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       ZUSAMMENFASSUNG 

Mit dieser Arbeit konnte durch zwei verschiedene Strategien (Reaktion- und 

Proteindesign) die Einsatzfähigkeit der Hydroxynitril-Lyase aus Arabidopsis thaliana 

(AtHNL) zur enantioselektiven Synthese von industriell relevanten Cyanhydrinen 

gezeigt werden. 

Die biokatalytische Synthese von Cyanhydrinen wird von einer nicht-selektiven 

racemischen Produktbildung begleitet, die die Enantioselektivität der 

Cyanhydrinsynthese empfindlich stören kann. Diese Nebenreaktion wird maßgeblich 

durch den pH-Wert, die Temperatur und den Wassergehalt des Reaktionsmediums 

beeinflusst. Die Unterdrückung der racemischen Produktbildung wird in technischen 

Prozessen in wässrigen oder organisch-wässrigen Reaktionssystemen durch ein 

Absenken des pH-Werts unter pH 5 und Reaktionstemperatur � 10 °C erreicht. 

Unterhalb von pH 5 ist die AtHNL jedoch sehr instabil.  

Aus diesem Grund wurden in dieser Arbeit zwei Strategien zu Etablierung der AtHNL 

für die Synthese enantiomerenreiner Cyanhydrine verfolgt. 

Zum einen wurden Reaktionsbedingungen identifiziert, bei denen die AtHNL stabil 

vorliegt und die racemische Produktbildung unterdrückt wird. Hierbei konnte durch 

den Einsatz des einphasigen Puffer-gesättigen organischen Lösungsmittels Methyl-

tert.butylether eine nahezu vollständige Unterdrückung der racemischen 

Produktbildung bei gleichzeitig guter Enzymaktivität zur Synthese von mehreren 

industriell relevanten Cyanhydrinen identifiziert werden. 

Effiziente Cyanhydrinsynthesen konnten mittels unterschiedlicher Immobilisierungs-

methoden (z.B. adsorptive Trägerbindung, Einschluss in einer Gelmatrix, 

Quervernetzung von präzipitierter AtHNL) und Ganzzellbiotransformation erreicht 

werden. Als besonders geeignet erwiesen sich die Ganzzellbiokatalyse mit 

rekombinanten E. coli-Zellen sowie die adsorptive Bindung gereinigter AtHNL an 

Celite-Partikel. Bezüglich der Synthese von (R)-Mandelsäurenitril zeigten beide 

Präparationen eine vergleichbare katalytische Effizienz, Prozess- und Lagerstabilität, 

sodass durch mehrfache Recyclierung (6-8 Reaktionszyklen) eine maximale 

Produktausbeute von ~1,6 g (R)-Mandelsäurenitril pro g eingesetzter 

Zellfeuchtmasse erreicht werden konnte.  
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Die zweite Strategie verfolgte die Entwicklung einer im sauren pH-Bereich stabileren 

AtHNL Variante, die für den Einsatz im technisch etablierten wässrig-organischen 

Zweiphasensystem geeignet ist. Basierend auf der hohen strukturellen Ähnlichkeit 

zur stabileren HNL aus Manihot esculenta (MeHNL) wurden gezielt Aminosäuren an 

der Enzymoberfläche der AtHNL ausgetauscht. So konnte eine signifikante Aktivitäts- 

und Stabilitätssteigerung, sowie eine Verschiebung des pH-Spektrums ins saure 

Milieu erreicht werden. Im Vergleich zum Wildtyp-Enzym zeigt die Variante im pH-

Bereich von 4,5 – 6,5 eine bis zu 1,7-fach erhöhte Aktivität und bei pH 5 eine bis zu 

14-fach gesteigerte Stabilität von 2,23 h. Besonders wichtig für die Anwendung ist 

die gute Aktivität der Variante bei pH 4,5 (24 U/mg Spaltungsaktivität), verbunden mit 

einer Halbwertszeit von 0,22 h, wohingegen das Wildtyp-Enzym unter diesen 

Bedingungen inaktiv ist. Durch die enantioselektive Synthese verschiedener 

Cyanhydrine (ee: 92 - 99 %) im wässrig-organischen Zweiphasensystem bei pH 4,5 

und 0 °C konnte das Potential der Variante demonstriert werden. 
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       ABSTRACT 

In this work the potential of the hydroxynitrile lyase from Arabidopsis thaliana 

(AtHNL) for the enantioselective synthesis of industrially important cyanohydrins was 

demonstrated by two different principles: reaction- and protein engineering. 

The enantiomeric excess of this enzymatic reaction is strongly compromised by a 

non-selective side-reaction resulting in racemic cyanohydrins and thus lowering the 

enantiomeric excess of the biotransformation. This non-selective product formation is 

influenced by pH, temperature and the water content of the reaction medium. For 

industrial applications aqueous or aqueous-organic reaction systems are used where 

the racemic product formation is suppressed by lowering the pH below pH 5 and 

running the process at � 10 °C. However, both approaches are not feasible with 

AtHNL, since the enzyme is rapidly inactivated below pH 5.  

In order to enable the use of AtHNL for the enantioselective synthesis of industrial 

important cyanohydrins two strategies were developed in this work. 

The first strategy concerned the suppression of the racemic product formation by 

reaction engineering. Thereby, a micro-aqueous reaction medium (buffer-saturated 

mono-phasic methyl tert. butyl ether) was used to suppress the undesired side 

reaction, which resulted in a good enzymatic activity and high enantioselectivities for 

several industrially important cyanohydrins.  

Efficient cyanohydrin syntheses were reached in the established reaction system by 

application of whole cells and the use of immobilized enzyme (e.g., enzyme 

adsorption at celite particles, encapsulation in solgel, cross-linking of enzyme 

aggregates), respectively. Best results were obtained using whole recombinant E. 

coli cells as well as celite-adsorbed isolated AtHNL. For the synthesis of (R)-

mandelonitrile both preparations showed comparable catalytic efficiencies, process- 

and storage stabilities, resulting in a maximal productivity of ~1.6 g (R)-mandelonitrile 

per g wet cell mass (after 6-8 recycling steps). 
The second strategy was the development of a stabilized AtHNL variant which is 

stable under acidic conditions and thus applicable in industrially established 

aqueous-organic two-phase reaction systems. Based on the highly similar HNL from 

Manihot esculenta (MeHNL), which is stable under these conditions, the protein 
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surface of AtHNL was altered by eleven amino acid exchanges. Thereby, a 

significantly enhanced activity and stability, as well as a shift of the pH-spectrum to 

the acidic range were achieved. Compared to the wild type enzyme the variant 

showed an up to 1.7-fold enhanced activity at pH 4.5 – 6.5 connected with an up to 

14-fold enhanced stability at pH 5. Particularly important for the application is its good 

activity at pH 4.5 (24 U/mg cleavage activity) with a half-life of 0.22 h, while the wild 

type enzyme is inactive under such conditions. 

The potential of the variant was demonstrated by the enantioselective syntheses of 

different aromatic and heteroaromatic cyanohydrins (ee: 92 - 99 %) in an aqueous-

organic reaction system at pH 4.5 and 0 °C. 
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KAPITEL 1  

1. Einleitung 

1.1. Die Entdeckung und Anwendung von Biokatalysatoren 

Die Nutzung biokatalytischer Prozesse reicht in der Geschichte weit zurück. Dabei 

stellt die spontane Vergärung zuckerhaltiger Fruchtsäfte die einfachste Form eines 

solchen Prozesses (Fermentation) ohne menschliches Zutun dar und diente im Laufe 

der Jahrhunderte als Grundlage für komplexere biokatalytische Anwendungen.[1] 

Erste schriftliche Hinweise auf die Nutzung von Fermentationsprozessen liefert das 

vor über 5000 Jahren verfasste Gilgamesch-Epos, in dem unter anderem die 

Herstellung von Brot und Bier beschrieben wurde.[2]  

Die wissenschaftliche Aufklärung biokatalytischer Prozesse begann Anfang des 19. 

Jahrhunderts durch die Erforschung des alkoholischen Gärungsprozesses, welcher 

in unabhängigen Versuchsreihen auf lebende Hefezellen zurückgeführt werden 

konnte.[3, 4] Mitte des 19. Jahrhunderts postulierte Louis Pasteur die „vitalistische 

Gärungstheorie“, die lebende Mikroorganismen als Katalysator in Gärungsprozessen 

beschreibt.[5] Im darauf folgenden Jahr (1858) beschrieb Pasteur die kinetische 

Racematspaltung von Weinsäure, katalysiert durch den Pilz Penicillium glaucum, und 

damit den ersten stereoselektiven biokatalytischen Spaltungsprozess.[6] Ende des 19. 

Jahrhunderts, im Jahr 1897, widerlegte Eduard Buchner die „vitalistische 

Gärungstheorie“, indem er Gärungsprozesse mittels zellfreier Hefeextrakte 

durchführte und die Existenz von intrazellulären Enzymen bewies.[7] In den darauf 

folgenden Jahren wurden weitere zellfreie Enzyme identifiziert und ihr katalytisches 

Potential für die industrielle Anwendung außerhalb der Lebensmittelherstellung 

entdeckt.[8] Ein klassisches Beispiel ist die Stärke-hydrolysierende 

Enzympräparationen des Pilzes Aspergillus oryzae, die seit Ende des 19. 

Jahrhunderts von der Firma Jokichi Takamine produziert wurde und auch heute noch 

unter dem Namen Taka-Diastase vertrieben wird.[9] 
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Mit dem Beginn der 1980er Jahre begann die Entwicklung molekularbiologischer 

Methoden. Durch die Identifikation neuer Biokatalysatoren, deren Optimierung mittels 

Mutagenese sowie ihrer kostengünstigen Produktion mittels heterologer Expression 

in Mikroorganismen, steht heute eine große Bandbreite an Biokatalysatoren für 

diverse Reaktionen bereit.[10] Dadurch stieg in den letzten Jahren auch der Einsatz 

von Biokatalysatoren im industriellen Maßstab stark an. 

Gegenüber konventionellen chemischen Katalysatoren besitzen Biokatalysatoren 

den Vorteil, dass sie zumeist umweltverträglich in wässrigen Lösungen unter milden 

Reaktionsbedingungen, wie beispielsweise moderaten Temperaturen und neutralem 

pH eingesetzt werden können.[11] Die enzymatische Umsetzung von schlecht 

wasserlöslichen, organischen Verbindungen kann jedoch auch in nicht-wässrigen 

organischen Lösungsmitteln, ionischen Flüssigkeiten, überkritischen Fluiden oder 

Kombinationen aus den genannten Reaktionsmedien erfolgen.[12, 13] 

Neben den milden Reaktionsbedingungen verfügen Enzyme über eine hohe Regio-, 

Chemo- und Stereoselektivität, die sie zur Darstellung enantiomerenreiner 

Feinchemikalien und pharmazeutischer Produkte mittels einem oder weniger 

Syntheseschritte zunehmend attraktiver machen.[14, 15] 

Hydroxynitril-Lyasen können beispielsweise die stereoselektive Carboligation aus 

achiralen Vorstufen katalysieren, die mit konventionellen chemischen Methoden nur 

schwer durchführbar ist.[16, 17] 



EINLEITUNG 
 

 

3 

1.2. Die Entdeckung der Hydroxynitril-Lyasen  

Im Jahr 1837 beobachteten Wöhler und Liebig die Spaltung des Amygdalins der 

Mandel durch Bittermandelextrakte („Emulsin“) in eine Zuckerkomponente, 

Benzaldehyd und Blausäure (Abb. 1).[18] 

 

 
Abb. 1: Spaltung von Amygdalin durch Bittermandelextrakt. Amygdalin wird durch die Enzyme 
des Bittermandelextrakts (�-Galactosidase, Hydroxynitril-Lyase) in eine Zuckerkomponente 
(Gentiobiose), Benzaldehyd und Blausäure gespalten. 

Etwa 70 Jahre später, im Jahr 1908, berichtete Rosenthaler, dass mittels Emulsin 

ebenfalls die stereoselektive Umkehrreaktion, die Blausäureaddition an 

Benzaldehyd, möglich sei (Abb. 2).[19] Mit dieser Entdeckung beschreibt Rosenthaler 

eine der ersten asymmetrische biokatalytische C-C-Bindungsknüpfung.  

 

 
Abb. 2: Stereoselektive Blausäureaddition an Benzaldehyd katalysiert durch Bittermandelextrakt. 

In den darauf folgenden Jahren konnte der Versuch mit weiteren Pflanzenextrakten 

erfolgreich wiederholt werden,[20, 21] sodass Zweifel an der enzymkatalysierten 

Reaktion aufkamen und chirale Verunreinigungen der Pflanzenextrakte als 

Katalysator der Reaktion vermutet wurden.[22, 23] Aufklärung lieferte Albers bis zum 

Jahr 1941, indem er zuerst in Rohzellextrakten der Mandel und anschließend mit 

teilgereinigten Enzymextrakten, die Hydroxynitril-Lyase (HNL) katalysierte, 

asymmetrische Blausäureaddition belegen konnte.[24, 25] Seit den 1960er Jahren 

wurden umfangreiche Untersuchungen an HNLs aus diversen (meist pflanzlichen) 

Quellen durchgeführt, die im Folgenden näher beschrieben werden.[26, 27]  
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1.2.1. HNLs katalysieren die Cyanogenese und Hydrocyanierung 

Hydroxynitril-Lyasen werden in der Literatur auch als Oxynitrilasen bezeichnet und 

zählen zur Enzymklasse der Aldehyd-Lyasen (EC 4.1.2.10/11/46/47). Sie 

katalysieren die asymmetrische reversible Spaltung von Cyanhydrinen in eine 

Carbonylkomponente (Aldehyd oder Keton) und Blausäure (Abb. 3).[28] Dabei ist die 

Spaltungsreaktion beispielsweise Bestandteil der Cyanogenese, der Freisetzung von 

Blausäure, welche hauptsächlich aus der Pflanzenfamilie der Rosaceae 

(Rosengewächse) bekannt ist.[29, 30] Die Hydrocyanierung beschreibt die 

stereoselektive Synthesereaktion, bei der Blausäure an eine Carbonylkomponente 

addiert wird.  

 

 
Abb. 3: Hydroxynitril-Lyase katalysierte reversible Spaltung von Cyanhydrinen in ein Aldehyd oder 
Keton (Carbonylkomponente) und Blausäure. 

1.2.2. Die Cyanogenese der höheren Pflanzen 

Die native Funktion von HNLs ist die Cyanogenese, also die Freisetzung von 

Blausäure (HCN) mittels Cyanhydrinspaltung, die zumeist als Abwehrstrategie 

gegenüber Herbivoren und Mikroorganismen bei über 2650 Pflanzenspezies 

dokumentiert wurde.[31-33] Jedoch verfügt nicht jede cyanogene Pflanze über HNLs, 

da die Freisetzung von HCN ebenfalls durch eine langsamere chemische Reaktion 

erfolgen kann.[34] In der Literatur sind derzeit ca. 100 cyanogene Komponenten 

beschrieben, welche als Ausgangssubstanz der Cyanogenese dienen können.[32] Bei 

den pflanzlichen cyanogenen Verbindungen handelt es sich zumeist um cyanogene 

Glycoside, bei denen das Cyanhydrin über eine glycosidische Bindung an einen 

Zuckerrest geknüpft ist und somit stabilisiert wird.[35] Diese cyanogenen Glycoside 

können neben ihrer Funktion im pflanzlichen Abwehrsystem auch als Stickstoffquelle 

bei der Aminosäuresynthese genutzt werden.[36, 37] 

Die Effektivität der Cyanogenese als Abwehrsystem wird durch die hohe Toxizität der 

Blausäure, bzw. des durch Dissoziation gebildeten Cyanids erreicht, welches eine 
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gezielte Inhibierung vieler Metalloenzyme bewirkt. In erster Linie wird dabei die 

Cytochrom-c-Oxidase, welche eine essentielle Funktion in der Atmungskette des 

Zellstoffwechsels von aeroben Organismen hat,[30] durch irreversible Bindung des 

Cyanids mit dem zentralen Eisen(III)-Ion des Häm-a3-Cofaktors inhibiert, wodurch 

kein Elektronentransfer auf den Sauerstoff erfolgen kann. Diese Unterbrechung der 

Zellatmungskette bewirkt den Zelltod durch Ersticken.[38] Neben der Inaktivierung der 

Cytochrom-c-Oxidase bindet Cyanid an das Eisen(II)-Ion des Hämoglobins roter 

Blutkörperchen, die somit die Fähigkeit der Sauerstoffbindung verlieren. Diese 

Inaktivierung ist jedoch im Vergleich zur Desaktivierung der Zellatmungskette 

weniger toxisch.[39] 

 

1.2.3. Pflanzlicher Metabolismus cyanogener Glycoside 

Bedingt durch die hohe Toxizität der Blausäure (bzw. des Cyanids) auf aerobe 

Organismen, können cyanogene Pflanzen instabile Cyanid-haltige Verbindungen 

nicht in der Pflanzenzelle lagern. Aus diesem Grund bilden sie in ihren Zellen stabile 

cyanogene Komponenten durch die glycosidische Verknüpfung der Cyanid-haltigen 

Verbindungen mit Zuckerresten, sogenannte cyanogene Glycoside. Diese werden im 

Bedarfsfall enzymatisch gespalten. Höhere Pflanzen haben ein komplexes System 

zur Synthese, Lagerung und Spaltung der cyanogenen Glycoside entwickelt. Im 

Folgenden wird dies am Beispiel des Maniok (Manihot esculenta) beschrieben (Abb. 

4, Abb. 5).  

Die Synthese des cyanogenen Glycosids Linamarin (Abb. 4, D) erfolgt bei der 

Maniok-Pflanze in erster Linie in den Sprossspitzen, ausgehend von der 

�-Aminosäure Valin (Abb. 4, A).[40] Im ersten Schritt des Biosynthesewegs zum 

Linamarin, wird aus Valin mittels zweier membranständiger (Tonoplast) Cytochrom-

P450-Enzyme (CYP79D1 und CYP79D2) das Intermediat 2-Methyl-propanal-oxim 

(Abb. 4, B) gebildet, welches in die Vakuole sekretiert wird.[41, 42] Das 2-Methyl-

propanal-oxim wird im nächsten Reaktionsschritt, katalysiert durch ein weiteres 

Cytochrom-P450-Enzym (CYP71E), zu Acetoncyanhydrin (Abb. 4, C) umgesetzt,[40, 

43, 44] welches anschließend mittels der UDP-Glycosyltransferase (UDP: 

Uridindiphosphat) mit Glucose verknüpft wird. Das gebildete Produkt ist das 

cyanogene Glycosid Linamarin (Abb. 4, D). Es verbleibt zur Lagerung in der Vakuole. 
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Die gezielte Freisetzung von Blausäure als Fraßschutz geschieht durch eine 

zweistufige enzymatische Spaltung des Linamarins. Im ersten Spaltungsschritt wird 

der Zucker des Linamarins mittels der �-Glucosidase Linamarase abgespalten. Das 

gebildete Acetoncyanhydrin wird im zweiten Schritt HNL-katalysiert gespalten, 

wodurch Blausäure (Abb. 4, F) und Aceton (Abb. 4, E) freigesetzt werden.[41] 

Ist die Pflanzenzelle intakt, so unterbleibt die Spaltungsreaktion aufgrund der 

räumlichen Trennung von Enzymen (Linamarase, HNL) und Linamarin. Das 

Linamarin befindet sich in der Zellvakuole und die Enzyme  sind in der Zellwand der 

Pflanzenzelle eingelagert. Die Spaltungsreaktion setzt ein, sobald die Pflanzenzelle, 

beispielsweise durch einen Fraßfeind, beschädigt wird und die Kompartimentierung 

der Zelle zerstört wird, wodurch das Linamarin aus der Vakuole austreten kann und 

mit den Enzymen in Kontakt kommt.   

Die meisten cyanogenen Pflanzen enthalten allerdings keine HNLs. Bei diesen 

Pflanzen findet die Spaltung von Cyanhydrinen spontan oberhalb pH 4 (pH-Wert der 

Vakuole) und 25 °C statt.[45] Die enzymatische Cyanhydrinspaltung, im weniger 

sauren Zellmilieu, verläuft jedoch deutlich beschleunigt und verstärkt somit den 

Abwehrmechanismus.[35] Dabei können cyanogene Pflanzen freigesetztes Cyanid 

nicht nur für die Abwehr von Fraßfeinden, sondern mittels enzymatischer Umsetzung 

(�-Cyanoalanin-Synthase, �-Cyanoalanin-Hydratase) auch für die Synthese der 

Aminosäure Asparagin (Abb. 4, K) nutzen. Ein weiterer Entgiftungsmechanismus, der 

bei Maniok schwach ausgeprägt ist, jedoch bei Säugetieren, Insekten und 

Mikroorganismen hauptsächlich genutzt wird, ist die enzymatische Umsetzung 

(Rhodanese) des Cyanids zu Thiosulfat (Abb. 4, G) und Sulfit (Abb. 4, H). 



EINLEITUNG 
 

 

7 

 
Abb. 4: Anabolismus, Katabolismus und Entgiftungsmechanismus des cyanogenen Glycosids 
Linamarin von Manihot esculenta. Die Synthese des Linamarins beginnt mit der Umsetzung der 
Aminosäure Valin. Die Spaltung von Linamarin wird durch die Linamarase und HNL katalysiert. Der 
Entgiftungsmechanismus führt zur Bildung von Thiocyanat, Sulfit und der Aminosäure Asparagin. 
Modifiziert nach Hickel.[35] 

 

 
Abb. 5: Schematische Darstellung einer Mesophyllzelle des Blattes von Manihot esculenta. 
Valin (A) wird über membranständige und frei in der Vakuole vorkommende Cytochrom-P450-Enzyme 
zu Aceton Cyanhydrin (C) und anschließend durch enzymatische Glucosilierung (UDPG-Glycosyl-
Hydratase) zu Linamarin (D) umgesetzt. Eine Beschädigung der Mesophyllzelle führt zur Aufhebung 
der Kompartimentierung des Linamarins (D) und der Enzyme Linamarase und HNL, sodass eine 
enzymatische 2-Schrittspaltung des Linamarins in Aceton (E) und HCN (F) stattfinden kann. Das HCN 
(F) ist sehr toxisch und dient zur Abwehr von Fraßfeinden. Der zelluläre Entgiftungsmechanismus 
kann HCN enzymatische zu Thiocyanit (I), Sulfit (H) oder Asparagin (K) umsetzen. Modifiziert nach 
McMahon.[41] 
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Der zuvor beschriebene Biosyntheseweg und Abbau des cyanogenen Glycosids 

kann mit leichten Änderungen auf andere cyanogene Pflanzen übertragen werden. 

