

Zcav(s) = a
−iI1(νλ)Y0(iλ) + I0(λ)Y1(iνλ)

λ(−I1(νλ)Y1(iλ) + I1(λ)Y1(iνλ)
. (B1)

Given λ ≪ 1, for small resistivities and not too large frequen-

cies, we can linearize the equation. The limit λ → 0 (for ν not

necessarily small) is

Zcav(λ ≪ 1) = a

(

2

(1 − ν2)λ2
+ O(1)

)

(B2)

≃
2b

2r0s + s2
(B3)

=
1

π (2sr0 + s2)Ch(iω)β
. (B4)

The approximately equal sign indicates that we neglect the

O(1) term. The result is what we would expect as impedance

from an electrode ring with area A = π [(r0 + s)2 − r2
0 ] =

π (2r0s + s2). If the radius of the electrode s + r0 is large

compared to the aperture r0, ν is small (for λ not necessarily

small). In this case

Zcav(ν ≪ 1) = a

(

I0(λ)

λI1(λ)
+ O(ν2)

)

≃
aI0(λ)

λI1(λ)
. (B5)

Using the parameters from Fig. 2 and typical angular frequen-

cies of ω ∈ [0,2π × 10 000Hz] ≃ [0,60 000 1
s
] for

λ =
√

a

b(ω)
(r0 + s) =

√

2πaCh(iω)β (r0 + s) (B6)

we get that |λ| ∈ [0,3]. Also ν ≈ 0.2, which indicates that for

small frequencies, both approximations are comparable. For

greater frequencies, Eq. (B5) should be the better approxima-

tion. In Fig. 7 we compare Eqs. (B4) and (B5) with the full

solution as a function of f = ω/2π . The error measure shown

is

E =
|Zcav| −

∣

∣Z
appr
cav

∣

∣

|Zcav|
, (B7)

where Zcav is the full solution, and Z
appr
cav are the two

approximative solutions. This figure confirms our conclusion.
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A. Offenhäusser, Eur. Phys. J. E 24, 1 (2007).

[32] W. C. Claycomb, N. A. Lanson, B. S. Stallworth, D. B. Egeland,

J. B. Delcarpio, A. Bahinski, and N. J. Izzo, Proc. Natl. Acad.

Sci. 95, 2979 (1998).
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