So kann beispielsweise die Biosynthese des cyanogenen Glycosids statt mit Valin 

mit einer anderen Aminosäure wie beispielsweise Leucin, Isoleucin, Tyrosin oder 

Phenylalanin beginnen und infolge dessen zu einem anderen cyanogenen Glycosid 

führen. Von den 100 in der Literatur beschriebenen cyanogenen Verbindungen[32] 

sind 60 cyanogene Glycoside.[28] 

Zudem wurden Unterschiede bei der Kompartimentierung der cyanogenen Glycoside 

und ihrer spaltenden Enzyme beschrieben. So findet deren Trennung bei der Hirse 

(Sorgum bicolor) nicht auf intrazellulärer Ebene wie bei Maniok statt, sondern die 

cyanogenen Glycoside konnten in den Vakuolen der Epidermiszelllen nachgewiesen 

werden, wohingegen die �-Glycosidase und HNL in der darunter liegenden 

Mesophyllschicht lokalisiert sind.[35]  

Abgesehen von diesen Unterschieden konnte bei den bereits umfangreich 

charakterisierten HNLs eine hohe phylogenetische Diversität nachgewiesen werden, 

die im Folgenden näher beschrieben wird. 
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1.2.4. Die konvergente Evolution der HNLs 

Derzeit sind ca. 40 HNLs in der Literatur beschrieben, deren Ursprung größtenteils 

pflanzlich ist. So konnten HNLs in cyanogenen Nutzpflanzen wie beispielsweise 

Maniok (Manihot esculenta, MeHNL), Gummibaum (Hevea brasiliensis, HbHNL), 

Hirse (Sorghum bicolor, SbHNL), Lein (Linum usitatissiumum, LuHNL) und Mandel 

(Prunus amygdalus, PaHNL oder P. dulcis) nachgewiesen werden. Eine HNL wurde 

zudem aus einer nicht cyanogenen Pflanze, der Acker-Schmalwand (Arabidopsis 

thaliana, AtHNL), isoliert. Neben Pflanzen konnten HNLs zudem in einigen Bakterien 

(z.B. Chomobacter violaceum, Pseudomonas mephitica), Cyanobakterien (Anacyctis 

nidulans), Algen (Chlorella sp.), Pilzen (Fusarium sp.) und wenigen  Arthropoden 

nachgewiesen werden.[28, 46, 47] 

Analysen der Aminosäurezusammensetzung und Proteinstruktur zeigen, dass 

obwohl alle HNLs die enantioselektive reversible Spaltung von Cyanhydrinen 

katalysieren, sie eine große Sequenz- und Strukturdiversität aufweisen, sodass sie 

offensichtlich durch konvergente Evolution, ausgehend von zwei Faltungsmotiven 

(���-Bindemotiv oder �/�-Hydrolase Faltungsmotiv), entstanden sind (Abb. 6). 

 

 
Abb. 6: Theorie zur konvergenten Entwicklung der Hydroxynitril-Lyasen. Ausgehend von zwei 
Faltungsmotiven (���-Bindemotiv, �/�-Hydrolasefaltung) sind bisher vier HNL-Superfamilien bekannt 
(Zink-abhängige Dehydrogenasen, Flavin-abhängige Oxidoreduktasen, Acetylcholin-Esterasen und 
Serin-Carboxypeptidasen). Die LuHNL aus Linum usitatissiumum wird den HNLs mit Faltungsmotiv 
der Zink-abhängigen Dehydrogenasen zugeordnet. Die PaHNL aus Prunus amygdalus, PsHNL aus P. 
serotina und die PmHNL aus P. mume zählen zu den HNLs mit Faltungsmotiv der Flavin-anhängigen 
Oxidoreduktasen. Die SbHNL aus Sorghum bicolor ist derzeit die einzige HNL mit Serin-
Carboxypeptidase Faltungsmotiv und die MeHNL aus Manihot esculenta, HbHNL aus Hevea 
brasiliensis, AtHNL aus Arabidopsis thaliana, BmHNL aus Baliospermum montanum und die XfHNL 
aus Xylella fastidiosa sind HNLs mit Acetylcholin Esterase Faltungsmotiv zuzuordnen. 
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Die beiden Faltungsmotive teilen sich in insgesamt vier Superfamilien, in die nach 

aktuellem Stand alle HNLs eingeordnet werden können. 

 

1.2.4.1. HNLs mit dem Faltungsmotiv von Zink-abhängigen 
Dehydrogenasen 

Im Jahr 1988 wurde in der Nutzpflanze Lein (Linum usitatissimum), eine Zink-

abhängige, R-selektive HNL identifiziert (LuHNL), welche eine hohe 

Sequenzähnlichkeit zu langkettigen Zink-abhängigen Alkoholdehydrogenasen 

(Klasse I) aufweist.[48, 49] Obwohl Zink für die katalytische HNL-Aktivität des Enzyms 

notwendig ist, konnte keine katalytische Dehydrogenase-Nebenaktivität der LuHNL 

nachgewiesen werden.[50] Aufgrund der schlechten heterologen Expression in E. coli 

gelang die Charakterisierung der LuHNL nur teilweise. Zu ihren Besonderheiten zählt 

jedoch die ausschließliche Akzeptanz von aliphatischen Substraten, inbesondere von 

Ketonen.[51-53] 

 

1.2.4.2. HNLs mit dem Faltungsmotiv von Flavin-abhängigen 
Oxidoreduktasen 

Die HNLs dieser Superfamilie stellen eine homogene Gruppe dar und entstammen 

alle der Pflanzenfamilie der Rosengewächse (Rosaceae). Sie sind R-selektive, 

monomere Glycoproteine und benötigen FAD zur Aufrechterhaltung ihrer 

strukturellen Integrität. Dabei ist FAD nicht am katalytischen Mechanismus der 

Enzyme beteiligt.[54] Die Glycosilierung der Enzyme resultiert in Isoenzymen mit 

unterschiedlichen Glycosilierungsmuster. Die Art der Glycosilierung hat 

Auswirkungen auf die katalytische Aktivität der HNL.[55] Das natürliche Substrat aller 

HNLs dieser Superfamilie ist (R)-Mandelsäurenitril, wobei ebenfalls eine Vielzahl an 

aromatischen und aliphatischen Substraten akzeptiert werden. Die bestuntersuchte 

HNL dieser Superfamilie, deren Kristallstruktur und katalytischer Mechanismus sowie 

umfangreiche Charakteristika bekannt sind, stammt aus Prunus dulcis bzw. Prunus 

amygdalus (PaHNL) (Abb. 7).[56-58] Die PaHNL akzeptiert aromatische und 

aliphatische Substrate, bevorzugt allerdings Aldehyde. Sie kann aufgrund der 
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Glycosilierung nur in Hefen heterolog exprimiert werden, weist jedoch eine hohe 

Enzymaktivität und Stabilität unter sauren Bedingungen auf. Aus diesem Grund ist 

sie ein vielfach verwendeter Biokatalysator für die industrielle Synthese von (R)-

Cyanhydrinen.[16, 17] 

 

 
Abb. 7: Kristallstruktur der HNL aus Prunus amygdalus bzw. P. dulcis (PaHNL; pdb 1JU2). Das  
Enzym liegt in seiner Quartärstruktur als Monomer vor. Das Struktur-stabilisierende FAD (gelb) ist 
zentral im Enzym positioniert.  

Weitere HNLs mit ähnlichen Eigenschaften wurden beispielsweise aus Prunus 

serotina (PsHNL),[59-61] Prunus mume (PmHNL)[16] und Eriobotrya japonica 

(EjHNL)[62, 63] isoliert.  

 

1.2.4.3. HNLs mit Serin-Carboxypeptidase-Faltungsmotiv 

Im Jahr 1961 wurde erstmals eine HNL mit Serin-Carboxypeptidase Faltungsmotiv 

aus Hirse (Sorghum bicolor; SbHNL) beschrieben.[26] Bei der Strukturaufklärung 

(Abb. 8) der SbHNL wurde die typische heterotetramere Quartärstruktur (�2�2), bei 

der die �-Untereinheiten glycosiliert und durch zwei Disulfidbrücken verbunden sind, 

gezeigt.[57, 64] Aufgrund der Glycosilierung kommt die SbHNL in drei Isoformen vor 

(SbHNL-I, -II, -III). Das natürliche Substrat des Enzyms ist (S)-4-

Hydroxymandelsäurenitril. Die aus Hirsekeimlingen isolierte SbHNL wurde 

umfangreich charakterisiert.[26, 57, 64-67] Allerdings gelang die heterologe Expression in 

Pichia pastoris nur mit sehr geringer enzymatischer Restaktivität.[68] Neben der 
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strukturellen Ähnlichkeit der SbHNL zu Serin-Carboxypeptidasen konnte bei ihr eine 

geringe Carboxypeptidase- und Esterase-Aktivität nachgewiesen werden.[50] 

 

 
Abb. 8: Kristallstruktur der HNL aus Sorghum bicolor (SbHNL; pdb 1GXS). Die SbHNL zeigt in 
der Kristallstruktur ein typisches �/�-Hydrolase Faltungsmotiv.[69]  

1.2.4.4. HNLs mit Acetylcholin-Esterase Faltungsmotiv 

Die HNLs dieser Superfamilie stellen eine heterogene Gruppe dar, die jedoch am 

umfangreichsten charakterisiert wurden. HNLs dieser Gruppe wurden in Pflanzen der 

Familie der Wolfsmilch- (Euphorbiaceae) und Kreuzblütengewächse (Brassicaceae), 

sowie in einem pflanzenpathogenen Proteobakterium (Xanthomonadaceae) 

entdeckt. Basierend auf Arbeiten mit den Enzymen aus Manihot esculenta (MeHNL) 

und Hevea brasiliensis (HbHNL) wurde bis zum Jahr 2007 angenommen, dass 

ausschließlich S-selektive HNLs zu dieser Superfamilie zählen.[41, 70-73] Im Jahr 2007 

wurde die erste und bisweilen einzige R-selektive HNL aus Arabidopsis thaliana 

(AtHNL) mit Acetylcholin-Esterase Faltungsmotiv entdeckt.[74] Sowohl bei der HbHNL 

als auch der AtHNL konnte eine für Esterasen typische katalytische Nebenreaktion 

nachgewiesen werden.[75, 76] Die starke strukturelle Ähnlichkeit zwischen Esterasen 

und den Hydroxynitril-Lyasen dieser Gruppe wurde 2010 zudem im 

Gegenexperiment bestätigt. Dabei konnte einer Esterase aus Nicotiana tabacum 
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durch den Austausch zweier Aminosäuren im aktiven Zentrum eine leichte 

Hydroxynitril-Lyase Aktivität verliehen werden.[77] 

Bis zum Jahr 2011 wurde die Enzymgruppe um zwei weitere HNLs erweitert: die S-

selektive HNL aus der cyanogenen Pflanze Baliospermum montanum (BmHNL) und 

die HNL aus dem Proteobakterium Xylella fastidiosa (XfHNL), deren 

Stereoselektivität noch nicht aufgeklärt wurde.  

Im Folgenden werden exemplarisch die S-selektive MeHNL und die R-selektive 

AtHNL näher betrachtet. 

 

1.2.4.4.1. Die S-selektive HNL aus Manihot esculenta 

Die HNL aus Manihot esculenta zählt zu den am besten beschriebenen HNLs in der 

Literatur. Sie wurde im Jahr 1981 erstmals beschrieben[78] und seitdem umfangreich 

charakterisiert. Im Fokus der Untersuchungen standen einerseits ihre physiologische 

Funktion in der cyanogenen Maniok-Pflanze (siehe 1.2.2), da deren Knolle als 

Nahrungsmittel in einigen Regionen Afrikas dient, dabei jedoch einer speziellen 

Verarbeitung bedarf[44, 79] und andererseits die potentielle Anwendbarkeit des 

Enzyms als industrieller Biokatalysator. Dazu wurden insbesondere die 

biochemischen Eigenschaften sowie das Substratspektrum, die Kristallstruktur, und 

der katalytische Mechanismus aufgeklärt.[33, 80-83] 

Der katalytischer Mechanismus umfasst die für �/�-Hydrolasen typische katalytische 

Triade (Ser-80 – His-236 – Asp-208).[81] Der Reaktionsmechanismus für die Spaltung 

von Acetoncyanhydrin wurde durch ortsspezifische Mutagenese von verschiedenen 

Aminosäuren im aktiven Zentrum der MeHNL aufgeklärt. Dabei wird die 

Hydroxylgruppe des Acetoncyanhydrins über  Thr-11 und Ser-80 stabilisiert. His-236 

fungiert als katalytische Base, welche, vermittelt durch Ser-80, ein Proton von der 

Hydroxylgruppe des Cyanhydrins auf das dabei entstehende Cyanid überträgt. Der 

katalytische Mechanismus ist im Detail Abb. 9 in dargestellt. 
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Abb. 9: Reaktionsmechanismus der MeHNL-katalysierten Spaltung von Acetoncyanhydrin. Die 
Hydroxylgruppe des Acetoncyanhydrins wird über Wasserstoffbrücken zu Thr-11 und Ser-80 
stabilisiert. His-236 zieht, vermittelt durch Ser-80 ein Proton von der Hydroxylgruppe des 
Acetoncyanhydrins und überträgt es auf das entstehende Cyanid.[83] 

Ungeklärt ist bisher die eindeutige Quartärstruktur der MeHNL in gelöster Form. 

Während das Enzym in der Kristallstruktur als Homodimer vorliegt,[82] weicht das 

durch Größenausschlusschromatographie bestimmte Molekulargewicht davon ab. 

Das erwartete Molekulargewicht des MeHNL-Dimers beträgt ca. 58 kDa (29 kDa pro 

Untereinheit); wohingegen das Molekulargewicht der MeHNL in der Literatur 

zwischen 92 kDa (Trimer) bis 124 kDa (Tetramer) angegeben wird.[33, 84-86] 

Computergestützte Analysen, basierend auf der Kristallstruktur der MeHNL, zeigten 

das Enzym als stabil vorliegendes Homodimer, welches jedoch eine schwache 

Dimer-Dimer Interaktionsfläche aufweist, die zur Tetramerbildung führen kann (Abb. 

10). Die von Jan Guterl erzielten Ergebnisse zur Quartärstruktur der MeHNL in 

Lösung deuten entweder auf ein Trimer oder ein sich rasch einstellendes 

Gleichgewicht zwischen Dimer und Tetramer hin.[86]  
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Abb. 10: Kristallstruktur der HNL aus Manihot esculenta (MeHNL: pdb 1DWP). Links: Die im 
Kristall als Dimer vorliegende MeHNL wurde an ihrer Drehachse vertikal gespiegelt, um ihre 
potentielle Tetramerisierung zu verdeutlichen.[86, 87] Rechts: Anordnung der katalytisch aktiven 
Aminosäuren im aktiven Zentrum der MeHNL.  

Detaillierte Untersuchungen zu den kinetischen Parametern der MeHNL zeigten eine 

maximale Reaktionsgeschwindigkeit (Vmax) für die Spaltung des natürlichen 

Substrats Mandelsäurenitril von 50 (± 10) U/mg mit einem Km –Wert 

von 4,1 (± 0,7) mM. Die Synthesereaktion ausgehend von Benzaldehyd und HCN 

verläuft mit einer maximalen Anfangsreaktionsgeschwindigkeit von 17,5 (± 1,4) U/mg 

langsamer. Dabei weist die MeHNL einen Km –Wert von 5,9 (± 1,5) mM für 

Benzaldehyd (Abb. 11, A) auf. 

Neben dem natürlichen Substrat Mandelsäurenitril akzeptiert die MeHNL  diverse 

aromatische, heteroaromatische und aliphatische Substrate.  

Als Inhibitor des Enzyms konnte Acetat identifiziert werden, das häufiger Bestandteil 

in für HNLs genutzten Puffersystemen ist. Vermutlich bindet Acetat im aktiven 

Zentrum anstelle des Substrats, wodurch die Substratbindung inhibiert wird.[86] 
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Abb. 11: Biochemische Eigenschaften der MeHNL. A) Kinetische Parameter für die Spaltung und 
Synthese von Mandelsäurenitril. B) Relative Anfangsreaktionsgeschwindigkeit von pH 3 - 7. C) 
Temperaturstabilität, Halbwertszeiten in Stunden. D) Relative Anfangsreaktionsgeschwindig-keit von 
0 - 70°C.[53] 

Des Weiteren zeigt das Enzym ein breites pH- und Temperaturspektrum. So kann 

die MeHNL prinzipiell in einem pH-Bereich von pH 3,5 – 7,5 und in einem 

Temperaturbereich von 0 – 37 °C eingesetzt werden, wobei sie bei pH 5,8 (25 °C) 

bzw. bei 60 °C (pH 5) die höchste Anfangsreaktionsgeschwindigkeit zeigt. Von 

besonderer Bedeutung für die Anwendung in der Cyanhydrinsynthese ist die gute 

Stabilität des Enzyms � pH 4,0 (20 °C). Bereits bei pH 4,0 zeigt die MeHNL eine 

Halbwertszeit von bis zu neun Stunden, die bei steigendem pH-Wert stark zunimmt 

(Abb. 11, B-D).[53, 86] 
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1.2.4.4.2. Die R-selektive HNL aus Arabidopsis thaliana 

Im Jahr 2007 wurde bei einem sequenzbasierten Screening nach neuen 

Hydroxynitril-Lyasen das Genom des Modellorganismusses Arabidopsis thaliana 

nach Genen durchsucht, die für potentielle HNLs mit Sequenzähnlichkeit zur MeHNL 

bzw. HbHNL kodieren. Dabei wurde eine neue HNL mit 45 % Sequenzidentität und 

68 % Sequenzähnlichkeit zur MeHNL bzw. HbHNL identifiziert (AtHNL).[74]  

Die Entdeckung der AtHNL ist bemerkenswert, da Arabidopsis thaliana nicht zu den 

cyanogenen Pflanzen zählt und keine natürliche Funktion dieser HNL bekannt ist. 

Aus diesem Grund wird vermutet, dass die AtHNL ein evolutionäres Relikt sein 

könnte.[74]  

 

 
Abb. 12: Kristallstruktur der HNL aus Arabidopsis thaliana (AtHNL: pdb 3DQZ). Links: Die AtHNL 
bildet sowohl im Kristall, als auch in Lösung ein Dimer. Rechts: Die am Reaktionsmechanismus 
beteiligten Aminosäuren sind grün hervorgehoben.  

Die AtHNL ist die erste und bisweilen einzige R-selektive HNL mit �/�-

Hydrolasefaltung (bzw. Acetylcholin-Esterase Faltungsmotiv).  

Die Aufklärung ihrer Kristallstruktur zeigte, dass die katalysierte Reaktion, wie bei 

den S-selektiven HNLs der selben Strukturklasse, über eine katalytische Triade (Ser-

80 – His-236 – Asp-208) verläuft, die Substrate jedoch über andere Aminosäuren 

stabilisiert werden, woraus die komplementäre Stereochemie resultiert (Abb. 12). Bei 
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dem von Andexer im Jahr 2008 vorgeschlagenen Reaktionsmechanismus wird die 

Cyanogruppe des Substrats über Wasserstoffbrücken zu den Peptidgruppen von 

Ala-13 und Phe-82 sowie ein Helixdipolmoment stabilisiert. Eine stabilisierende 

Wasserstoffbrücke zwischen Asp-12 und der Hydroxylgruppe des Substrats 

ermöglicht, dass His-236 diese deprotoniert und das Proton über Ser-81 auf das 

dabei entstehende Cyanid transferiert wird.[88] Der Reaktionsmechanismus ist 

detailliert in Abb. 13 dargestellt.  

 

 
Abb. 13: Vorgeschlagener Reaktionsmechanismus der AtHNL. Die Cyanidgruppe des Substrats 
wird durch Wasserstoffbrücken zu den Peptidgruppen von Ala-13 und Phe-82 sowie ein 
Helixdipolmoment stabilisiert. Die Cyanogruppe wird durch eine Wasserstoffbrücke mit Asp-12 
stabilisiert, während His-236 diese deprotoniert und das Proton über Ser-81 auf das entstehende 
Cyanid überträgt.[74] 

Bei der Charakterisierung der AtHNL konnte gezeigt werden, dass ihre kinetischen 

Parameter für die Spaltung von Mandelsäurenitril mit einer maximalen 

Reaktionsgeschwindigkeit von 80 (± 10) U/mg und einem Km -Wert von 1,4 

(± 0,3) mM in der gleichen Größenordnung liegen wie bei der MeHNL. Dasselbe gilt 

auch für die kinetischen Parameter der Synthesereaktion mit Vmax = 15,3 

(± 1,9) U/mg und Km = 6,0 (± 0,6) mM für Benzaldehyd (Abb. 14, A). Zudem zeigt die 

AtHNL ein ähnlich breites Substratspektrum, wie die MeHNL, ist allerdings R-
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selektiv.[74] Entgegen der MeHNL ist die AtHNL aufgrund des anderen Aufbaus ihres 

aktiven Zentrums nicht durch Acetat inhibierbar, sondern zeigt in Acetatpuffer sogar 

die höchste Enzymaktivität.[53] 

Trotz der hohen strukturellen Ähnlichkeit der AtHNL zur MeHNL, weist sie ein 

schmaleres pH- und Temperaturspektrum auf. So ist die AtHNL bei niedrigen pH-

Werten (� pH 5) instabil und kann lediglich von pH 5,0 - 7,5 eingesetzt werden. Dabei 

liegt ihr pH-Optimum bei pH 6,0 (25 °C). Ihr Temperaturspektrum reicht von 0 -

 50 °C, wobei sie bei 37 °C die höchste Anfangsreaktionsgeschwindigkeit zeigt. Die 

Stabilität der AtHNL ist in erster Linie durch den pH-Wert limitiert, da sie erst bei pH 

5,4 eine Halbwertszeit von einer Stunde erreicht. Oberhalb von pH 5,4 steigt ihre 

Enzymstabilität rapide (Abb. 14, B-D).[53] Die geringe Stabilität der AtHNL im sauren 

pH-Bereich limitiert ihre Anwendung zur enantioselektiven Synthese von R-

Cyanhydrinen im organisch-wässrigen Zweiphasensystem unter sauren 

Reaktionsbedingungen. Dieser Aspekt ist in der vorliegenden Arbeit intensiv 

untersucht worden. 

 

 
Abb. 14: Biochemische Eigenschaften der AtHNL. A) Kinetische Parameter für die Spaltung und 
Synthese von Mandelsäurenitril. B) Relative Anfangsreaktionsgeschwindigkeit von pH 3 - 7. C) 
Temperaturstabilität, Halbwertszeiten in Stunden. D) Relative Anfangsreaktionsgeschwindig-keit von 
0 - 70°C.[53] 
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1.2.4.5. HNLs einer neuen Superfamilie? – Cupine oder 
Cupin-ähnliche Proteine 

Neueste Erkenntnisse deuten auf bakterielle (Pseudomonas sp.) R-selektive HNLs 

aus einer weiteren (fünften) Superfamilie hin. Diese HNLs zeigen eine hohe 

Aminosäuresequenzähnlichkeit zu Proteinen der Cupin (oder Cupin-ähnliche) 

Superfamilie, wurden jedoch noch nicht weitergehend charakterisiert oder in der 

Literatur beschrieben.[89]  

 

1.3. HNLs als Biokatalysatoren zur enantioselektiven Synthese 
von Cyanhydrinen 

Hydroxynitril-Lyasen sind aufgrund ihrer Fähigkeit zur enantioselektiven C-C-

Bindungsknüpfung, zur Bildung chiraler Cyanhydrine, wichtige Biokatalysatoren auch 

für den industriellen Einsatz. Chirale Cyanhydrine dienen dabei als Bausteine zur 

Synthese von pharmazeutischen, agrochemischen und biologisch aktiven 

Produkten.[16, 17, 90] Als Intermediate werden sowohl (S)- als auch (R)-Cyanhydrine 

benötigt. Am Beispiel der S-selektiven HbHNL kann ihr erfolgreicher Einsatz im 

industriellen Maßstab zur Synthese von (S)-3-Phenoxybenzaldehydcyanhydrin, einer 

Vorstufe eines synthetisch erzeugten Insektizids (Pyrethroid), genannt werden. 

Dieser Prozess wird von dem Unternehmen Dutch State Mines (DSM, Niederlanden) 

mit 10 t pro Jahr durchgeführt. Entsprechend wird zur Herstellung von (R)-2-

Chlormandelsäurenitril als Intermediat zur Synthese des Antithrombosemittels (R)-2-

Chlormandelsäure die R-selektive PaHNL, ebenfalls von dem Unternehmen DSM, 

genutzt.[17, 91] 
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1.3.1. Cyanhydrine als chirale Bausteine 

Chirale Cyanhydrine sind aufgrund ihrer funktionellen Gruppen wertvolle Bausteine 

für Folgereaktionen. Dabei werden in erster Linie die Cyanogruppe oder 

Hydroxylgruppe modifiziert. Jedoch können auch das chriale Kohlenstoffatom oder 

die aromatischen bzw. aliphatischen Reste verändert werden, wie am Beispiel der 

ungesättigte Cyanhydrine gezeigt werden kann.  

Durch Modifikation der Cyanogruppe eines Cyanhydrins können �-Hydroxyaldehyde, 

�-Hydroxysäuren oder �-Aminoalkohole gebildet werden.[16] Wird die Hydroxylgruppe 

des Cyanhydrins verändert, so werden �-Aminonitrile, �-Aminosäuren und Aziridine 

zugänglich (Abb. 15).[92, 93] 

 

 
Abb. 15: Wichtige Folgeprodukte ausgehend von chiralen Cyanhydrinen. Abbildung modifiziert 
nach Dadashipour.[16] 

Um einen hohen Enantiomerenüberschuss („enantiomeric excess“, ee) bei der 

biokatalytischen Reaktion zu erreichen, müssen die Reaktionsparameter dem 

jeweiligen Prozess angepasst werden. Dieser Aspekt wird im Folgenden näher 

beleuchtet. 
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1.3.2. Reaktionsbedingungen der biokatalytischen Synthese 
enantiomerenreiner Cyanhydrine 

Der Einsatz von HNLs zur stereoselektiven Synthese von Cyanhydrinen erfordert 

Reaktionsbedingungen, bei denen die spontane (nicht-katalysierte) racemische 

Cyanhydrinbildung unterbunden wird. Diese unselektive Produktbildung wird 

insbesondere durch den pH-Wert, die Temperatur und den Wassergehalt des 

Reaktionsmediums beeinflusst und stellt ein besonderes Problem in der chiralen 

Cyanhydrin-Synthese dar. Liegt der pH-Wert oberhalb von pH 5,0 oder die 

Temperatur des Reaktionsmediums oberhalb von 20 °C, so wird diese nicht-selektive 

Nebenreaktion im wässirigen Milieu stark begünstigt.[63] Dies ist in Abb. 16 

beispielhaft für die MeHNL als Funktion des pH-Wertes gezeigt. Dabei wird deutlich, 

dass eine stereoselektive Cyanhydrinbildung durch Enzymkatalyse nur im sauren 

pH-Bereich möglich ist, während die racemische Produktbildung oberhalb von pH 5 

exponentiell zunimmt, sodass der ee des gebildeten Produkts mit steigendem 

pH-Wert drastisch sinkt. Die Geschwindigkeit der racemischen Produktbildung in 

Abhängigkeit vom pH-Wert hängt jedoch stark von der eingesetzten 

Carbonylverbindung ab und muss jeweils bestimmt werden. In einzelnen Fällen 

gelingt dann sogar eine enantioselektive Umsetzung mit HNLs bei pH 6.[94] Eine 

wichtige Voraussetzung für die enzymatische Cyanhydrinsynthese in wässrigen oder 

wässrig organischen Reaktionssystemen ist aber grundsätzlich eine hinreichende 

Enzym-Stabilität und Aktivität im sauren pH-Bereich.  

 

 
Abb. 16: Gegenüberstellung der stereoselektiven MeHNL-katalysierten (�) und der 
racemischen Substratumsetzung (o) von Benzaldehyd und HCN zu Mandelsäurenitril. Mit 
steigendem pH-Wert nimmt die nicht-katalysierte Produktbildung im wässrigen Milieu rapide zu. 
Modifiziert nach von Langermann.[95]  
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Aufgrund der Variablen, die eine erfolgreiche biokatalytische Synthese mit hohen 

Enantiomerenüberschüssen zulassen, wurden bereits zahlreiche Reaktionssysteme 

beschrieben. Rein wässrige Reaktionssysteme (pH 3 - 4,5) erwiesen sich 

insbesondere bei der Umsetzung aromatischer Carbonylverbindungen aufgrund der 

geringen Löslichkeit der Substrate und Produkte als problematisch. Das 

Löslichkeitsproblem kann hingegen in reinen organischen Lösungsmitteln umgangen 

werden. Abgesehen davon haben solche Reaktionssysteme mit sehr geringem 

Wassergehalt den Vorteil, dass die  nicht-selektive Nebenreaktion nahezu vollständig 

unterdrückt wird, wie z.B. die Synthese von (S)-2-hydroxy-4-phenylbutannitril, 

katalysiert durch die HbHNL, zeigt.[96] Zudem ist die Produktaufarbeitung aus 

organischen Lösungsmitteln sehr einfach durch Evaporation des Lösungsmittels 

möglich.[95] Von Nachteil ist jedoch, dass HNLs in organischen Lösungsmitteln oft 

instabil sind oder präzipitieren, wodurch ihre katalytische Aktivität reduziert wird.[97, 98] 

Die Nutzung der Enzyme in solchen Reaktionssystemen erfordert daher zumeist die 

Stabilisierung mittels Immobilisierung.[95, 99, 100] Einen erfolgreicher Kompromiss 

zwischen dem rein wässrigen und rein organischen Reaktionsmedium stellt ein stark 

durchmischtes wässrig-organisches Zweiphasensystem dar, in dem das Enzym in 

gelöster Form in der sauren wässrigen Phase und das Substrat mit hoher 

Konzentration in einem nicht Wasser-mischbaren organischen Lösungsmittel (z.B. 

Diisopropylether oder Methyl-tert.-butylether) vorliegt. Durch die starke 

Durchmischung tritt das Substrat rasch bis zu seiner Löslichkeitsgrenze in die 

wässrige Phase über, wird dort durch die HNL umgesetzt und das gebildete 

Cyanhydrin löst sich anschließend wieder in der organischen Phase (Abb. 17). 

Dieses Reaktionssystem wird für industrielle Prozesse bevorzugt.[101, 102] 

 

 
Abb. 17: Schematisch Darstellung eines organisch-wässrigen Zweiphasensystems. Zu Beginn 
ist das schlecht wasserlösliche Substrat (blaue Kreise) im organischen Lösungsmittel (orange) und 
das Enzym (HNL, grün) in der wässrigen Phase gelöst. Durch starke Vermischung tritt das Substrat in 
die wässrige Phase über und wird dort enzymatisch umgesetzt. Das gebildete Produkt (rot) tritt wieder 
in die organische Phase über, da es dort löslicher ist. 
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Die Realisierung und Optimierung eines Reaktionssystems zur enzymatischen 

Cyanhydrinsynthese ist im Labormaßstab kein großes Problem, da der gesamte 

Versuchsablauf in geschlossenen Reaktionssystemen im Abzug durchgeführt 

werden kann. Problematisch ist jedoch die Anpassung der Prozesse an industrielle 

Maßstäbe, bei denen aufgrund der großen Blausäuremengen aufwändige 

Genehmigungsverfahren durchlaufen werden müssen.[103] Die Verwendung von 

Satzreaktoren erwies sich dabei als der sicherste und praktikabelste Weg.[104] Dabei 

wird aus Kostengründen vorzugsweise freie Blausäure eingesetzt. Alternativ 

kommen auch weniger toxische Cyanidquellen, wie Acetoncyanhydrin, Cyanformiat 

oder Trimethylsilylcyanid zum Einsatz.[17]  

Für die Synthese von Cyanhydrinen im industriellen Maßstab werden zumeist (nicht 

immobilisierte) teilgereinigte HNLs (bis ca. 65 % Enzymgehalt) verwendet, die nach 

der Reaktion entsorgt werden, wie das Beispiel der PaHNL zur Synthese von (R)-

Mandelsäurenitril oder (R)-2-Chlormandelsäurenitril zeigt.[17, 101] Bei einem 

industriellen Prozess muss kontinuierlich ausreichend Enzym zur Verfügung stehen. 

So werden beispielsweise durch den Einsatz von 11 mg PaHNL 6 g (R)-

Mandelsäurenitril synthetisiert. Bei einem Produktionsvolumen von 400 g-d werden 

ca. 70 mg teilgereinigte PaHNL täglich benötigt.[17, 101] 

 

1.3.3. Grundvoraussetzungen von HNLs für die enantioselektive 
Synthese von Cyanhydrinen im technischen Maßstab 

Um eine ausreichende Verfügbarkeit der HNLs für den technischen Einsatz zu 

gewährleisten (Kapitel 1.2.3), werden sie optimalerweise mikrobiell erzeugt. Gute 

Beispiele hierfür sind die HNLs aus Manihot esculenta, Hevea brasiliensis und 

Prunus amygdalus, welche entweder prokaryotisch oder in Hefen im großen 

Maßstab hergestellt werden können.[55, 105-107] Auch die HNL aus Arabidopsis thaliana 

kann problemlos mit guten Ausbeuten in Escherichia coli produziert werden und zeigt 

intrazellulär oder als lyophilisiertes gereinigtes Enzym eine gute Lagerfähigkeit. 

Jedoch war ihr Einsatz für die enantioselektive Synthese von Cyanhydrinen im 

wässrig-organischen Zweiphasensystem zu Beginn dieser Arbeit nicht möglich, da 

die AtHNL im wässrigen Medium unterhalb von 20 °C bei pH � 5,0 keine 

ausreichende Enzymaktivität und Stabilität aufweist und der Einfluss von 
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organischen Lösungsmitteln nicht untersucht war.[74, 86] Das Enzym sollte für den 

Einsatz im wässrig-organischen Zweiphasensystem eine ausreichende Toleranz 

gegenüber mindestens einem organischen Lösungsmittel aufweisen, da dieses für 

die Steigerung der Substratlöslichkeit im Reaktionsmedium notwendig ist.  

Die S-selektiven struktur-analogen HNLs MeHNL und HbHNL zeigen eine hohe 

Stabilität gegenüber niedrigen pH-Werten, dem Einfluss von verschiedenen 

organischen Lösungsmitteln und sind auch bei niedrigen Temperaturen aktiv. Ihr 

erfolgreicher Einsatz sowohl in Puffer-gesättigten einphasigen organischen 

Lösungsmitteln, als auch in organisch-wässrigen Zweiphasensystemen konnte 

bereits in vielen Beispielen gezeigt werden.[86, 96, 108-111] 

Auch die R-selektive HNL aus Prunus amygdalus zeigt als Pflanzenisolat eine 

Toleranz gegenüber verschiedenen organischen Lösungsmitteln und eine 

signifikante Enzymaktivität ab pH 2,5. Mittels heterologer Expression in Pichia 

pastoris und molekularer Modifikation konnte die PaHNL zudem bei niedrigen pH-

Werten (ab pH 2,5) deutlich stabilisiert werden.[55, 96] 

 

1.4. Optimierung von HNLs für den technischen Einsatz 

Technische Prozesse stellen durch die Verwendung niedriger pH-Werte, organischer 

Lösungsmittel, hoher Substrat- und Produktkonzentrationen, oft hohe Belastungen 

durch Rühren und Grenzflächenbildung, besondere Anforderungen insbesondere an 

die Stabilität von Enzymen.  

Im Folgenden werden Konzepte zur Optimierung von HNLs durch 

Enzymimmobilisierung und mittels Enzymdesign kurz beschrieben. 

 

1.4.1. Stabilisierung mittels Immobilisierung 

Die Enzym-Immobilisierung steigert einerseits die Enzymstabilität und ermöglicht 

andererseits ein einfaches Abtrennen der Enzyme nach Beendigung der Reaktion 

(Filtration) und somit die Wiederverwendung des Biokatalysators. Nachteilig ist 

allerdings, der oftmals mit der Immobilisierung partielle Aktivitätsverlust der Enzyme.  

HNLs werden hauptsächlich für die Anwendung in einphasigen organischen 

Lösungsmitteln immobilisiert. Dies verhindert ihr Präzipitieren, welches meist zu einer 
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Reduktion der Enzymaktivität führt. Die Immobilisierung der HNLs kann durch drei 

grundlegender Methoden erfolgen: Adsorption an einen zumeist porösen Träger, 

kovalentes Binden an einen Träger bzw. kovalentes Quervernetzen der Enzyme 

sowie den Einschluss der Enzyme in einer Gelmatrix. 

 

1.4.1.1. Adsorptive Immobilisierung 

Die (schwache) adsorptive Bindung von Enzymen an einen porösen Träger ist je 

nach Anwendungszweck für industrielle Prozesse nur bedingt verwendbar. Dabei ist 

die Interaktion zwischen Träger und Enzym rein physikalisch und wird durch 

hydrophobe Interaktion, van-der-Waals-Kräfte und ionische Wechselwirkungen 

bestimmt. Diese Form der Immobilisierung wird hauptsächlich in nicht 

wassermischbaren organischen Lösungsmitteln verwendet, da die Enzyme in 

wässrigen Medien vom (zumeist) hydrophilen Träger gewaschen werden.[112] Als 

Träger können sowohl nicht wasserlösliche Biopolymere wie Cellulose, Stärke, 

Agarose und Proteine (z.B. Albumin oder Gelatin) oder synthetische Polymere wie 

beispielsweise Amberlite (Rohm and Haas Co., Philadelphia, USA), als auch 

anorganische Träger, wie Zeolite, mesoporöse Silikate oder Kieselgur (poröse 

Siliziumdioxidschalen von fossilen Kieselalgen) verwendet werden. Die 

Immobilisierung auf Kieselgur wird häufig durchgeführt, ist kostengünstig und wurde 

bereits mehrfach erfolgreich für HNLs eingesetzt.[96, 110, 113] Generell konnte bei der 

absorptiven Immobilisierung gezeigt werden, dass bei porösen Trägern insbesondere 

die Porengröße und eine auf das Enzym abgestimmte hydrophobe Wechselwirkung 

für eine gute Enzymbindung ausschlaggebend sind. Die Porengröße sollte so 

gewählt werden, dass das verwendete Enzym hinein passt und nicht außerhalb an 

der Trägeroberfläche bindet, da sonst nur eine geringe Beladung des Trägers 

möglich ist und es aufgrund der geringen Bindungsstärke leicht von der Oberfläche 

herunter gewaschen werden kann.[114, 115] 

Zudem ist die hydrophobe Wechselwirkung zwischen Träger und Enzymoberfläche 

maßgeblich für die Bindungsstärke des Enzyms an den Träger und beeinflusst 

zudem die Flexibilität und Aktivität des Enzyms.[116, 117] So konnte bei der adsorptiven 

Bindung von Lipasen an einen hydrophoben Träger (Octyl-Aggarose) eine 

beachtliche Steigerung der Enzymaktivität (20-fach) in wässrigen Lösungen erreicht 
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werden.[118] Die Aktivitätssteigerung wird durch die Immobilisierung einer 

hydrophoben Deckelstruktur (Lid) an den Träger verursacht, da diese in einer 

hydrophilen Umgebung ansonsten den Eingang des aktiven Zentrums verdeckt. Die 

Öffnung des Deckels (open lid) macht das aktive Zentrum somit für Substrate 

einfacher zugänglich. 

Zur Steigerung der Wechselwirkung zwischen Enzym und Träger kann die 

Trägeroberfläche mit organischen Bindemolekülen funktionalisiert werden, welche 

sowohl die Porengröße als auch die Hydrophobizität beeinflussen (z.B. 

Octyltrimthylsilane oder 3-Aminotrimethoxysilane). Mittels dieser Oberflächen-

funktionalisierung konnten z.B. eine höhere Enzymbeladungen des Trägers und eine 

Reduktion des Ausblutens von Enzym ins Reaktionsmedium bewirkt werden.[119, 120] 

So bewirkte die Funktionalisierung eines mesoporen Silicats (SBA-15) mittels 3-

Aminopropyltriethoxysilan eine 26 % höhere Enzymbeladung des Trägers mit einer 

Penicillin-Acylase.[121] Auch das Ausbluten von Pepsin wurde durch die Verringerung 

des Porendurchmessers erreicht.[120] 

 

1.4.1.2. Kovalente Immobilisierung 

Die feste kovalente Bindung von Enzymen an einen Träger ist eine irreversible Form 

der Enzymimmobilisierung, die selbst industriellen Prozessen standhält. Durch die 

Bildung kovalenter Bindungen zwischen Enzym und Träger ist eine signifikante 

Erhöhung der Enzymstabilität gegenüber nicht optimalen pH-Werten und 

Temperaturen möglich.[122-124] Jedoch ist diese Stabilitätserhöhung zumeist mit einer 

deutlichen Verringerung der Enzymaktivität, bedingt durch den Verlust der 

Enzymflexibilität und die Modifizierung katalytischer Reste, verbunden. Des Weiteren 

kann der mitunter kostenintensive Träger nach der Inaktivierung der gebundenen 

Enzyme nicht wiederverwendet werden.[125] Als Träger werden sowohl synthetische 

Polymere wie Eupergrit® C (Röhm GmbH & Co. KG, Darmstadt, Deutschland), 

Sepabeads® (Resindion S.l.r., Milan, Italien) oder mesoporöse Festschäume, als 

auch kostengünstige Träger wie beispielsweise aminierte poröse Silikate verwendet. 

Die kovalente Bindung von Enzymen geschieht durch das Quervernetzen der 

Aminogruppen auf dem Träger mit den an der Oberfläche von Enzymen befindlichen 

Aminogruppen mittels eines bifunktionalen Reagenzes (z.B. Glutardialdehyd). Somit 
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wird das Verwenden von Trägern mit großen Poren, die eine geringere 

Diffusionsbarriere für die Substrate und Produkte darstellen, ermöglicht.[126] In jedem 

Fall bewirkt die Verwendung eines Trägers das Einbringen von mehr inaktivem 

Material als aktivem Enzym in das Reaktionsmedium. 

Aus diesem Grund wurde die trägerfreie Immobilisierung durch die direkte 

Quervernetzung von Enzymen entwickelt. Durch Zugabe von Glutardialdehyd 

werden Aminogruppen der Enzymoberflächen miteinander quervernetzt. Dabei führt 

die Quervernetzung von gelösten Enzymen, sogenannten CLEs (Cross-linked 

enzymes), zu starkem Aktivitätsverlust und schlechter Reproduzierbarkeit.[127] 

Ursprünglich mit dem Ziel der Stabilisierung von kristallinen Enzymen zur 

Untersuchung ihrer Röntgenstruktur wurden so genannte CLECs (Cross-linked 

enzyme crystals) entwickelt. Diese weisen neben ihrer hohen Thermostabilität und 

Resistenz gegenüber organischen Lösungsmitteln ein beachtliches Maß an 

Enzymaktivität auf und wurden in den 1990er Jahren als industrieller Biokatalysator 

verwendet.[128] Zwar sind CLECs mit sehr reinen Enzymen gut reproduzierbar, doch 

ist ihre Herstellung sehr komplex und erfordert aufwendige Kristallisierungs-

studien.[129] Einfacher ist die Erzeugung von CLEAs (Cross-linked enzyme 

aggregates). Hierbei werden gelöste Enzyme durch Zugabe eines Fällungsmittels 

(gesättigte Salzlösung, organisches Lösungsmittel oder Säuren) präzipitiert und 

anschließend quervernetzt (z.B. durch Glutardialdehyd).[130] CLEAs weisen eine 

vergleichbare Stabilität und Aktivität zu CLECs auf. Sie sind jedoch auch mit nur 

teilgereinigten Enzymen herstellbar und somit einfacher, schneller und 

kostengünstiger zu produzieren. Die erforderlichen initialen Studien zur 

Präzipitierung und Quervernetzung der Enzyme sind aber ebenfalls komplex und 

zeitaufwendig.[131] Durch die starke Quervernetzung der Enzyme kommt es im 

Regelfall zu einem beträchtlichen Aktivitätsverlust (� 50%). Dieser Aktivitätsverlust 

wird häufig durch den Gewinn an Enzymstabilität und Wiederverwendbarkeit 

kompensiert.[132, 133] In einzelnen Fällen konnte auch eine Steigerung der 

Enzymaktivität bei CLEAs in organischen Lösungsmitteln gegenüber dem nicht 

immobilisierten Enzym unter gleichen Reaktionsbedingungen beobachtet werden.[134, 

135] 

Auch verschiedene HNLs wurden erfolgreich als CLEAs immobilisiert. Sie verloren 

zwar einen Großteil ihrer Enzymaktivität, zeichneten sich jedoch durch eine höhere 

Stabilität aus.[132, 133, 136] Es konnte gezeigt werden, dass HNL-CLEAs auch in 
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trockenen organischen Lösungsmitteln eingesetzt werden können, da sie ein hohes 

Maß an Feuchtigkeit enthalten, die für die katalytische Aktivität der HNL wichtig 

ist.[111] 

 

1.4.1.3. Immobilisierung durch Einschluss  

Der Einschluss von Enzymen erfolgt häufig in Solgelen auf Siliciumalkoxidbasis 

(Si(OR)4 oder RSi(OR)3). Diese Methode wurde 1990 von D. Avnir et al. durch den 

Einschluss einer alkalischen Phosphatase in eine Polymermatrix aus 

Tetraethoxysilan (TEOS, Si(OCH2CH3)4) etabliert.[137] Der Vorteil dieser Solgele ist, 

dass sie individuell auf das zu immobilisierende Enzym z.B. bezüglich des 

Wassergehalts, pH-Werts, Hydrophobizität und der Ausformung ihrer Netzstruktur 

angepasst werden können.[138] Das Solgel kann nach Abschluss des 

Gelierungsprozesses feucht als Aquagel (oder wet gel) gelagert oder getrocknet 

werden.[138] Je nach verwendetem Polymer kann die Porenstruktur des Solgels beim 

Trocknungsprozess unter Vakuum - verursacht durch Kapillarwirkung - zu einem so 

genannten Xerogel schrumpfen, wodurch z.B. eingeschlossene Enzyme negativ 

beeinflusst werden. Ein Schrumpfen der Poren kann durch die Geltrocknung in 

einem superkritischen Medium (z.B. superkritisches CO2) verhindert werden. Es 

entsteht ein so genanntes Aerogel.[139] Einfacher ist jedoch die Verwendung einer 

Mischung von Si(OR)4 (z.B. Tetraethoxysilane) und RSi(OR)3 (z.B. 

Methyltrimethoxysilane), die zu einer belastbareren Poren- bzw. Netzstruktur führt 

und beim Trocknungsprozess unter Vakuum ein strukturstabiles Ambigel bildet.[138] 

Je nach Trocknungsgrad des Gels sind die in den Porenstrukturen eingeschlossenen 

Enzyme von Pufferlösung umgeben, was ihre Aktivität und Stabilität positiv 

beeinflussen kann (Abb. 18).[140] 

Beim Einsatz Solgel-immobilisierter Enzyme in einphasigen organischen 

Lösungsmitteln können die Substrate problemlos durch die Gelmatrix diffundieren 

und von den eingeschlossenen Enzymen sehr schnell umgesetzt werden. Solgel-

immobilisierte Lipasen zeigten beispielsweise eine Steigerung der Aktivität um das 

10-Fache im Vergleich zum freien Enzym unter gleichen Reaktionsbedingungen.[141, 

142]  
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Abb. 18: Schematische Darstellung der Solgel Immobilisierung von Enzymen (Hydrogel). Das 
Enzym liegt in seiner gelösten Form in einer Siliciumalkoxid-Polymermatrix vor. Modifiziert nach 
Pierre.[138] 

Auch die HbHNL wurde bereits in einem Solgel immobilisiert, wobei sie durch die 

Bildung von Methanol beim Gelierungsprozess jedoch schnell inaktiviert wurde. 

Durch das Evaporieren des Methanols gelang die Immobilisierung des aktiven 

Enzyms, das zur Synthese verschiedener (S)-Cyanhydrine in einem einphasigem 

organischen Lösungsmittel (Diisopropylether) eingesetzt wurde.[140] 

Trotz der Vorteile ist jede Enzymimmobilisierung - abgesehen von der Reinigung - 

mit weiteren Präparationsschritten verbunden, um das Enzym auf oder in den Träger 

zu bringen. Um diese mitunter zeit- und kostenintensiven Schritte zu umgehen, kann 

auch versucht werden, eine Ganzzellbiotransformation ohne das vorherige Reinigen 

des Enzyms durchzuführen oder, falls dies nicht möglich ist, das Enzym 

molekularbiologisch an den industriellen Prozess anzupassen. 

 

1.4.2. Ganzzellbiokatalyse 

Bei der Ganzzellbiokatalyse wird die kosten- und zeitintensive Reinigung des 

mikrobiell exprimierten Enzyms umgangen und die Zellen der Expressionskultur als 

Biokatalysator in die Reaktion eingesetzt. Vorteilhaft ist die oftmals gesteigerte 

Stabilität der Enzyme im Cytoplasma der Zelle.[143] Zudem liegt das exprimierte 

Enzym immobilisiert in der Zelle vor, sodass diese nach der Verwendung vom 

Reaktionsmedium, durch Zentrifugation oder bei der Verwendung eines wässrig-

organischen Zweiphasensystems durch Separation der Phasen getrennt werden 
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kann. Dennoch muss das Substrat die Zellwand passieren, wodurch es zu einer 

Minderung der katalytischen Aktivität ganzer Zellen im Vergleich zum isolierten 

Enzym kommen kann. Dem kann durch eine gezielte Permeabilisierung der Zellwand 

entgegen gewirkt werden.[144] Dabei ist jedoch zu beachten, dass die 

Zellwandintegrität erhalten bleibt und lediglich niedermolekulare Substrate passieren 

können, um den Produktaufarbeitungsprozess zu vereinfachen. 

Teilweise kann es bei der Ganzzellbiokatalyse zur Bildung von ungewollten 

Nebenprodukten bedingt durch Wirtsenzyme der Expressionskultur kommen. Sind 

diese Nebenprodukte analytisch identifizierbar, so können sie entweder durch eine 

Modifikation des Wirtsmetabolismus oder Verwendung von gereinigten Enzymen 

vermieden werden. 

Eine Beschädigung der Zellwand, z.B. durch mechanische Einwirkung oder zu starke 

Permeabilisierung durch organische Lösungsmittel, kann mikroskopisch oder bei 

Verwendung fluoreszierender Proteine photometrisch nachgewiesen werden.[145] 

Die enantioselektive Synthese von Mandelsäurenitril und verschiedenen 3,4-

substituierten Cyanhydrinen mittels Ganzzellbiokatalyse wurde Mitte der 1990er 

durch die Verwendung von entfettetem Pflanzenmehl der Mandel (PaHNL) und 

geblichenem Mehl aus Hirseskeimlingen in mit Puffer versetztem Diisopropylether 

untersucht. Hierbei konnten zumeist hohe Enantiomerenüberschüsse der gebildeten 

Cyanhydrine (ee > 90 %) erreicht werden, die Substratumsetzung verlief jedoch sehr 

langsam (14 – 528 h). Aus diesem Grund hat sich diese Methode nicht im 

industriellen Prozess etabliert.[146, 147] Im Gegensatz zu Pflanzenmehlen konnten 

rekombinante Escherichia coli Zellen mit HbHNL erfolgreich für die industrielle 

Synthese von (S)-3-Phenoxybenzaldehydcyanhydrin etabliert werden (DSM, 10 t pro 

Jahr, ee � 98 %). Die E. coli-Zellen werden dabei in einem wässrig- organischen 

Zweiphasensystem (Pufferlösung und Methyl tert. Butylether) eingesetzt und können 

mehrfach wiederverwendet werden.[17, 148] Die Verwendung ganzer Zellen könnte 

eine Anwendungsmöglichkeit auch für AtHNL darstellen, da das Zellmilieu die AtHNL 

stabilisieren könnte. 

Weitergehende Optimierungen von HNLs, zur Steigerung katalytischen Aktivität beim 

Umsatz von nicht bevorzugten Substraten oder zur Stabilisierung, wurden bereits 

durch rationales Enzymdesign oder gerichtete Evolution erreicht. 
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1.4.3. Enzymoptimierung durch Proteindesign 

Durch Modifikation der Aminosäuresequenz können Enzyme auf verschiedene 

Weise an industrielle Prozesse angepasst werden. So können sie zum einen mit 

typischen Sequenz-Tags N- oder C-terminal markiert werden, beispielsweise um sie 

nach der heterologen Expression ins Reaktionsmedium zu sekretieren, was die 

Enzymisolierung vereinfacht[149, 150] oder sie können posttranslational modifiziert 

werden.[151] Sie können auch mit typischen Affinitäts-Sequenzen wie dem Poly-His-

Tag markiert werden, um eine Proteinreinigung mittels Affinitätschromatographie 

nach der Expression zu ermöglichen.[152] Abgesehen davon gibt es mittlerweile 

zahllose Beispiele wie durch den zufälligen oder gezielten Austausch von 

Aminosäuren die Enzymeigenschaften an technische Prozesse angepasst werden 

können.[10, 153, 154] Eine besondere Herausforderung stellt beim gezielten 

Enzymdesign die Stabilisierung von Enzymen dar, da sich Stabilitätsfaktoren meist 

nicht an einzelnen Aminosäureseitenketten festmachen lassen, die dann modifiziert 

werden können. In solchen Fällen liefert ein ungezielter Austausch von Aminosäuren 

durch gerichtete Evolution meist bessere Ergebnisse.[155] Im Folgenden werden 

verschiedene Beispiele für die Optimierung von HNLs an industrielle Prozesse näher 

beschrieben. 

 

1.4.3.1. Optimierung der PaHNL für den industriellen Einsatz 

Um die aufwändige Reinigung der PaHNL aus Pflanzenextrakten der Mandel zu 

vermeiden, wurde das Pa_hnl5 Gen aus P. amygdalus heterolog in Pichia pastoris 

exprimiert. Die pflanzliche Sekretionssequenz erlaubt die Sekretion der PaHNL5 in 

das Expressionsmedium (250 mg pro Liter Expressionskultur). Das rekombinante 

Enzyme zeigt eine zweifach höhere Enzymaktivität (295 ± 30 U/mg) und eine 26,5-

fach gesteigerte pH-Stabilität bei pH 2,5 (�1/2 = 530 min) im Vergleich zum aus 

Pflanzenextrakten gereinigten Enzym auf. Durch den Austausch der ersten 

Aminosäure der PaHNL5 Leu1Gln und den Austausch der pflanzlichen 

Sekretionssequenz gegen die Sekretionssequenz aus Saccharomyces cerevisiae 

wurde darüber hinaus eine 4,5-fache Steigerung der heterologen Produktion erreicht 

(1 g PaHNL pro Liter Expressionskultur).[55]  
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Die PaHNL5 (sowie der PaHNL Wildtyp) zeigt allerdings eine schlechte Akzeptanz 

gegenüber dem Substrat 2-Chlorbenzaldehyd zur Synthese von (R)-2-

Chlormandelsäurenitril, einem wichtigen Intermediat eines oralen 

Gerinnungshemmers (Clopidogrel). Anhand von Docking-Untersuchungen von 2-

Chlorbenzaldehyd in der Kristallstruktur des Enzyms konnte Ala-111 identifiziert 

werden, welches die Substratbindung sterisch behinderte. Durch den Austausch 

gegen die kleinere Aminosäure Glycin (Ala111Gly) konnte das Substrat korrekt im 

aktiven Zentrum binden und eine Versechsfachung des Umsatzes erreicht werden.[55] 

Damit wurde der industriellen Einsatz PaHNL5 (Leu1Gln, Ala111Gly) zur Synthese 

von (R)-2-Chlormandelsäurenitril möglicht. Dieser Prozess wird von dem 

Unternehmen DSM mit 10 t pro Jahr durchgeführt.[17] 

Darüberhinaus wird die PaHNL5 (Leu1Gln) z.B. von DSM zur Synthese von (R)-

Mandelsäurenitril eingesetzt, welches zu der korrespondierenden Säure umgesetzt 

wird und Einsatz als chirales Hilfmittel bei der Racematspaltung findet.[17, 91] 
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1.4.3.2. Optimierung der HbHNL 

Die HbHNL wird von DSM für die Synthese von (S)-Mandelsäurenitril, (S)-

Phenoxybenzaldehydcyanhydrin und (R)-2-(2-furyl)-2-hydroxyacetonitril verwendet. 

(S)-Phenoxybenzaldehydcyanhydrin dient als Intermediat zur Herstellung von 

Insektiziden und (R)-2-(2-furyl)-2-hydroxyacetonitril wird für die Synthese des 

antiviralen Pyridoquinoxaline verwendet.[148, 156] Um das katalytische Potential der 

HbHNL zu erweitern, wurde ein semi-rationaler Ansatz (eine Kombination von 

rationalem Enzymdesign und gerichteter Evolution) angewandt, der die Synthese 

sterisch anspruchsvoller Carbaldehydcyanhydrine ermöglichen sollte. Ausgehend 

von einer HbHNL Variante mit erweitertem Eingang zum aktiven Zentrum, der durch 

den Austausch der großen Aminosäure Tryptohan-128 zu der wesentlich kleineren 

Aminosäure Alanin (Trp128Ala) erzeugt werden konnte, wurde ein verbesserter 

Umsatz für 4-Oxocyclohexancarbaldehyd zu 2-Hydroxy-(4’-oxocyclohexyl)acetonitril 

erreicht. Jedoch verlor die Variante größtenteils ihre Enantioselektivität (ee 10 %). 

Diese Variante wurde mittels gerichteter Evolution weitergehend optimiert, wodurch 

zwei wesentlich aktivere Varianten (W128A, His103Leu/Gln215His) entstanden. Bei 

dem Einsatz von 1/10 bis 1/20 der ursprünglichen Enzymkonzentration kann mit ihnen 

ein annähernd vollständiger Substratumsatz mit einem bis auf 90 % gesteigerten ee 

des gebildeten Produkts erzielt werden.  

 

1.4.3.3. Optimierung der MeHNL 

Die heterologe Expression der Wildtyp MeHNL in E. coli führte zur übermäßigen 

Bildung von fehlgefaltetem, inaktivem Enzym (inclusion bodies). Die Optimierung der 

heterologen Expression konnte sowohl durch einen rationalen Ansatz, als auch durch 

eine gerichtete Evolution erreicht werden. Bei dem rationalen Ansatz wurden gezielt 

einzelne Lysinreste an der Enzymoberfläche, die aufgrund ihrer Protonierbarkeit und 

hohen Flexibilität zu einer Fehlfaltung der Polypeptidkette führen können, gegen 

unflexible hydrophile, nicht-protonierbare Proline ausgetauscht. Der Austausch 

beabsichtigte ursprünglich die Steigerung der Enzymstabilität durch die Reduktion 

der Schiff-Basen-Bildung von Lysinen und Aldehyden (Substrate). Jedoch bewirkte 

der Austausch der Lysine an Position 176, 199 und 224 eine signifikant höhere in 

vivo Löslichkeit der MeHNL und Steigerung der katalytischen Effizienz. Durch 
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gerichtete Evolution führte zudem der Austausch des hydrophilen His103 zu einer 

besseren Löslichkeit der MeHNL. Bei einer Sättigungsmutagenese der MeHNL an 

Position 103 konnte gezeigt werden, dass die hydrophoben Aminosäuren Leu, Ile, 

Val, Cys und Met in dieser Position zu einer höheren Löslichkeit des Enzyms und 

hydrophile Aminosäuren (Tyr, Trp, Phe, Pro) zu einer Verringerung der Löslichkeit 

der MeHNL führen.[107]  

In der Literatur ist der Einsatz dieser MeHNL Varianten oder des Wildtyp Enzyms 

nicht beschrieben, jedoch besitzen die Unternehmen Nippon Shokubai, Mitsubishi 

Rayon, DSM, BASF und weitere kleine Firmen ca. 40 Patente zur Nutzung und 

Modifikation S- und R-selektiver HNLs, was das wachsende Interesse am Einsatz 

von HNLs für industrielle Prozesse verdeutlicht.[157-164] 
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KAPITEL 2 

2. Motivation und Zielsetzung 

Hydroxynitril-Lyasen katalysieren die enantioselektive Umsetzung von 

Carbonylverbindungen (Aldehyde oder Ketone) und Blausäure zu chiralen 

Cyanhydrinen, welche als vielseitige Synthesebausteine in der pharmazeutischen 

und chemischen Industrie Verwendung finden. 

Das Ziel dieser Arbeit war, Wege für die technische Nutzung der AtHNL als R-

selektiven Biokatalysator für die Synthese von Cyanhydrinen zu finden. Die AtHNL 

wurde im Jahr 2007 bei einem sequenzbasierten Screening als erste R-selektive 

HNL mit �/�-Hydrolasefaltung identifiziert. Sie zeigt eine hohe katalytische Aktivität 

und ein breites Substratspektrum, was das Enzym prinzipiell für technische 

Anwendungen interessant macht.[74] Diese erfolgen aber üblicherweise in wässrig-

organischen Zweiphasensystemen mit niedrigem pH in der wässrigen Phase zur 

Unterdrückung der nicht-enzymatischen racemischen Cyanhydrinsynthese. Aufgrund 

der geringen Stabilität der AtHNL im sauren pH-Bereich kann das Enzym daher 

bisher technisch nicht genutzt werden. Alternativ kann die die nicht-enzymatische 

Reaktion auch durch die Senkung des Wassergehalts, z.B. durch die Verwendung 

reiner oder Puffer-gesättigter organischer Lösungsmittel, vermieden werden.  

Vor diesem Hintergrund sollte in der vorliegenden Arbeit durch die Verfolgung zweier 

unterschiedlicher Lösungsansätze untersucht werden, wie die AtHNL für eine 

enantioselektive Synthese von (R)-Cyanhydrinen genutzt werden kann. 

Dabei sollte einerseits durch Variation der Reaktionsparameter (pH-Wert, 

Temperatur und Wassergehalt) eine Unterdrückung der nicht katalysierten 

racemischen Substratumsetzung und zugleich eine hohe biokatalytische Effizienz 

erreicht werden. Besonderes Augenmerk sollte hierbei auf der Stabilisierung des 

Enzyms unter den jeweiligen Reaktionsbedingungen gelegt werden.  

Die erste Strategie umfasste die Evaluierung der Nutzung des Enzyms in 

einphasigen organischen Lösungsmitteln. Zur Verbesserung der Stabilität und der 
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Recyclierbarkeit sollten hierzu geeignete Methoden der Immobilisierung des 

isolierten Enzyms und die Untersuchung der Anwendbarkeit der Ganzzellbiokatalyse 

untersucht werden.  

Bei dem zweiten Lösungsansatz sollte die geringe pH-Stabilität der AtHNL durch 

rationales Enzymdesign erhöht werden, sodass ihr Einsatz als gelöstes Enzym in 

organisch-wässrigen Zweiphasensystemen ermöglicht wird. Grundlage dieser 

Strategie waren Ergebnisse aus vorherigen Arbeiten mit der MeHNL (Guterl et al.),[53] 

die einen Zusammenhang zwischen deren höherer Stabilität und der Bildung höherer 

Assoziate in Lösung vermuten ließen.  
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Abstract: The (R)-selective hydroxynitrile lyase from
Arabidopsis thaliana (AtHNL) is a promising biocat-
alyst for the synthesis of a broad range of chiral cya-
nohydrins. However, the enantiomeric excess of the
reaction is strongly compromised by a non-catalyzed
side reaction resulting in racemic cyanohydrins be-
sides the chiral product obtained by enzymatic catal-
ysis. This reaction is influenced by the pH value, the
temperature and the water content of the reaction
medium. In aqueous media this side reaction can be
suppressed at low pH (4–5) and by lowering the tem-
perature. However both approaches are not possible
with AtHNL, since the enzyme is rapidly inactivated
below pH 5.4, which prevents its use in aqueous
media or two-phasic aqueous-organic reaction sys-
tems. Alternatively the side reaction can be sup-
pressed by lowering the water concentration in the
reaction system as far as possible. This approach was
successfully tested for AtHNL using buffer-saturated
methyl tert-butyl ether (MTBE) as a reaction
medium for the hydrocyanation of aromatic, hetero-

aromatic and aliphatic aldehydes. Here we compare
the activity and stability of AtHNL immobilized on
celite (celite-AtHNL) and in solgel (solgel-AtHNL)
relative to the precipitated enzyme, which was di-
rectly used in the organic solvent. Surprisingly,
AtHNL was activated (up to 10-fold) upon solgel im-
mobilization, an effect that was up to now only de-
scribed for solgel-immobilized lipases. In contrast to
lipases, AtHNL is not stabilized by the solgel. Best
results were obtained with AtHNL adsorbed on
celite, which is an easy and efficient way of immobili-
zation and shows good recyclability (>5 cycles), stor-
ability (t1/2=71 days, 4 8C) and excellent catalytic
properties upon adjustment of a relative water con-
tent of 26% water per g celite-AtHNL as determined
by thermogravimetry.

Keywords: asymmetric carboligation; cyanohydrins;
enzyme catalysis; hydroxynitrile lyase; immobiliza-
tion; oxynitrilase

Introduction

In organic chemistry the hydrocyanation of carbonyl
compounds is an important carbon-carbon bond form-
ing reaction. The chemical synthesis of enantio-en-
riched cyanohydrins as versatile intermediates for
pharmaceuticals, fine chemicals and agrochemical
products often requires harsh reaction conditions.[1]

For more than 100 years the production of chiral cya-
nohydrins is performed also using biocatalysis.[2] Hy-
droxynitrile lyases (HNLs) were first identified in cya-
nogenic plants, where they catalyze the cleavage of

HCN from cyanohydrins during herbivore attacks as
part of the plant defence system. In biocatalysis the
reverse reaction is of interest, where HNLs catalyze
the stereoselective formation of chiral cyanohydrins
from hydrogen cyanide (HCN) and aldehydes or ke-
tones under mild reaction conditions. Meanwhile, sev-
eral studies have successfully demonstrated the poten-
tial of HNLs as industrial biocatalysts for the synthe-
sis of enantiopure cyanohydrins.[3]

Recently, a novel HNL from Arabidopsis thaliana
(AtHNL) was identified. AtHNL is the first (R)-selec-
tive HNL with an a/b hydrolase fold and structurally
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related to the (S)-selective HNLs from Hevea brasi-
liensis (HbHNL) and Manihot esculenta (MeHNL).[4]

The characterization of the broad substrate range and
of key parameters, which influence the catalytic activ-
ity of AtHNL, has recently been described.[5] Further-
more, the crystal structure of AtHNL was solved
(pdb-code 3dqz). Whereas AtHNL and MeHNL are
very similar concerning substrate range and kinetic
parameters, their stability especially toward weak
acidic aqueous solvents is quite different and AtHNL
is rapidly deactivated below pH 5.[5] However, the sta-
bility of HNLs toward acidic pH ( � 4) is a prerequi-
site for their application in the formation of enantio-
pure cyanohydrins in aqueous media or aqueous-or-
ganic two-phase systems, since the non-catalyzed hy-
drocyanation, which results in racemic products, can
efficiently be suppressed at low pH.[6] An alternative
approach to suppress this side reaction is to minimize
the water concentration in the reaction system.[6] As
AtHNL is irreversibly inactivated at pH<5.4 within a
few minutes, the pH-control of this chemical back-
ground reaction is impossible in this case. An attrac-
tive alternative to aqueous reaction media and aque-
ous-organic two-phase systems is the application of
HNLs in monophasic organic solvents with a mini-
mum of water to ensure HNL activity. In such micro-
aqueous reaction systems the aromatic substrates and
products are highly soluble and the spontaneous for-
mation of racemic cyanohydrins is strongly reduced
due to the low water concentration in the reaction
medium.[7] Nevertheless, the enzymatic activity and
the enantiomeric excess (ee) of the reaction are af-
fected by the pH of the aqueous buffer, the buffer
concentration, the organic solvent, the enzyme stabili-
ty and the enzyme concentration.[6,8]

In pure organic solvents HNLs can be applied di-
rectly as precipitated aggregates or immobilized on
supports. Whereas precipitated HbHNL was de-
scribed to be significantly inactivated in organic sol-
vents and at high substrate concentrations,[9] the en-
zyme�s stability and performance benefit much from
immobilization such as adsorption on mesoporous
supports or entrapment in solgels. Furthermore, im-
mobilized HNLs from Manihot esculenta, Sorgum bi-
color, Linum usitatissimum and Prunus amygdalus
have shown almost excellent substrate conversions
and stereoselectivities, as well as improved stabilities
compared to the precipitated enzyme in organic sol-
vents.[8a,10] Furthermore, immobilization simplifies sep-
aration of product and recycling of the biocatalyst,
which can easily be achieved by for example, filtra-
tion.

Immobilization experiments with lipases, which also
belong to the a/b hydrolase-superfamily have demon-
strated a stabilizing and activity increasing effect by
adsorption on mesoporous celite or by solgel entrap-
ment caused by protection of the lipase from aggrega-

tion or denaturing effects and a “hyperactivated”
structural change.[11–13]

In order to enable the synthetic application of
AtHNL we have investigated the hydrocyanation of
benzaldehyde, 2-chlorobenzaldehyde, 2-furaldehyde
and hexanal in buffer saturated mono-phasic MTBE
with the direct use of precipitated AtHNL
(Scheme 1). Furthermore, we have studied these test
reactions with AtHNL adsorbed on celite and entrap-
ped in solgels; as well as factors affecting the immobi-
lization and the influence of the support on the en-
zyme�s activity, stability and recyclability. Additional-
ly, the influence of the support on the non-catalyzed
racemic hydrocyanation was investigated.

Results and Discussion

Activity of Immobilized vs. Precipitated AtHNL

Initial studies on the suitability of different organic
solvents for AtHNL-catalyzed reactions yielded
buffer-saturated methyl tert-butyl ether (MTBE) as a
preferred micro-aqueous reaction system (data not
shown). Using this reaction system the enantioselec-
tive addition of HCN to benzaldehyde 1a, 2-chloro-
benzaldehyde 1b, 2-furaldehyde 1c, and hexanal 1d
was comparatively studied yielding optically pure cya-
nohydrins 2a–d (Scheme 1). Purified AtHNL was
used either dissolved in a small volume of buffer
(5 mg in 50 mL) or immobilized, either adsorbed on
celite R-633 particles (celite-AtHNL) or entrapped
in a methyltrimethoxysilane/tetramethoxysilane
(MTMS/TMOS) solgel (solgel-AtHNL).

First, purified AtHNL (dissolved in phosphate
buffer, 5 mg/50 mL) was added to the reaction
medium containing HCN and 1a. Although AtHNL
precipitated within 3–5 min after addition to the
buffer-saturated MTBE, the reaction was almost com-
plete after 45 min. (conversion 97.9%) and 2a was ob-

Scheme 1. AtHNL-catalyzed hydrocyanation of model sub-
strates (1a–d) in buffer-saturated mono-phasic methyl tert-
butyl ether. Reactions were performed on a 1-mL scale
using a solution of HCN (2M) in MTBE with 0.5 mmol
1a–d, respectively.
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tained with excellent enantiomeric excess (ee) of
99.7% [Figure 1 (A)]. Prolonged reaction times did
not increase the yield further, but decreased the ee of
2a to 99.3%. Although precipitated AtHNL shows a
very good activity and stereoselectivity in monophasic
buffer-saturated MTBE, separation of the biocatalyst
by filtration and recycling was almost impossible.
Therefore, AtHNL was immobilized on celite (celite-
AtHNL) and in a solgel matrix (solgel-AtHNL), re-
spectively.

Previous studies have demonstrated the moderate
hydrophobicity of celite supports, which led to a good
water transport to the adsorbed enzymes and corre-
spondingly excellent activities inside the micro-aque-
ous reaction systems.[7b,14] To determine an appropri-
ate enzyme/support ratio, several ratios starting from
1:50 to 1:4 were tested. To obtain a measureable reac-
tion rate as demonstrated in Figure 1 (A) an enzyme/
support ratio of 1:4 was used. In order to compensate
a potential loss of activity due to the immobilization
step, in reactions with celite-AtHNL a 1.5-fold con-
centration of AtHNL (compared to precipitated
AtHNL) was used. With this preparation a conversion
of 96.8% of 1a was reached in 45 min with an ee of
99.8% [Figure 1 (B)]. Prolonged reaction times
(120 min) did not reduce the ee of the product 2a.
Thus, the application of celite-AtHNL increased the
enantiopurity of the product 2a although the reaction
rate was slightly reduced (78%) compared to the pre-
cipitated enzyme.

Solgel-AtHNL containing an enzyme amount equal
to the one applied with precipitated AtHNL [Figure 1
(A)] catalyzed the addition of HCN to 1a significantly
faster compared to precipitated AtHNL and celite-
AtHNL and conversion of 1a was almost complete
(97%) within 10 min [Figure 1 (C)]. Monitoring the
reaction over 120 min gave 99.9% conversion of 1a
with an ee of 99.5% for 2a. As with precipitated
AtHNL [Figure 1 (A)] a slight decrease of the ee of
2a was observed after prolonged reaction times
(99.7% after 10 min, 99.5% after 120 min) which
might be due to a higher water concentration in this
system compared to celite-AtHNL [Figure 1 (B)].

Due to the fast reaction rates, initial rates (<10%
conversion) could not reliably be calculated. Thus, the
relative enzyme activities of precipitated AtHNL,
celite-AtHNL and solgel-AtHNL were estimated at
50% conversion of 1a and normalized to the enzyme
concentration in the reaction system. As demonstrat-
ed in Table 1 (2a), celite-AtHNL displays 78% residu-
al activity compared to precipitated AtHNL, whereas
the solgel-AtHNL preparation shows a clearly en-
hanced relative reaction velocity of 671%. Similar ef-
fects were also observed using 1b or 1c as carbonyl
substrates. Whereas the conversion of 2-chlorobenzal-
dehyde (1b) to 2b was more than 10-fold faster cata-
lyzed by the solgel-AtHNL compared to precipitated
AtHNL, this effect was much less pronounced (1.76-
fold) with 2-furaldehyde (1c). While all aromatic
products (2a–c) were obtained with very good stereo-
selectivity using all three preparations of AtHNL, the
enantioselectivity for 2d was impaired with both im-
mobilized AtHNL-preparations. The reduced enzy-
matic activity of celite-AtHNL with respect to the
conversion of substrates 1a–c might be caused by
enzyme inactivation during immobilization, reduced
enzyme flexibility and diffusion limitations inside the
highly loaded celite particles, as was reported previ-
ously in similar studies.[8a,15] In contrast, the strongly

Figure 1. The conversion (*) of benzaldehyde (1a) to (R)-mandelonitrile (2a) by precipitated AtHNL (A), celite-AtHNL (B)
and solgel-AtHNL (C). 0.5M 1a, 1 mL 1.5–2M HCN dissolved in MTBE. Conversion (*) and the enantiomeric excess (�)
were determined by chiral GC (see Experimental Section).

Table 1. Relative activity of precipitated AtHNL, celite-
AtHNL and solgel-AtHNL at 50% conversion of 1a–d to
their respective chiral cyanohydrins 2a–d.

Relative AtHNL activity in %[a]

50% Enzymatic
formation of

Precipitated
AtHNL (ee)

Celite-
AtHNL
(ee)

Solgel-
AtHNL
(ee)

2a (R) 100 (>99) 78 (>99) 671 (>99)
2b (R) 100 (>99) 86 (>99) 1036 (>99)
2c (S) 100 (>99) 76 (>98) 176 (>99)
2d (R) 100 (>95) 57 (>86) 83 (>58)

[a] AtHNL concentration was adapted in all reactions. Stan-
dard reaction rate was defined as reaction rate of 5 mg
precipitated AtHNL by hydrocyanation of 0.5 mmol of
1a–d to 2a–d.
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enhanced activity observed with solgel-AtHNL seems
not to be influenced by these factors. Similar en-
hanced enzyme activities upon solgel-entrapment
were reported for HNLs from Hevea brasiliensis,
Manihot esculenta and Prunus amygdalus[10a] and vari-
ous lipases by Reetz et al.[12a] HNLs from the a/b hy-
drolase superfamily (MeHNL, HbHNL) were most
active and displayed an up to 8-fold enhanced conver-
sion rate toward 1a compared to the free enzyme in a
biphasic reaction system.[10a] However, diffusion limi-
tations of both reaction systems differ extremely and
prevented a direct comparison of the relative enzyme
activities.

Our results with solgel-AtHNL demonstrate similar
enhanced activities under identical reaction condi-
tions as reported for lipases, which underlines the sug-
gested protection of the enzyme from aggregation,
but contradicts the “lid-opened” theory caused by the
“alkyl-effect” in solgels.[12] An alternative explanation
for the activation of AtHNL could be that the entrap-
ped buffer inside the solgel matrix supports a native
and flexible form of the enzyme, which results in a
highly active biocatalyst. Nevertheless, the local water
concentration in the solgel is low enough to prevent
the non-catalyzed side reaction at least in the case of
the aromatic cyanohydrins 2a–c (Table 1).

However, the concentration of aqueous buffer
inside the solgel is most probably the reason why the
hydrocyanation of hexanal (1d) yielded 2d with an ee
of only 58% (Table 1). As AtHNL prefers aromatic
aldehydes, aliphatic aldehydes are only slowly conver-
ted.[4a] As a consequence, the velocity of the non-cata-
lyzed reaction becomes competitive to biocatalysis
and the resulting stereoselectivity of the product is
significantly lower. Precipitated AtHNL displays the
highest enzymatic activity and thus the lowest non-en-
zymatic background reaction (95% ee) for the hydro-
cyanation of 1d to 2d. In contrast, the reaction rate
with celite-AtHNL was clearly reduced to 57% rela-
tive activity and yielded only 86% ee for 2d. As the
solgel is assumed to contain by far the highest water
content among the tested reaction systems, the very
low stereoselectivity for 2d obtained with solgel-
AtHNL can most probably be explained therewith. In
order to investigate the impact of the carrier, the non-
catalyzed reaction using substrate 1d was monitored
in the presence of celite and solgel without AtHNL
under identical reaction conditions. With pure celite
18% racemic 2d were formed within 120 min, whereas
pure solgel converted 50% of 1d to racemic 2d in the
same time. These results clearly demonstrate a signifi-
cant impact of the water concentration in the carrier
on the hydrocyantion of aldehydes, which is most pro-
nounced if the enzymatic reaction is slow. In conclu-
sion, immobilization of AtHNL on celite and in solgel
resulted in highly active enzyme preparations. In
order to further evaluate the potential of both meth-

ods for the application in organic syntheses the recy-
clability and the stability of the immobilized enzyme
preparations were studied.

Generally, enzyme immobilization facilitates filtra-
tion and recycling of the biocatalyst. Therefore, a suf-
ficiently strong binding of the biocatalyst to the sup-
port under the respective reaction conditions is re-
quired. To analyze the potential leakage of active
AtHNL from the carrier material into the reaction
medium two identical samples of celite-AtHNL and
solgel-AtHNL were prepared and packed into fine
woven nylon mesh “tea-bags”, respectively. Such
“tea-bags” allow the simple removal of the biocatalyst
from the reaction medium. Subsequently, the synthe-
sis of 2b was followed over 60 min in four parallel re-
actions; in one reaction set-up the celite-AtHNL or
solgel-AtHNL, respectively, was removed from the re-
action medium after 8 min. But the conversion in all
four reactions was monitored over 60 min. As demon-
strated in Figure 2 (A)and (B), the continuous celite-

Figure 2. Test for leakage of active AtHNL from the celite
(A) and solgel (B) support into the reaction medium (buffer
saturated MTBE). Standard reaction (&) and reaction
where the immobilized AtHNL were removed from the re-
action medium (*).

2402 asc.wiley-vch.de � 2011 Wiley-VCH Verlag GmbH&Co. KGaA, Weinheim Adv. Synth. Catal. 2011, 353, 2399 – 2408

FULL PAPERS Daniel Okrob et al.



PUBLIKATIONEN 
 

 

43 

 

AtHNL and solgel-AtHNL reaction displayed the ex-
pected course of conversion, whereas the aborted re-
actions of both, celite-AtHNL and solgel-AtHNL,
stopped directly after removing the immobilized cata-
lyst from the reaction medium. This observation dem-
onstrates that no leakage of active catalyst occurs in
either reaction systems.

Recyclability of Immobilized AtHNL

The same set-up using celite-AtHNL and solgel-
AtHNL packed into “tea-bags” was applied to study
the recyclability of the immobilized enzyme prepara-
tions. These AtHNL “tea-bags” were applied in five
consecutive hydrocyanations of 1a, including inter-
mediate washing steps with pure MTBE. As demon-
strated in Figure 3 (A), celite-AtHNL displayed excel-
lent recyclability. A moderate decrease in enzyme ac-
tivity was observed, but in all reaction cycles almost
complete conversion (>95%) was reached with a con-
stant ee>98% for 2a. Similar recycling studies with
solgel-AtHNL demonstrated complete conversion of
1a to 2b only in the first cycle, whereas a rapid loss of
activity was observed in the next reaction cycles. Nev-
ertheless, the stereoselectivity of cycles 1–3 was very
good, >98% ee [Figure 3 (B)].

However, the stereoselectivity was progressively re-
duced with every further recycling step. Efforts to
reduce the inactivation rate by washing solgel-AtHNL
with phosphate buffer, pH 6.5, instead of MTBE be-
tween each cycle resulted in improved reaction rates
only for the 4th and 5th cycles. However, this was ac-
companied by a significant drop of ee (cycles 4 and 5:
82% ee), probably caused by the incremental deacti-
vation of AtHNL, and an increased water concentra-
tion in the reaction medium [Figure 3 (C)] due to the
washing steps with phosphate buffer.

To verify this hypothesis, two identical solgel-
AtHNL samples were prepared in “tea-bags” and pre-
incubated in MTBE for 60 and 120 min, respectively.
This preincubation time is equivalent to 1 or 2 reac-
tion cycles as described in the recycling studies. Addi-
tion of HCN to 1a was performed after preincubation
and 80% relative activity was observed for the 60 min
preincubated sample, whereas only 52% residual ac-
tivity was found for the 120 min preincubated sample.
In conclusion, the loss of activity is similar to the 2nd

and 3rd reaction cycles of Figure 3 (B/C) and is related
to the enzyme inactivation caused by MTBE, which
permeates into the solgel over time. Thus, AtHNL is
not stable in solgels, which is in contrast to related
studies with lipases.

Figure 3. Recycling of celite-AtHNL and solgel-AtHNL
using benzaldehyde and HCN as substrates. In (A) celite-
AtHNL was washed with pure MTBE after each cycle. In
(B) solgel-AtHNL was washed with MTBE and in (C)
solgel-AtHNL was washed with 50 mM phosphate buffer
pH 6.5. Cycle 1 (&), cycle 2 (*), cycle 3 (~), cycle 4 (!),
cycle 5 (^).
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Storability of Immobilized AtHNL

In order to characterize the storability of the immobi-
lized enzyme, adequate amounts of celite-AtHNL and
solgel-AtHNL were prepared and transferred into a
screw cap glass vial and stored at 4 88C. Over a period
of 31 days equal amounts of immobilized AtHNL
were withdrawn and residual activity was assayed by
following the synthesis of 2a under identical reaction
conditions. The relative activity was determined by
comparing the substrate conversion of 1a to 2a for a
defined reaction time. For celite-AtHNL an unexpect-
ed doubling of enzyme activity was observed over the

first 7 days, which decreased slightly again in the fol-
lowing 14 days. Extrapolation of this slow inactivation
process led to a theoretical half-life of 71 days
[Figure 4 (A)]. The initial rise in activity observed in
the first days might be related to the water concentra-
tion inside the reaction medium. As the experimental
set-up was based on only one storage sample of
celite-AtHNL, the frequent opening and closing of
the screw cap vial during sampling might have pro-
gressively increased the water content in the celite-
AtHNL preparation, which in turn might have en-
hanced the enzyme activity. After about 14 days
celite-AtHNL particles were probably saturated by air
moisture and enzyme activity reached a plateau.

In order to test this hypothesis, activities of celite-
AtHNL prepared as described before [dried over
silica gel; 3% (w/w) water] and of four celite-AtHNL
preparations containing increasing weight percentages
of water [5–26% (w/w)] were compared [Figure 4
(B)]. Thereby, the sample with the lowest water con-
tent [also used for the storage test, Figure 4 (A)]
showed the lowest relative activity in the hydrocyana-
tion of 1a, compared to the samples with higher water
concentrations. Interestingly, the observed increase of
activity with increased water concentration did not
lead to a decrease of enantioselectivity. This indicates
a limitation of enzyme activity by a lack of water
inside the reaction medium. Celite-AtHNL samples
containing 10% or 26% water displayed the highest
activities, whereas a water content of 26% (w/w) led
to an only 3% higher activity compared to the sample
containing 10% (w/w) water. This indicates that 10%
(w/w) water inside celite-AtHNL is close to the mini-
mal water amount, which is necessary for optimal en-
zymatic activity.

In contrast to celite-AtHNL, solgel-AtHNL dis-
played a clearly visible loss of activity starting from
the first day of incubation at 4 8C with a half-life of

Figure 4. (A) Storability of dry celite-AtHNL at 4 8C. Com-
parison of conversion rates of the hydrocyanation of 1a
using different samples of the same batch over 31 days. (B)
Influence of weight percentage (w/w) of water on enzyme
activity of celite-AtHNL. Preparations of celite-AtHNL
were incubated over silica gel [3% (w/w) water] and over
different saturated salt solutions [5–26% (w/w) water] for
16 h prior to activity measurements. Activity was assayed by
following the hydrocyanation of 1a. Relative enzyme activi-
ties were calculated by comparing substrate conversion at a
defined point of time (all reactions yielded> 98% ee). The
final water content was determined using TGA.

Figure 5. Storability of solgel-AtHNL at 4 8C. Residual activ-
ity (velocity of hydrocyanation of 1a) was assayed from sam-
ples taken at the indicated time points.
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about 29 days (Figure 5). This rapid loss of activity
seems to be due to the progressive inactivation of
AtHNL inside the moist environment and is probably
further accelerated by the methanol remaining from
the gelling process of the solgel.[10b]

Conclusions

The use of precipitated AtHNL for the hydrocyana-
tion of aromatic, heteroaromatic and aliphatic alde-
hydes in monophasic buffer-saturated MTBE is an ef-
ficient alternative to the hydrocyanation reaction in
aqueous media at low pH. Using this approach
AtHNL, which is not stable even under weakly acidic
conditions (<pH 5), can efficiently be used. The bio-
transformations of the tested substrates resulted in
almost complete enzymatic conversion with excellent
stereoselectivity. A further advantage of reaction sys-
tems with minimal water content is the efficient sup-
pression of the non-catalyzed formation of racemic
cyanohydrins and the better solubility of aromatic
substrates and products. To improve the recyclability
of AtHNL, the enzyme was entrapped in a solgel
matrix and immobilized on celite.

Solgel-entrapped AtHNL displayed an up to 10-
fold increase in activity with respect to the conversion
of aromatic aldehydes; this is most probably due to
the aqueous environment of the enzyme in the solgel,
which results in a higher flexibility and turnover fre-
quency. However, we observed a rapid loss of activity,
probably caused by permeation of MTBE into the
solgel, which led to reduced recyclability. Further-
more, the laborious preparation and poor storability
make solgel-entrapped AtHNL less attractive.

With celite-adsorbed AtHNL a significant influence
of the water content in the celite-AtHNL preparation
on the enzyme activity was observed. With optimal
humidity, the enzymatic activity was only slightly re-
duced relative to precipitated AtHNL (76–86%) for
the aromatic substrates (Table 1). Furthermore, celite-
AtHNL shows excellent recyclability and storability;
together with the cheap, rapid and simple preparation
method, these features make the celite-AtHNL ex-
tremely attractive for biocatalytic applications. The
advantage of both non-covalent immobilization meth-
ods is the high preserved activity since no side chains
essential for activity are negatively influenced. How-
ever, non-covalent immobilization methods are less
stable than multipoint covalent support attachment of
the enzyme. Therefore, further studies concerning co-
valent immobilization as well as stabilization by
enzyme engineering are currently performed.

Experimental Section

CAUTION: Sodium cyanide and HCN are highly poisonous.
Procedures involving sodium cyanide or HCN were per-
formed in a well-ventilated lab-hood equipped with a cali-
brated HCN detector. Neutralization of HCN-containing
wastes was performed with commercial bleach (14% sodium
hypochlorite solution). The wastes were then stored over a
large excess of bleach for disposal. For safety reasons reac-
tions were performed in closed reaction vessels on a 1-mL
scale by using a solution of HCN (2M) in MTBE with
0.5 mmol 1a–d, respectively.

Chemicals

Celite (0.2–0.5 mm) was purchased from World Minerals
Inc. (Santa Barbara, USA). Methyltrimethoxysilane
(MTMS, 98%), tetramethoxysilane (TMOS, 98%), benzalde-
hyde (99%), furaldehyde (99%), hexanal (98%), 2-chloro-
benzaldehyde (99%), dodecane (anhydrous, � 99%), pyri-
dine (99%), magnesium nitrate hexahydrate and sodium cy-
anide (97%) were purchased from Aldrich (St. Louis, USA).
Acetic anhydride (p.a.), lithium chloride and magnesium
chloride hexahydrate were purchased from Fluka (St. Louis,
USA). Methyl tert-butyl ether (MTBE, p.a.), potassium sul-
fate and sodium chloride were purchased from Merck
(Darmstadt, Germany). Dichloromethane was purchased
from KMF (St. Augustin, Germany). Purified mandelonitrile
was purchased from J�lich Fine Chemicals (J�lich, Germa-
ny) and stored at �20 88C. Benzaldehyde, 2-chlorobenzalde-
hyde, 2-furaldehyde and hexanal were freshly distilled and
stored under argon atmospheres.

Analytical Methods

Synthesis reactions were followed by chiral gas chromatog-
raphy on a Shimadzu gas chromatograph GC-14B or on an
Agilent Technologies gas chromatograph 6890N, both
equipped with an FID detector and a beta-cyclodextrin
column (CP-Chirasil-Dex CB 25 m�0.25 mm). Identical GC
methods as described in the literature were used.[10b] Sam-
ples (30 mL aliquots) of the reaction were taken at defined
time points, dissolved in 1.7 mL dichloromethane and deriv-
atized by addition of 40 mL pyridine and 40 mL acetic anhy-
dride for at least 3 h. Conversion rate and ee were calculated
from the relative peak areas of the aldehyde and the cyano-
hydrin derivative.

Preparation of 2M HCN Solution in MTBE

Sodium cyanide (4.9 g, 0.1 mol) was dissolved in a magneti-
cally stirred mixture of water (10 mL) and MTBE (25 mL)
at 0 8C. The biphasic system was stirred vigorously for
15 min and 30% aqueous HCl (10 mL) was added slowly.
This mixture was allowed to warm slowly to room tempera-
ture (at least 25 min). The phases were separated and 7 mL
MTBE were added to the organic layer. The combined or-
ganic phases were stirred and residual water was separated.
This procedure was repeated with another 7 mL of MTBE.
The 2M standard HCN solution was kept over citrate phos-
phate buffer (50 mM, pH 5.5) in the dark. Determination of
HCN concentration was performed as described in litera-
ture.[16]
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Cultivation and Purification of AtHNL

BL21 ACHTUNGTRENNUNG(DE3) pAtHNL[5] were cultivated using a standard
fed-batch fermentation protocol.[17] From a 15 L cultivation
1.75 kg cells were harvested, containing a total activity of
2 GU (mandelonitrile cleavage assay). 15 g BL21-ACHTUNGTRENNUNG(DE3)_pAtHNL cells were slowly suspended in 50 mM po-
tassium phosphate buffer (pH 7.5) at 0 88C and disrupted by
sonication [4�5 min at 70W/cm2 on ice with an ultrasonic
processor UP200S and a sonotrode S14D (Dr. Hielscher
GmbH)]. After ultracentrifugation (35,000�g, 4 8C, 45 min),
the resulting crude extract (ca. 50 mL) was desalted by gel-
filtration on Sephadex G-25 [1 L bed volume, 10 mM potas-
sium phosphate buffer (pH 7.5)]. Subsequently, anion ex-
change chromatography on a Q-Sepharose column (90 mL
bed volume) was performed, which was equilibrated with
50 mM potassium phosphate buffer (pH 7.5). After elution
of non-bound proteins, AtHNL containing fractions were
eluted with a linear NaCl gradient at 150 mM. Combined
fractions with HNL activity were desalted using a Sephadex
G-25 column [1 L batch volume, 10 mM potassium phos-
phate buffer (pH 7.5)] and subsequently lyophilized. Protein
determination was performed according to Bradford
(1976).[18] Purified AtHNL (90% purity) exhibits a specific
cleavage activity of 70–90 U/mg toward mandelonitrile
(pH 5.8) according the activity assay (see below).

Standard Preparation of Celite-Immobilized AtHNL

Lyophilized AtHNL was re-dissolved in 10 mM potassium
phosphate buffer (pH 6.0) and protein determination was
performed (Bradford). Enzyme solution with an appropriate
enzyme concentration (enzyme/support ratio 1:4–1:50) was
added to the celite support (celite R-633). The preparation
was dried for at least 12 h under vacuum (20 mbar) in a des-
sicator over silica gel and molecular sieves. The standard
celite-AtHNL preparation contained 0.25 mg AtHNL/mg
celite. Celite-AtHNL transferred into dense screw cap vials
and stored at 4 8C.

Preparation of Solgel-Entrapped AtHNL

For solgel entrapment MTMS/TMOS was chosen. A precur-
sor solution was prepared under mild conditions, where al-
koxysilanes were almost completely hydrolyzed by acid-
mediated hydrolysis and the released methanol was re-
moved by evaporation.[10b]

Solgel precursor preparation: Acidic water (690 mL, pH
adjusted to 2.85 by addition of HCl) was added to a mixture
of MTMS (1.05 g, 7.7 mmol), TMOS (4.54 g, 28.25 mmol)
and distilled water (5.2 mL) and stirred in a 50-mL round
bottom flask until a homogenous solution was obtained.
Formed methanol was removed using a rotary evaporator
(20–30 mbar, 40 8C) until the characteristic odours of
MTMS, TMOS and methanol were no longer detectable.
The solution was cooled to 0 8C and used immediately for
the entrapment of AtHNL.

Entrapment of AtHNL: Lyophilized AtHNL was dis-
solved in 50 mM potassium phosphate buffer (pH 6.35) and
protein concentration was adjusted to 50 mg AtHNLmL�1.
The same volume of cooled solgel precursor solution and
AtHNL solution were mixed by magnetic stirring until the
mixture gelled completely. The prepared solgel-AtHNL was

submerged in 3 equiv. 50 mM potassium phosphate buffer
(pH 6.0) and aged for at least 16 h at 4 8C. Afterwards, the
solgel-AtHNL was filtered, washed with distilled water,
ground into fine powder and stored in a dense closable
screw cap vial at 4 8C.

AtHNL Activity Assay (Mandelonitrile Cleavage)

The increase of the benzaldehyde concentration was mea-
sured continuously at 280 nm in quartz glass cuvettes.
700 mL citrate phosphate buffer (50 mM, pH 5.8) was mixed
with 100 mL enzyme in potassium phosphate buffer (10 mM,
pH 6.0) at 25 8C. The reaction was started by addition of
200 mL mandelonitrile solution (67 mM mandelonitrile in
citrate phosphate buffer, pH 3.5) and monitored for 1 min.
Subsequently, the activity was calculated using the molar ex-
tinction coefficient of benzaldehyde (e280nm=
1376 Lmmol�1 cm�1). One unit of HNL activity is defined as
the amount of enzyme, which converts 1 mmol mandeloni-
trile per minute in citrate phosphate buffer, pH 5.8, 25 8C.
All measurements were performed at least as triplicates;
References with all components except AtHNL were always
determined twice.

Synthesis of Cyanohydrins by Precipitated AtHNL

5 mg AtHNL were dissolved in 50 mL potassium phosphate
buffer (50 mM, pH 6.35). Under an argon atmosphere 1 mL
1.5–2M HCN solution in MTBE, 0.5 mmol aldehyde,
0.1 mmol dodecane (internal standard) were mixed thor-
oughly by magnetic stirring. A sample for the point of origin
(30 mL) was taken. Synthesis was started by addition of
50 mL AtHNL in potassium phosphate buffer (pH 6.5). Re-
action was monitored by chiral GC over 60–120 min while
the reaction flask was stirred at room temperature.

Synthesis of Cyanohydrins by Celite-AtHNL or
Solgel-AtHNL

Celite or solgel containing 5–7.5 mg AtHNL, respectively,
was transferred into the closed reaction vessel and aerated
with argon. 1 mL HCN (1.5–2M) solution in MTBE saturat-
ed with citrate phosphate buffer (pH 5.5) (see preparation
of 2M HCN solution in MTBE) and 0.1 mmol dodecane (in-
ternal standard) were added and mixed by strong magnetic
stirring. The reaction was started by addition of 0.5 mmol al-
dehyde under continuous stirring. Aliquots were taken at
defined time points and the continuous reaction was moni-
tored by chiral GC over 60–120 min while the reaction mix-
ture was stirred at room temperature.

Comparison of Relative Activity at 50% Substrate
Conversion for Precipitated AtHNL and Immobilized
AtHNL

Hydrocyanation of 1a–d was catalyzed by precipitated
AtHNL, celite-AtHNL and solgel-AtHNL, respectively, and
monitored by chiral GC. The AtHNL concentration in each
experiment was adjusted such that �95% substrate conver-
sion was observed within 90 min. The time when 50% con-
version was reached by 5 mg precipitated AtHNL was set as
100% activity. Relative activities of immobilized AtHNL
were calculated relative to the activity with precipitated
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AtHNL and considering the enzyme concentration in the re-
spective immobilisate.

Example: When the same amount of immobilized enzyme
achieved 50% substrate conversion within 1/5 of time, rela-
tive to the precipitated enzyme, its relative activity is 500%.

Recycling of Celite-AtHNL or Solgel-AtHNL

Celite or solgel containing 3–5 mg AtHNL was sealed into
an organic solvent-resistant, fine-woven nylon mesh “tea-
bag” [nylon net, pore size 0.4 mm; sealing unit: Polystar 100
GE-GS (Rische ++ Herfurth, Germany)] for easy removal
from the reaction medium by filtration. Five consecutive hy-
drocyanation reactions (substrate: 1a) were performed over
60 min with the celite-AtHNL “tea-bag” and the solgel-
AtHNL “tea-bag”, respectively, as described for immobi-
lized AtHNL. The “tea-bags” were washed between each re-
action cycle with pure MTBE or potassium phosphate
buffer (50 mM, pH 6.0) to remove remaining product and
refresh the immobilisate. Chiral GC was used to monitor
the reactions.

Investigation of Potential Leakage of Active AtHNL
from Immobilisates

Two identical celite-AtHNL or solgel-AtHNL samples,
shrink-warped in a nylon mesh “tea-bag”, were prepared.
Each sample was used for addition of HCN to benzaldehyde
1a as described in the synthesis protocol for immobilized
AtHNL. In one reaction the “tea-bag” containing the immo-
bilized AtHNL was inside the reaction medium for the
whole reaction time while it was removed from the reaction
medium after 8 min in the parallel reaction. Both samples
were monitored over 60 min by chiral GC. After removal of
the “tea-bag” the reaction should be aborted, when no
active enzyme leaks into reaction medium.

Investigation of Storability of Celite-AtHNL and
Solgel-AtHNL

One batch containing an adequate amount of celite- or
solgel-immobilized AtHNL was prepared as described in the
standard protocols and transferred into a dense closable
screw cap vial. Over a period of 31 days the vial was stored
at 4 8C. From time to time equal amounts of immobilized
AtHNL were taken from the batch and residual activity was
assayed by measuring the hydrocyanation of 1a under iden-
tical reaction conditions. All reactions were monitored by
chiral GC. Relative activity was calculated by comparing the
substrate conversion at a defined reaction time (celite-
AtHNL: 25 min; solgel-AtHNL: 5 min).

Investigation of the Influence of Water Concentration
(w/w) on the Activity of Celite-AtHNL

One adequate batch of celite-AtHNL was prepared as de-
scribed above. The batch was split into 5 aliquots (A–E).
Sample A was directly transferred into a dense closable
screw cap vial and stored at 4 8C. Samples B–E were trans-
ferred into four desiccators and incubated over a saturated
salt solution of Mg ACHTUNGTRENNUNG(NO3)2 aw=0.54, MgCl2 aw=0.33, NaCl
aw=0.75 or K2SO4 aw=0.95 to adjust a specific humidity
(water activity aw) in each desiccator for at least 16 h (room

temperature), before they were transferred into a dense
closable screw cap vial and stored at 4 8C. The activity was
finally assayed by following the hydrocyanation of 1a under
identical reaction conditions. All reactions were monitored
by chiral GC. Relative activities were calculated by compar-
ing the substrate conversion at a defined reaction time
(30 min). Water bound to celite-AtHNL was measured by
thermogravimetry using a Perkin–Elmer TGA7 thermogra-
vimetric analyzer. The measurements were performed under
nitrogen atmosphere in the range of 25–625 8C at a heating
rate of 10 8Cmin�1. The initial sample mass was always in
the range 4–12 mg.
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Abstract

 

Synthesis of chiral cyanohydrins is performed in a mono-phasic micro-aqueous 

reaction system using whole recombinant Escherichia coli cells expressing the 

Arabidopsis thaliana hydroxynitrile lyase (AtHNL). Microscopy studies employing a 

fusion of AtHNL with a flavin-based fluorescent reporter (FbFP) reveal that the cells 

remain intact in the reaction system.  
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The synthesis of enantiopure cyanohydrins from aldehydes or ketones and hydrogen 

cyanide (HCN) catalysed by HNLs represents an industrially important biocatalytic 

route (Fig. 1)(4). Cyanohydrins serve as valuable building blocks in synthetic 

chemistry and the pharmaceutical industry(9). HNLs are usually applied in aqueous-

organic two-phase systems at pH values equal to or below 4.5 in order to suppress 

the non-catalytic side reaction yielding racemic products(2).  

<Figure 1> 

However, such low pH-values are not always tolerated by the enzymes. E.g. the (R)-

selective HNL from Arabidopsis thaliana (AtHNL) is unstable at low pH values(8), 

which severely limits its application in conventional aqueous-organic reaction 

systems. Application of the HNLs in organic solvent, with a minimal water activity, 

represents an attractive alternative which has recently been explored using 

precipitated and immobilised enzyme preparations(11). The organic solvent system 

facilitates the solubility of aromatic substrates and products and suppresses the non-

catalytic side reaction due to the low water content. However, the precipitated 

enzyme cannot be recycled and the preparation of recyclable immobilizates requires 

additional steps and results in a partial loss of enzyme activity. In this respect, the 

use of whole cells in a mono-phasic micro-aqueous reaction system(5) would 

essentially eliminate all the aforementioned problems and thus represent a cost 

efficient alternative to the use of purified and/or immobilized enzyme preparations.  

 

In order to test the applicability of such a system for the synthesis of chiral 

cyanohydrins, whole recombinant E. coli cells expressing the AtHNL are used here 
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as a whole-cell biocatalyst in a mono-phasic organic solvent. Cells and solvent can 

be recycled and the product can easily be recovered from the solvent. Despite the 

significant potential of such an approach, only a few studies have so far been 

reported on the application of whole cells in mono-phasic organic solvents(5). Most of 

these studies focus on the stereoselective reduction of ketones by alcohol 

dehydrogenases using lyophilized yeast cells(5, 12). To the best of our knowledge, 

only two studies have been published on the use of whole recombinant E. coli cells in 

water-free or micro-aqueous reaction systems. In one study, lyophilized E. coli cells 

overexpressing an alcohol dehydrogenase from Rhodococcus ruber were used in a 

micro-aqueous system with 99% (v/v) isopropanol(5). A related strategy has recently 

been described, where lyophilized E. coli cells heterologously expressing the 

Candida parapsilosis carbonyl reductase were used in a reaction system containing 

only neat substrates, without addition of an explicit solvent(10).  

 

The feasibility of a mono-phasic micro-aqueous whole-cell reaction system for the 

production of chiral cyanohydrins was initially tested by the synthesis of (R)-

mandelonitrile from benzaldehyde and hydrogen cyanide (HCN). The reaction was 

carried out in buffer saturated methyl tert-butyl ether (MTBE) (Fig. 2). MTBE is widely 

used in biocatalysis and has previously been shown to be advantageous for the use 

with free and immobilized AtHNL preparations(11). To recycle the cells, fresh or 

frozen E. coli BL21(DE3) cells expressing wild-type AtHNL were placed into a nylon-

mesh. Thus, the cells can easily be removed from the reaction vessel facilitating easy 

cell recycling. After each conversion, the cells were washed with MTBE, placed in a 

new vessel and MTBE and fresh substrates were added. Both freshly prepared and 
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frozen cells displayed very similar conversion rates and enantioselectivities over 

several reaction cycles (Fig. 2 and Supplementary Fig. 1). Recycling of whole cells 

resulted in slightly slower initial reaction rates and final conversion yields in 

subsequent conversion rounds, however, without loss of enantioselectivity. 

 

Cyanohydrin synthesis was further studied with different aldehyde substrates in order 

to evaluate the applicability of our reaction set-up in more detail (Table 1). Fresh 

(wet) cells showed good conversion rates but gave only moderate ee values with 

substituted benzaldehydes (2, 3). By contrast, furfural (4) was only poorly converted 

(50 %) with low enantioselectivity (30 % ee). 

< Figure 2> 

<Table 1>

The difference between enzymatic and non-enzymatic reaction rates for the 

respective aldehydes may provide a reasonable explanation for the reduced 

enantioselectivities which were observed as compared to the conversion of 1. It has 

previously been demonstrated that e.g. for 2 and 3, the non-enzymatic side reaction 

in an aqueous reaction system is much faster than for 1(1). Consequently, when dry 

AtHNL immobilizates were used for the conversion of 2 and 4,excellent ee values (> 

98 %) could be obtained(11). Therefore, it appears that the water content in the 

MTBE washed cell pellet (or in the E. coli cells) compromises the enantioselectivity in 

our whole-cell reaction system. To elucidate this possibility, the respective E. coli 

cells were lyophilized and used for the conversion of 1-4. Not surprisingly, conversion 

was reduced compared to the use of fresh cells, however, ee values for all substrates 
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increased significantly. In particular 4 could be converted with an ee value of 88 % 

(Table 1) Likewise, 2 that was previously converted with a moderate ee of 70 % by 

fresh (wet) cells was now converted with an ee of 90 % by lyophilized cells.  

Bacterial cells are evolved to be stable in an aqueous environment. Hence, the 

impact of prolonged incubation in MTBE remains unclear. In order to evaluate the 

influence of the reaction system on cell integrity, a translational fusion of a flavin-

based fluorescent protein (FbFP) with the AtHNL was generated. In the fusion 

construct, nFbFP-AtHNL, the FbFP module is attached N-terminally to the AtHNL by 

molecular biological methods. FbFPs were initially derived from the sensor domain of 

plant and bacterial light-oxygen-voltage (LOV) photoreceptors(6). They represent a 

promising new class of fluorescent reporter proteins with high potential for 

biotechnological and cell biological application(3, 6, 7, 13, 14). The resulting 

fluorescent cells, expressing the fusion enzyme, can be used similarly to the AtHNL 

expressing E. coli cells for cyanohydrin synthesis. However, the use of a fluorescent 

whole-cell biocatalyst allows the application of fluorescence microscopy and 

spectroscopy to track the fate of the cells in the reaction system. With respect to (R)-

mandelonitrile synthesis and cell recycling, nFbFP-AtHNL expressing E. coli cells 

behave identical to the wild-type AtHNL expressing cells (Fig. 3 A). Fluorescence 

microscopy revealed cell shrinkage by about 20 % during three consecutive reaction 

cycles in MTBE (Fig. 3, B and C). Remarkably, this small change in cell morphology 

does coincide with a slightly decreased overall biocatalytic performance in the next 

cycle (Fig. 3, A).  

<Figure 3> 
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The fluorescence signal of the fused reporter protein, however, remained stable 

during several hours of incubation (Supplementary Fig. 2), indicating proper reporter 

protein integrity within the cell. Despite the observed cell shrinkage during incubation 

in MTBE, cellular integrity was essentially retained. Mechanistically, the reduced 

conversion rate during recycling may thus be due to limited leakage of the enzyme 

from the cells, the loss of cell material from the nylon mesh during washing and 

recycling steps, or could be caused by partial inactivation of the intracellular enzyme 

by the substrate. 

Conclusions 

Standard E. coli BL21(DE3) cells, expressing the Arabidopsis thaliana HNL, were 

used as whole-cell biocatalyst for the synthesis of chiral cyanohydrins in mono-phasic 

micro-aqueous MTBE. The use of lyophilized cells makes this approach also suitable 

for the conversion of aldehydes showing a fast non-catalyzed racemic product 

formation in aqueous systems. Due to its simplicity (use of whole cells, no protein 

purification, mono-phasic organic solvent), this novel process for the production of 

chiral cyanohydrins could be an interesting alternative also for industrial applications. 

In general, the application of whole-cell biotransformations in pure organic solvents 

represents a promising alternative to conventional biotransformations in aqueous 

media. The use of mono-phasic microaqueous organic solvents may particularly be 

interesting when poor substrate or product solubility limit their application or when 

substrates and/or products are unstable in water. Our approach should be directly 

transferable to any HNL that can be expressed in E. coli.  
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Moreover, our microscopic analyses revealed that standard E. coli cells do not lose 

their cellular integrity when incubated in MTBE. Hence, it can be expected that the 

transfer of the presented whole-cell biotransformation approach to other enzymatic 

systems could open up new biocatalytic routes even for the synthesis of novel 

products which are currently not accessible by biocatalysis. 

 

Likewise, the use of fluorescent reporter techniques in such studies allows an in situ 

monitoring of the respective biocatalytic system. In this respect, we currently evaluate 

the potential of FbFPs and other fluorescent proteins as reporters for further 

biotechnological applications including solvent-screening and localization of enzymes 

in immobilization carrier materials and micellar systems. 
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Tables and Figures

 

Table 1: Conversion of different aldehydes by whole E. coli cells expressing wild-type 

AtHNLa. 

O

R

O

O

substrates   

fresh (wet) cells lyophilized cells 
 reaction 

no. conv (%) ee (%) conv. (%) ee (%)

R= H- 1 100 >98 45 >98 

  = o-Cl- 2 80 >70 43 >90 

  = o-F- 3 85 >90 33 >98 

  4 50 >30 67 >88 

aAll conversions were carried out using 350 mg of fresh (wet) cells or the 

corresponding amount of lyophilized cells in buffer-saturated MTBE containing 2 M 

HCN and 0.5 mmol of the respective aldehyde. Reactions were stopped after 1 h and 

conversion rates were determined by GC. 
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O

R H
HCN +

whole cells expressing HNL

MTBE

HO CN

HR �

Fig. 1. HNL-catalyzedhydrocyanation reactionin mono-phasic micro-aqueous methyl 

tert-butyl ether (MTBE).  
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Fig. 2. Conversion of benzaldehyde and HCN to (R)-mandelonitrile by whole E. coli 

BL21(DE3) cells expressing wild-type AtHNL.All reactions were performed using in 

buffer-saturated MTBE with 350 mg of wet cells placed in a nylon mesh (pore-size 

0.4 μm). After each conversion round, the cells in the nylon mesh were washed with 

MTBE, placed in a fresh reaction vessel, and the subsequent conversion was started 

by the addition of new substrates. I. conversion (	), II. conversion (
), and III. 

conversion (�). During all conversion rounds the ee exceeded 98%  
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Fig. 3. (A) Conversion of benzaldehyde and HCN to (R)-mandelonitrile by whole E.

coli BL21(DE3) cells expressing nFbFP-AtHNL. (B) E. coli cells expressing nFbFP-

AtHNL imaged with fluorescence microscopy. Cells were incubated in buffer-

saturated MTBE for up to 4.5 hours. Samples were taken at time points 

corresponding to the respective conversion cycle. (D) Change in relative E. coli cell 

perimeter during incubation in MTBE. Data were derived from statistical evaluation of 

microscopy pictures (see supplementary materials for details). 



PUBLIKATIONEN 
 

 

66 

 
 

3.3. Publikation 3 

Tailoring a stabilized variant of hydroxynitrile lyase from 
Arabidopsis thaliana 
 

 

 
 

 

 

 

D. Okrob, J. Metzner,  

W. Wiechert, K. Gruber, M. Pohl 

ChemBioChem, Februar 2012 

DOI: 10.1002/cbic.201100619 

 

Gedruckt mit der Genehmigung von John Wiley and Sons 

License number: 2862510540383 



PUBLIKATIONEN 
 

 

67 

 

DOI: 10.1002/cbic.201100619

Tailoring a Stabilized Variant of Hydroxynitrile Lyase from
Arabidopsis thaliana
Daniel Okrob,[a] Julia Metzner,[a] Wolfgang Wiechert,[a] Karl Gruber,[b] and Martina Pohl*[a]

Dedicated to Professor Maria-Regina Kula on the occasion of her 75th birthday

Introduction

Hydroxynitrile lyases (HNLs, EC 4.1.2.x) belong to an industrially
important group of enzymes catalyzing highly stereospecific
additions of HCN to aldehydes or ketones.[1] The resulting
chiral cyanohydrins are versatile building blocks for the pro-
duction of fine chemicals, pharmaceuticals, and agrochemi-
cals.[2]

The HNL from Arabidopsis thaliana (AtHNL) was identified as
the first R-selective HNL with an a/b-hydrolase fold, which is
structurally related to the S-selective HNLs from Manihot escu-
lenta (MeHNL) and Hevea brasiliensis (HbHNL).[3] In our previous
studies, we solved the crystal structure of the dimeric AtHNL
(PDB ID: 3dqz)[4] and identified similarities between MeHNL
and AtHNL with regard to their broad substrate ranges and ki-
netic parameters. In contrast with MeHNL’s high stability in the
acidic pH range (pH�4), AtHNL is inactivated by aggregation
within minutes below pH 5.[5] However, for the enzymatic syn-
thesis of chiral cyanohydrins in aqueous or aqueous/organic
two-phase systems, a pH of 4 or below (at 20 8C) is a prerequi-
site to suppress the non-enzymatic hydrocyanation, which re-
sults in racemic cyanohydrins.[6] Alternatively, the formation of
racemic products can also be avoided by using micro-aqueous
reaction systems.[7] We recently successfully demonstrated this
by using precipitated and immobilized AtHNL for the synthesis
of different chiral cyanohydrins in buffer-saturated methyl tert-
butyl ether (MTBE).[8]

In parallel studies we developed an alternative approach to
stabilizing AtHNL by enzyme engineering, targeting the en-
zyme’s surface, to optimize its properties also for application in
aqueous/organic two-phase systems.

Our previous studies had demonstrated MeHNL to be the
most stable HNL with an a/b-hydrolase fold.[5] Its higher stabili-
ty was assumed to result from the enzyme’s property of form-
ing weak tetramers from two stable dimers. A comparison of

the surface amino acid residues of the potential tetramer inter-
face of MeHNL with the corresponding positions in AtHNL
revealed high diversity of the surface residues, which could
explain the dimeric state of AtHNL. In order to stabilize AtHNL,
these sequence differences were taken as a starting point for
a rational protein engineering approach. The aim was the
modification of the surface–environment interaction, as well as
the introduction of a potential interface area, which might
enable weak tetramer formation in the AtHNL variant.

Here we present the development of a surface-modified
AtHNL variant (surfmod-AtHNL), which features changes of 11
amino acids to the corresponding amino acids in MeHNL. We
describe a comparative characterization of wild-type AtHNL
and the surfmod variant, focusing on differences in initial rate
activities, pH optima, pH stabilities, and thermostabilities, as
well as differences between the quaternary structures and the
isoelectric points. Furthermore, application of the variant in an
aqueous/organic two-phase system was tested in order to
demonstrate its potential for the synthesis of chiral cyanohy-
drins.

The R-selective hydroxynitrile lyase from Arabidopsis thaliana
(AtHNL) cannot be applied for stereoselective cyanohydrin syn-
theses in aqueous media because of its limited stability at
pH<5, which is required in order to suppress the uncatalyzed
racemic cyanohydrin formation. To stabilize AtHNL we de-
signed a surface-modified variant incorporating 11 changes in
the amino acids on the protein surface. Comparative character-
ization of the variant and the wild-type enzyme showed
a broadened pH optimum towards the acidic range, along

with enhancement of activity by up to twofold and significant-
ly increased pH- and thermostabilities. The effect can most
probably be explained by a shift of the isoelectic point from
pH 5.1 to 4.8. Application of the variant for the synthesis of (R)-
cyanohydrins in an aqueous/organic two-phase system at
pH 4.5 demonstrated the high stereoselectivity and robustness
of the variant relative to the wild-type enzyme, which is imme-
diately inactivated under these conditions.

[a] D. Okrob, J. Metzner, Prof. Dr. W. Wiechert, Prof. Dr. M. Pohl
Institute of Bio- and Geosciences, IBG-1: Biotechnology
Forschungszentrum J�lich GmbH
52425 J�lich (Germany)
E-mail : ma.pohl@fz-juelich.de

[b] Dr. K. Gruber
Institute of Molecular Biosciences, University of Graz
Humboldtstrasse 50/3, 8010 Graz (Austria)

Supporting information for this article is available on the WWW under
http://dx.doi.org/10.1002/cbic.201100619.
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Results and Discussion

Analysis of the 3D structure of MeHNL and construction of
the surfmod-AtHNL variant

The crystal structure of MeHNL (PDB ID: 1dwp)[9] was analyzed
with the aid of the PQS-server[10] and a tetramer was generated
(by application of a crystallographic twofold axis) as described
by Guterl et al.[5] An analysis of this tetrameric MeHNL structure
model with the aid of the PDBePISA-server [protein interfaces,
surfaces, and assemblies service (PISA) at the European Bioin-
formatics Institute][11] yielded dimer interfaces (interface 1) be-
tween monomers A/B and C/D and tetramer interfaces (inter-
face 2) between monomers A/C and B/D as shown in Figure 1.
Interface 1 was found to have an interaction area of 876 �2

involving 26/27 amino acid interactions, which correlates with
an estimated complexation energy of �14.0 kcalmol�1. In con-
trast, interface 2 was found to have an interaction area of
438 �2 involving 13/14 amino acid interactions with a lower
complexation energy of �2.6 kcalmol�1, supporting the idea
that MeHNL might form a weak tetramer.

An analogous analysis of the AtHNL structure (PDB ID: 3dqz)
yielded a dimer interface with an interaction area and con-
served amino acid composition similar to those of interface 1
of MeHNL (for further details see the Supporting Information),
whereas the amino acids corresponding to MeHNL’s interface 2
are highly divergent and do not allow formation of a tetramer
(Table 1). For a direct comparison of structural differences, a tet-
rameric model of AtHNL was generated and aligned to the tet-
rameric MeHNL model. The modeled interface 2 of the AtHNL
tetramer contains several unfavorable side-chain interactions,

resulting in a positive complexation energy (1.6 kcalmol�1) as
calculated with the aid of the PDBePISA server. A stepwise op-
timization of AtHNL’s interface 2 was performed by an in silico
exchange of amino acids for the corresponding residues in
MeHNL. Unfavorable contacts were eliminated first, followed
by exchanges of neighboring amino acids. After each in silico
amino acid exchange, the PDBePISA analysis displayed
changes in the interaction area and the complexation energy.
The residues in positions 65, 134, 135, 136, 187, and 188
showed no interaction with the other dimer in the tetrameric
AtHNL model and were not exchanged. Exchanges of the
amino acids in positions 94, 96, 137, 139, and 142 to the corre-
sponding amino acids in MeHNL resulted in unfavorable com-
plexation energies and so these exchanges were also not car-
ried out.

Finally, the best in silico fit was observed with exchange of
eleven amino acids in wild-type AtHNL to the corresponding
residues in MeHNL (Table 1), yielding an optimized interface 2
with an interaction area of 378 �2 and a predicted complexa-
tion energy of �5.0 kcalmol�1.

Afterwards, the corresponding gene for this surfmod-AtHNL
variant was synthesized, cloned into a pET28 expression vector
system, and overexpressed in E. coli BL21 (DE3) and the puri-
fied variant was comparatively characterized relative to the
wild-type enzyme (for further information see the Supporting
Information).

pH-dependent initial rate activities and stabilities of wild-
type AtHNL and surfmod-AtHNL

Initial rate activities of purified wild-type AtHNL and the surf-
mod variant were determined for the cleavage of mandeloni-
trile over the pH range from 4.00 to 6.50 (Figure 2).

Wild-type AtHNL starts to be active at pH 4.75 (12.2 Umg�1)
and reaches its highest activity of 133.6 Umg�1 at pH 6.00. In
contrast, the surfmod variant exhibits a broader pH optimum,
starting with 23.6 Umg�1 at pH 4.50 and reaching an almost
twofold enhanced maximum activity of 227 Umg�1 at pH 5.75
(Figure 2). The influence of the pH on surfmod-AtHNL’s stability
was determined under assay conditions (incubation at 25 8C)
focusing on the pH range between 4.50 and 6.00. With increas-

Figure 1. Structural alignment of the tetrameric structure of MeHNL (blue)
generated by rotation about a crystallographic twofold axis and the tetra-
meric AtHNL (orange). PISA. Interface 1: conserved interaction area 876 �2,
estimated complexation energy �14.0 kcalmol�1. Interface 2: interaction
area for tetramer formation. MeHNL: 438 �2, estimated complexation energy
�2.6 kcalmol�1. AtHNL with optimized surface: 378 �2, estimated complexa-
tion energy �5.0 kcalmol�1.

Table 1. Nonconserved amino acids of MeHNL’s interface 2 and compari-
son with the equivalent positions in AtHNL. Exchanges (marked in gray)
of the 11 residues in AtHNL for the corresponding residues in MeHNL
resulted in the highest complexation energy.

MeHNL AtHNL MeHNL AtHNL MeHNL AtHNL

47 Gln 48 Pro 66 Glu 67 Lys 136 Phe 137 His
49 Glu 50 Gln 92 Arg 93 Ile 137 Thr 138 Glu
50 Gln 51 Ala 93 Tyr 94 Phe 138 Asn 139 Thr
52 Asn 53 Glu 95 Asp 96 Ala 139 Ile 140 Arg
59 Glu 60 Lys 133 Tyr 134 Phe 141 Thr 141 Asn
63 Thr 64 Glu 134 Phe 135 Ser 142 Glu 142 Gly
64 Phe 65 Thr 135 Thr 136 Ser 187 Arg 187 Lys

188 Pro 188 Glu
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ing pH, AtHNL’s half-life increases exponentially from 0.16 h at
pH 4.50 to 28.11 h at pH 6.00 (Table 2).

The influence of the pH on surfmod-AtHNL’s stability was de-
termined at 20 8C with a focus on the pH range between 4.50
and 6.00. With respect to the half-life of the wild-type enzyme
the surfmod variant shows an increased stability below
pH 5.80 and a 14-fold higher stability at pH 5.00. At pH�5.80
the two enzyme variants display comparable stabilities
(Table 2).

For stereoselective hydrocyanation of aldehydes or ketones
in aqueous or aqueous/organic two-phase systems, the en-
zyme’s stability below pH 5.00 is important.[6] In addition to
pH, the second important parameter capable of influencing
the enantiomeric excess (ee) of the reaction is temperature.
Temperature also has an important impact on the stability of
the enzyme and is a key parameter for process development,
which motivated us to study the thermostability of surfmod-
AtHNL in more detail.

Thermostabilities of wild-type AtHNL and surfmod-AtHNL at
pH 5.00

The thermostability of the surfmod variant in citrate/phosphate
buffer (50 mm, pH 5.00) between 0 8C and 50 8C was monitored

over a period of 4 h. As shown in Figure 3, the enzyme is rea-
sonably stable up to 20 8C, reaching half-lives of about 2 h.
Higher temperatures cause rapid decreases in stability.

Surfmod-AtHNL is up to 14 times more stable than wild-type
AtHNL, which displays fairly constant half-lives of 21.5 min
(average) below 10 8C and only 10 min at 20 8C (Table 3).

Obvious possible reasons for surfmod-AtHNL’s enhanced pH-
and thermostabilities could be multimer formation and/or an
altered isoelectric point (IP), shifting the environmental opti-
mum of the surfmod variant to lower pH values.

Native quaternary structures and isoelectric points of the
two AtHNL variants

In order to elucidate potential changes in the enzyme variants’
native quaternary structures, a comparative analysis of the
native molecular masses of wild-type AtHNL and the surfmod-
variant was performed by size-exclusion chromatography
(SEC).

Both variants displayed molecular masses of 29.2 kDa for
each monomeric subunit (257 amino acids). SEC of the wild-
type enzyme was performed with freshly purified enzyme at
pH 7.50, which was necessary for adequate enzyme stability,
revealing a molecular mass of 58 kDa. As had already been de-
termined by Guterl et al. ,[5] wild-type AtHNL is a dimer in solu-
tion at pH 7.50. For surfmod-AtHNL, SEC was performed under
identical conditions and yielded a molecular mass of 55 kDa,
which also indicates a dimeric state for the variant. SEC for the
surfmod-AtHNL was thus additionally performed at pH 5.00,

Figure 2. pH-dependent initial rate activities of wild-type AtHNL (*) and surf-
mod-AtHNL (*) for the cleavage of mandelonitrile measured in citrate phos-
phate buffer (50 mm, 25 8C) at pH 4.00–6.50.

Table 2. Half-lives of wild-type AtHNL and surfmod-AtHNL at different pH
values (4.5–6.0) in citrate phosphate buffer (50 mm, 20 8C).

Half-life [h]
pH wild-type AtHNL[a] Surfmod-AtHNL

4.50 0.00 0.22
5.00 0.16 2.23
5.40 2.00 3.40
5.80 >24.00 13.74
6.00 60.00 52.17

[a] Half-lives of wild-type AtHNL according to Guterl.[12]

Figure 3. Half-lives of surfmod-AtHNL in citrate/phosphate buffer (50 mm,
pH 5.00) between 0 and 50 8C. Surfmod-AtHNL was incubated at each tem-
perature for a maximum of 4 h. Initial rate activities for the cleavage of man-
delonitrile were determined over time and related to the activity of the un-
treated enzyme.

Table 3. Half-lives of wild-type AtHNL and surfmod-AtHNL between 0 8C
and 50 8C in citrate/phosphate buffer (50 mm, pH 5.00).

Half-life [min]
T [8C] wild-type AtHNL Surfmod-AtHNL

0 18.1 137.5
4 23.1 131.4

10 23.6 136.5
20 9.6 133.8
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but no change in molecular mass was noted. Consequently,
the reason for the higher stability of surfmod-AtHNL is not
a change in the quaternary structure.

Subsequent determination of the isoelectric points demon-
strated that the IP of the surfmod variant (pH 4.80) is shifted
by 0.30 pH units towards the acidic range relative to the wild-
type enzyme (pH 5.1). This effect can easily be explained be-
cause the eleven mutations include several charged amino
acids (Table 1). This pH shift is in the same range as the pH-
dependent activity shift between the two enzymes (Figure 2),
which demonstrates that the surfmod-AtHNL is structurally
more stable at pH 5.00, whereas the wild-type enzyme is start-
ing to unfold rapidly (at least partially) under these condi-
tions.[5]

Surfmod-AtHNL-catalyzed synthesis of cyanohydrins in an
aqueous/organic two-phase system

Because the development of the surfmod variant had been
motivated by the stereoselective synthesis of cyanohydrins in
aqueous/organic two-phase systems, we representatively
tested its potential in hydrocyanations of benzaldehyde (1a),
3-fluorobenzaldehyde (1b), and 2-furfural (1c) in an aqueous/
organic two-phase system (Scheme 1).

In order to determine the optimal reaction parameters, the
pH- and temperature-driven uncatalyzed side reaction was in-
vestigated first for the synthesis of mandelonitrile (2a) in the
two-phase system (without enzyme) at pH 5.00 (aqueous
phase) and 20 8C. As shown in Figure 4A, a constant conver-
sion of 1a was detected, yielding racemic 2a (37%) after
120 min. Reduction of the temperature to 0 8C reduced the
conversion of 1a to 4.2% after 120 min (Figure 4A). Hence, an
enzymatic reaction with an enantiomeric excess of 96–97%
should be possible in a two-phase system at pH 5.00 and 0 8C.
Beyond that, reduction of the pH should lead to further sup-
pression of the side reaction.

The surfmod-AtHNL-catalyzed hydrocyanation of 1a was
therefore performed at pH 4.50 (0 8C). After 120 min the reac-
tion was stopped and 1a (70%) had been converted into the
R enantiomer of 2a with 99.3% ee (Figure 4B). In contrast, the
same reaction was performed with wild-type AtHNL and no
enantioenriched product formation was detected, most likely
because of the rapid deactivation of the enzyme at pH 4.50.

Subsequently, 3-fluorobenzaldehyde (1b) and 2-furfural (1c)
were converted under identical reaction conditions, yielding
conversions of 74% (2b) and 87% (2c) but slightly lower
enantioselectivities (ee�92% for 2b and ee�95% for 2c). (For
details see the Supporting Information.)

Rational protein engineering of AtHNL had thus resulted in
a more active and more stable surfmod-AtHNL variant, which
is now applicable in aqueous/organic two-phase systems.

Conclusions

We have successfully designed a significantly more stable var-
iant of AtHNL, which is now applicable for the synthesis of
chiral cyanohydrins in typical aqueous/organic two-phase sys-
tems.

The comparative characterization of the variant and the
wild-type enzyme demonstrated improved stability and activity
of the variant, especially in the acidic pH range. Whereas the
wild-type enzyme is inactive at pH 4.50, the surfmod variant
exhibits 23.6 Umg�1 initial rate activity (cleavage of mandeloni-
trile, Figure 2) and a half-life of about 13 h (20 8C, Table 2). At
pH 5.00 the activity of the variant (145 Umg�1) is almost twice
that of the wild-type enzyme (75 Umg�1). Together with a half-
life of about 50 min at 25 8C, which can be enhanced to more

Scheme 1. Surfmod-AtHNL-catalyzed hydrocyanations of model substrates
(1a–c) in an aqueous/organic reaction system at pH 4.50 (0 8C). Aqueous
phase: citrate/phosphate buffer (pH 4.50, 50 mm, 1 mL). Organic phase:
MTBE (1 mL), HCN (2 mmol), 1a–c (0.5 mmol).

Figure 4. A) Results for the non-enzymatic racemic hydrocyanation of 1a in
an aqueous/organic two-phase system at pH 5.00 and either 20 8C (*) or
0 8C (~). B) Conversion of 1a (*) to 2a by surfmod-AtHNL (0.6 mgmL�1) in
a two-phase system at pH 4.50 and 0 8C. Reaction conditions: citrate/phos-
phate buffer (pH 5.00 or 4.50, 50 mm, 1 mL), HCN dissolved in MTBE (2m,
1 mL), benzaldehyde (0.5m). The reaction was stopped after 2 h. Conversions
(*) and ee values (�) were determined by chiral GC (see the Experimental
Section).
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than 2 h by lowering the temperature to 0–20 8C (Table 3),
these properties make the surfmod variant an attractive cata-
lyst for enzymatic cyanohydrin syntheses in aqueous/organic
two-phase systems.

Investigations of surfmod-AtHNL’s quaternary structure con-
firmed the dimeric nature of the variant, which indicates no
change in its subunit assembly in relation to the wild-type
enzyme. The significant stabilization of the variant is therefore
most probably the result of a shift of the isoelectric point from
pH 5.10 (wild type AtHNL) to pH 4.80 (surfmod variant).

Because all eleven amino acid exchanges involved only the
surface of the enzyme, we did not expect a significant impact
on its catalytic activity and stereoselectivity. However, the
cleavage activity was enhanced by at least 1.7-fold relative to
that of the wild-type enzyme (Figure 2). The synthesis of enan-
tioenriched cyanohydrins in an aqueous/organic two-phase
system (pH 4.50, 0 8C) is now possible for the first time thanks
to this AtHNL variant, because the wild-type enzyme is not
active or stable under these conditions. The suitability of the
variant for the production of chiral cyanohydrins was demon-
strated for the three different products 2a–c, produced with
good levels of conversion and high stereoselectivities.

The modifications on AtHNL’s surface have established a var-
iant that is sufficiently active and stable for application in the
synthesis of enantioenriched cyanohydrins under acidic condi-
tions in a two-phase system. This variant nicely complements
the strategies we have used to stabilize AtHNL for the enantio-
selective hydrocyanation of aldehydes. Recently we described
the successful immobilization of wild-type AtHNL on celite,
which works very well in micro-aqueous systems, such as
buffer-saturated monophasic MTBE.[8] Celite-AtHNL cannot be
applied in aqueous media, however, because the adsorptive
binding on the celite support is not stable under these condi-
tions. With the surfmod-AtHNL we now have two stabilized
biocatalysts to hand: one for application in aqueous/organic
media and one for application in micro-aqueous/organic reac-
tion media. With regard to productivity in enzymatic cyanohy-
drin syntheses, AtHNL is currently not a viable alternative to
the well-established R-selective HNL from almond, which
shows a very high stability even at pH 2.6.[2,17]

In ongoing studies the hydrocyanation activity of surfmod-
AtHNL in monophasic MTBE is being investigated relative to
that of the wild-type enzyme. Further studies will focus on
additional stabilization of surfmod-AtHNL by immobilization to
increase stability further.

Experimental Section

CAUTION : Sodium cyanide and HCN are highly poisonous. Proce-
dures involving sodium cyanide or HCN were performed in a well-
ventilated fumehood equipped with a calibrated HCN detector.
Neutralization of HCN-containing waste was performed with com-
mercial bleach (14% sodium hypochlorite solution). The waste was
then stored over a large excess of bleach for disposal. For safety
reasons, reactions were performed in closed reaction vessels on
a 1 mL scale with use of a solution of HCN (2m) in MTBE with
0.5 mmol aldehyde.

Chemicals : Benzaldehyde (99%), 3-fluorobenzaldehyde (99%), 2-
furfural (99%), dodecane (anhydrous, �99%), pyridine (99%), and
sodium cyanide (97%) were purchased from Aldrich. Acetic anhy-
dride (p.a.) was purchased from Fluka. Methyl tert-butyl ether
(MTBE, p.a.) was purchased from Merck. Dichloromethane was
from KMF (St. Augustin, Germany). Purified mandelonitrile was pur-
chased from J�lich Fine Chemicals (J�lich, Germany) and stored at
�20 8C. Aldehydes were freshly distilled and stored under argon.
HCN was freshly prepared by the procedure described below.

Analytical methods : Synthesis reactions were followed by chiral
gas chromatography on a Shimadzu GC-14B gas chromatograph or
on an Agilent Technologies 6890N gas chromatograph, each fitted
with a FID detector and a b-cyclodextrin column (CP-Chirasil-
Dex CB 25 m�0.25 mm, Aligent, Waldbronn, Germany). GC meth-
ods used were identical to those described in the literature.[13]

Samples (30 mL aliquots) of the reaction mixtures were taken at de-
fined time points, dissolved in dichloromethane (1.7 mL) and deriv-
atized by addition of pyridine (40 mL) and acetic anhydride (40 mL)
over at least 3 h. Conversion rates and enantiomeric excesses were
calculated from the relative peak areas of the aldehydes and the
cyanohydrin derivatives.

In silico protein analysis of MeHNL and AtHNL : The crystal struc-
ture of MeHNL (PDB ID: 1dwp) was analyzed with the aid of the
PQS server[10] and a tetrameric structure was generated by the ap-
plication of a crystallographic twofold axis. Interacting amino acids
in MeHNL’s tetrameric interface were identified by a PDBePISA (EBI)
analysis.[11] A tetrameric model of AtHNL was constructed by struc-
tural alignment of AtHNL (PDB ID: 3dqz) and the tetrameric MeHNL
model. Differences between the MeHNL and AtHNL tetramer inter-
face were analyzed by use of the molecular visualization tool
PyMol together with the PyMol plug-in VASCo.[14] For the stepwise
exchange of different amino acids from MeHNL to AtHNL the mo-
lecular visualization tool PyMol was used. The PDBePISA server was
used to determine the structural complexation energy after each
amino acid exchange.

Cultivation and purification of wild-type and surfmod-AtHNL :
BL21(DE3)_pAtHNL[5] and BL21(DE3)_p-AtHNL (synthesized by Slon-
ing, Puchheim, Germany) were cultivated by use of a standard
batch or fed-batch fermentation protocol, respectively. In the case
of AtHNL, cells (1.75 kg) with a total activity of 2 GU were harvest-
ed from a 15 L fed-batch cultivation. In the case of Surfmod-AtHNL,
cells (245 g) with a total activity of 0.65 GU (mandelonitrile cleav-
age assay, pH 5.00) were harvested from a 9 L batch cultivation.
BL21(DE3)_pAtHNL or BL21(DE3)_psurfmod-AtHNL cells (9 g), were
slowly resuspended in potassium phosphate buffer (pH 7.50,
50 mm) at 0 8C and disrupted afterwards by sonication [4�5 min at
70 Wcm�2 on ice with a UP200S ultrasonic processor and S14D so-
notrode (Dr. Hielscher GmbH)] . After centrifugation (35000g, 4 8C,
45 min), the resulting crude extract (ca. 50 mL) was desalted by gel
filtration on Sephadex G-25 [1 L bed volume, pH 7.50, potassium
phosphate buffer (10 mm)] . Subsequently, anion-exchange chroma-
tography was performed on a Q-Sepharose column (90 mL bed
volume), which was equilibrated with potassium phosphate buffer
(pH 7.50, 50 mm). After elution of unbound proteins, HNL-contain-
ing fractions were eluted with a linear NaCl gradient (0–150 mm).
The pooled fractions with HNL activity were desalted with the aid
of a Sephadex G-25 column [1 L batch volume, potassium phos-
phate buffer (pH 7.50, 10 mm)] and subsequently lyophilized. Pro-
tein determination was performed according to Bradford (1976).[15]

Both variants were prepared with a purity of 90%. Specific activi-
ties of wild-type AtHNL (70–90 Umg�1) and of surfmod-AtHNL
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(160 Umg�1) toward mandelonitrile cleavage (pH 5.00) were deter-
mined (HNL activity assay, see below).

HNL activity assay (mandelonitrile cleavage): The increase in the
benzaldehyde concentration was measured continuously at
280 nm in quartz glass cuvettes. Citrate phosphate buffer (pH 5.00,
50 mm, 700 mL) was mixed with enzyme solution [100 mL, citrate
phosphate buffer (pH 6.00, 10 mm)] at 25 8C. The reaction was
started by addition of mandelonitrile solution [mandelonitrile
(67 mm, 200 mL) in citrate phosphate buffer (pH 3.50)] and moni-
tored for 1.5 min. Subsequently, the activity was calculated by use
of the molar extinction coefficient of benzaldehyde (e280 nm=
1376 Lmmol�1 cm�1). One unit of HNL activity is defined as the
amount of enzyme that converts 1 mmol mandelonitrile per minute
in citrate phosphate buffer (pH 5.00, 25 8C). All measurements were
performed at least as triplicates.

Determination of the temperature- and pH-dependent initial
rate activities : Temperature- and pH-dependent initial rate activi-
ties were determined with the mandelonitrile cleavage assay. All
measurements were performed in triplicate. Controls for each pH
value were measured in duplicates containing buffer instead of
enzyme. The rate of this non-enzymatic reaction increased continu-
ously with pH. Initial rate activities in the pH range of pH 4.00 to
6.50 were determined.

Determination of temperature- and pH-dependent stability :
Stock solutions in citrate/phosphate buffer (10 mm, pH 6.00) were
prepared from the lyophilized enzyme (0.75 mgmL�1). Aliquots (di-
luted 1:10–1:50) were prepared with the corresponding reaction
buffer (citrate/phosphate buffer, 50 mm) and incubated (up to
72 h) at different temperatures (0–60 8C, pH 5.00) or pH values
(20 8C, pH 4.00–6.00). Temperature and pH were checked at the be-
ginning and at the end of the incubation. Aliquots were removed
at defined intervals and subjected to the standard assay (mandelo-
nitrile cleavage, pH 5.00) to determine the residual activity.

Isoelectric focusing : Isoelectric points were determined with
Novex isoelectric focusing gels (pH 3–10, Invitrogen) according to
the supplier’s instructions.

Determination of the native molecular mass : Native molecular
masses of wild-type and surfmod-AtHNL were determined with an
�KTA FPLC system and a HiLoad Superdex G200 gel filtration
column (320 mL, GE Healthcare). For calibration, ribonuclease A
(13.7 kDa), carbonic anhydrase (29 kDa), ovalbumin (44 kDa), conal-
bumin (75 kDa), aldolase (158 kDa), and blue dextran (2 MDa) were
used according to the pH and buffer used for the corresponding
experiment. The native molecular masses of wild-type (2 mgmL�1)
and surfmod-AtHNL (3 mgmL�1) were analyzed at pH 7.50 in potas-
sium phosphate buffer (50 mm) and KCl (150 mm). Determination
of the native molecular mass of the surfmod-AtHNL at pH 5.00 was
performed in citrate/phosphate buffer (50 mm) and NaCl (150 mm).

Preparation of HCN solution in MTBE (2m): Sodium cyanide
(4.9 g, 0.1 mol) was dissolved in a magnetically stirred mixture of
water (10 mL) and MTBE (25 mL) at 0 8C. The biphasic system was
stirred vigorously for 15 min and aqueous HCl (30%, v/v, 10 mL)
was added slowly. This mixture was allowed to warm up slowly to
room temperature (over at least 25 min). The phases were separat-
ed and MTBE (7 mL) was added to the organic layer. The combined
organic phases were stirred and residual water was separated. This
procedure was repeated with MTBE (7 mL). The 2m standard HCN
solution was kept over citrate/phosphate buffer (pH 5.50, 50 mm)
in the dark. Determination of the HCN concentration was per-
formed as described in the literature.[16]

Formation of racemic mandelonitrile in a two-phase system : Cit-
rate/phosphate buffer (pH 5.00, 50 mm, 1 mL) and dodecane
(0.1 mmol, internal standard) were added under argon at 20 or 0 8C
to HCN solution in MTBE (1.5–2m, 1 mL) and mixed thoroughly by
magnetic stirring. The uncatalyzed hydrocyanation was started by
addition of benzaldehyde (0.5 mmol). The reaction was monitored
by chiral GC over 120 min during which the reaction flask was
stirred at the adjusted temperature.

Enantioselective synthesis of cyanohydrins in a two-phase
system : Surfmod-AtHNL (0.6–1.0 mg) was dissolved in citrate/phos-
phate buffer (pH 4.50, 50 mm, 1 mL). HCN solution in MTBE (1.5–
2m, 1 mL), aldehyde (0.5 mmol), and dodecane (0.1 mmol, internal
standard) were mixed thoroughly under argon by magnetic stir-
ring. Synthesis was started by addition of surfmod-AtHNL in cit-
rate/phosphate buffer (pH 4.50, 1 mL). The reaction was monitored
by chiral GC over 120 min during which the reaction flask was
stirred at 0 8C.
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KAPITEL 4 

4. Diskussion 

4.1. Die AtHNL als potentieller technischer Biokatalysator 

Enantiomerenreine Cyanhydrine sind wichtige Intermediate zur Synthese 

verschiedener Pharmazeutika, biologisch aktiven Substanzen und Feinchemikalien 

(Kapitel 1.3.1).[16] Die HNL katalysierte Synthese dieser Cyanhydrine findet im 

industriellen Maßstab in wässrig-organischen Zweiphasensystemen in 

Rührkesselreaktoren statt.[17] Derzeit werden hauptsächlich aromatische und 

heteroaromatische Cyanhydrine biokatalytisch im industriellen Maßstab produziert. 

Eine Übersicht dieser Produkte, der verwendeten HNLs sowie der erzielten Raum-

Zeit-Ausbeuten und Jahresproduktion findet sich in Tab. 1. Patente weisen zudem 

auf weitere industriell produzierte Cyanhydrine (z.B. (S)-2-Chlormandelsäurenitirl, 

(R)- und (S)-2-hydroxy-3-methylbutannitril) hin, die jedoch aufgrund unspezifischer 

Angaben zum verwendeten Enzym oder zur Produktivität nicht in die Tabelle 

aufgenommen wurden.[158, 162, 164] 

Bei derartigen Synthesen liegen die HNLs gelöst in der wässrigen Phase vor, die zur 

Unterdrückung der spontanen, nicht-stereoselektiven Substratumsetzung einen pH-

Wert zwischen pH 3,5 – 4,5 hat (Kapitel 1.3.2).  

Aufgrund der geringen pH-Stabilität der AtHNL konnte diese nicht unter den 

industriell etablierten Reaktionsbedingungen im wässrig-organischen Zweiphasen-

system verwendet werden (Kapitel 1.2.4.4.2). Daher wurden in dieser Arbeit zwei 

grundlegende Strategien zur Optimierung des Enzyms für die Synthese 

enantiomerenreiner Cyanhydrine entwickelt (Abb. 19).  
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Tab. 1: Wichtige Cyanhydrine, die als industrielle Intermediate verwendet werden. Die zur 
Synthese der Cyanhydrine verwendeten HNLs, die Hersteller und Produktivität der Prozesse sowie 
die Zielprodukte sind aufgeführt. Tabelle angefertigt nach Purkarthofer, 2007.[17] 

 
aPurkarthofer[17]; bRoos[165]; cLiese[148]; dOsprian[166]; eStrohbach[156] 
 
 
Im Folgenden werden die Ergebnisse aus den drei Publikationen zusammenfassend 

auch im Kontext mit Resultaten aus dieser Arbeit diskutiert, die bisher keinen 

Eingang in die Publikationen fanden. In diesen Fällen sind experimentelle Details 

explizit ergänzt worden. 
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Publikation 1 befasst sich mit unterschiedlichen Immobilisierungmethoden der AtHNL 

für die Anwendung des Enzyms in Puffer-gesättigtem organischen Lösungsmittel 

(MTBE). 

 

Publikation 2 zeigt, dass die AtHNL nicht nur als gereinigtes immobilisiertes Enzym 

als stabiler Biokatalysator, sondern auch im Ganzzellsystem für die Synthese chiraler 

Cyanhydrine in MTBE eingesetzt werden kann. 

 

Publikation 3 beschreibt einen alternativen Ansatz zur Stabilisierung des Enzym 

mittels rationalem Proteindesign, wodurch schließlich auch die Anwendung des 

Enzyms in wässrig-organischen Zweiphasensystemen möglich wird. 

 

 
Abb. 19: Schematischer Überblick der Optimierungsstrategien der AtHNL zur Synthese 
enantiomerenreiner Cyanhydrine. Die in Fachzeitschriften veröffentlichten oder eingereichten 
Manuskripte sind den verfolgten Strategien zugeordnet. 
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4.2. Etablierung geeigneter Reaktionsparameter für die AtHNL 

Die enantioselektive Synthese von Cyanhydrinen wird von einer nicht-katalysierten 

racemischen Produktbildung begleitet, die durch den pH-Wert, die Temperatur und 

den Wassergehalt des Reaktionsmediums beeinflusst wird (Abb. 19). Werden HNLs 

zur enantioselektiven Synthese von Cyanhydrinen in Reaktionsmedien mit hohem 

Wassergehalt eingesetzt, so kann die Unterdrückung der nicht-katalysierten Reaktion 

nur durch die Herabsetzung des pH-Wertes (� 4,5) und der Temperatur (� 10°C) 

erreicht werden. Die nicht-katalysierte Nebenreaktion kann nur in Gegenwart von 

OH--Ionen ablaufen, die zur Deprotonierung der Blausäure (zum Cyanidion) führen. 

Diese Cyanidionen addieren dann nucleophil an die Carbonylkomponente unter 

Bildung eines Cyanhydrins. Im sauren Millieu (� pH 4,5) wird die Deprotonierung der 

Blausäure unterdrückt, sodass hauptsächlich die Enzym-katalysierte Reaktion 

abläuft. Die Reduktion des Wassergehalts, z.B. durch den Einsatz von organischen 

Lösungsmitteln ermöglicht ebenfalls die Reduktion der OH--Ionen innerhalb des 

Reaktionsmediums und stellt somit eine weitere Option zur enantioselektiven HNL-

katalysierten Cyanhydrin-Synthese dar. 

 

 
Abb. 20: Gegenüberstellung von Reaktionsparametern, die zur enantioselektiven bzw. 
racemischen Cyanhydrinbildung führen.  

Die AtHNL zeigt bei pH 5,0 bereits eine sehr geringe Halbwertszeit von 10 min und 

kann aufgrund dessen nicht unterhalb von pH 5,0 eingesetzt werden. Wird eine 

Synthese von (R)-Mandelsäurenitril bei pH 5,0 und einer Temperatur von 20 °C in 

einem wässrig-organischen Zweiphasensystem durchgeführt, so sinkt aufgrund der 
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unter diesen Bedingungen begünstigten racemischen Produktbildung der 

Enantiomerenüberschuss (ee) des gebildeten (R)-Mandelsäurenitrils auf 78 % (Abb. 

21). 

 
Abb. 21: AtHNL-katalysierte Synthese von (R)-Mandelsäurenitril (�) in einem wässrig-
organischen Zweiphasensystem bei pH 5,0. Wässrige Phase: 50 mM Citrat-Phosphatpuffer, 1,4 mg 
AtHNL; organische Phase: MTBE; Substrate: 0,5 mmol Benzaldehyd, 1,5 mmol HCN; Temperatur: 
20°C. Enantiomerenüberschuss der Reaktion (�). Racemische Produktbildung durch die nicht 
enzymatische Nebenreaktion (
). 

Wird der pH-Wert beibehalten und die Temperatur von 20 °C auf 0 °C gesenkt, so 

sinkt die racemische Produktbildung innerhalb des Messzeitraums (120 min) von 

37 % auf 4,2 %. Trotz dieser Reduktion um 88 % ist der Anteil der nicht 

enzymatischen Reaktion aber noch zu hoch, um bei einer HNL-katalysierten 

Reaktion einen ee � 99 % zu erreichen. Ein Absenken des pH-Werts auf pH 4,5 bei 

0 °C würde zu einer weiteren Reduktion der nicht-selektiven Reaktion auf � 1,8% 

Substratumsatz führen, wodurch bei einer HNL katalysierten Synthese ee-Werte 

� 99 % erreicht werden könnte (Abb. 22). Diese Reaktionsbedingungen sind jedoch 

mit der AtHNL aufgrund ihrer geringen pH-Stabilität nicht anwendbar. 
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Abb. 22: Nicht enzymatische racemische Bildung von (R)-Mandelsäurenitril bei pH 5,0 und pH 
4,5. Bei pH 5,0 kann die racemische Produktbildung von 37 % (20 °C, 
) auf 4,2 %  durch das 
Absenken der Temperatur auf 0 °C (�) reduziert werden. Bei pH 4,5 und 0 °C wird die nicht-selektive 
Produktbildung auf 1,8 % (�) reduziert. 

Durch Austausch des wässrigen Puffers gegen ein Puffer-gesättigtes organisches 

Lösungsmittel kann die nicht enzymatische Reaktion nahezu vollständig unterbunden 

werden. Vorteilhaft ist, dass der pH-Wert des Puffers, mit dem das organische 

Lösungsmittel gesättigt wird und das zum Lösen des Enzyms verwendet wird sowie 

die Temperatur bei diesem Reaktionssystem nur sehr geringe Auswirkungen auf den 

Enantiomerenüberschuss des gebildeten Produkts haben (Kapitel 1.3.2). Ein 

geringer Wasseranteil im organischen Lösungsmittel ist dabei unerlässlich für den 

Erhalt der Hydrathülle des Enzyms und somit seine katalytische Aktivität und 

Selektivität.[111] 

Bei der Wahl geeigneter organischer Lösungsmittel für Arbeiten mit der AtHNL waren 

Erfahrungen mit der strukturell ähnlichen HbHNL wertvoll. Diisopropylether (DIPE) 

und Methyl-tert.-butyether (MTBE), jeweils mit Citrat-Phosphatpuffer und HCN (0,5 - 

2 mmol) versetzt, werdem als optimal für eine hohe Enzymstabilität beschrieben.[110] 

Im Gegensatz zu DIPE bildet MTBE keine explosiven Peroxide bei Kontakt mit Luft 

und weist zudem eine höhere Sättigungsgrenze mit Wasser bzw. wässrigem Puffer 

auf (~4 vol% Wasser oder Puffer sind löslich, ohne Bildung eines Zweiphasen-

Systems), sodass MTBE als Reaktionsmedium ausgewählt wurde. 

Der Umgang mit Blausäure ist aufgrund ihrer hohen Toxizität gefährlich und erfordert 

das permanente Arbeiten in geschlossenen Reaktionssystemen unter einem 

geeigneten Laborabzug. Um die Destillation von Blausäure (ausgehend von in 

saurem Wasser gelöstem Natriumcyanid) zu umgehen, wurde eine direkte Extraktion 

der Blausäure aus der wässrigen Phase in das als Reaktionsmedium fungierende 
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MTBE durchgeführt. Die erhaltene HCN-MTBE Lösung wies eine 

Blausäurekonzentration zwischen 1,5 und 2 M auf.  

Aufgrund der hohen Flüchtigkeit von Blausäure sollte diese während der 

enzymatischen Reaktion in mindestens 2- bis 3-fachem Überschuss zur 

Carbonylkomponente eingesetzt werden, um deren vollständigen Umsatz zu 

erreichen. Aus diesem Grund wurde die Konzentration der frisch destillierten 

Carbonylkomponente auf 0,5 M festgelegt.  

Die Synthese von (R)-Mandelsäurenitril zeigte, dass die gereinigte AtHNL zwar in 

dem einphasigen MTBE präzipitiert, jedoch eine enantiomerenreine Synthese von 

(R)-Mandelsäurenitril (ee � 99,7 %) bis zum nahezu vollständigen Substratumsatz 

(� 98 %) ermöglicht. Aufgrund der thermischen Instabilität des Produkts und einer 

fortschreitenden Inaktivierung des Enzyms sinkt der ee nach Erreichen des 

vollständigen Substratumsatzes um 0,3 % h-1. Dies könnte durch die Aufarbeitung 

des Produkts oder einer Lagerung bei -20 °C bis zur Aufarbeitung unterbunden 

werden.  

 

 
Abb. 23: AtHNL-katalysierte Synthese von (R)-Mandelsäurenitril in Puffer-gesättigtem MTBE. 
Links: Foto der präzipitieren AtHNL während der Reaktion (Reaktionsvolumen 1 ml). Rechts: 
Gemessener Substratumsatz (�) und Enantiomerenüberschuss (�). Ausgehend von 0,5 mmol 
Benzaldehyd und 1,5 mmol HCN wurde innerhalb von 45 min ein nahezu vollständiger 
Substratumsatz von 97 % zu (R)-Mandelsäurenitril mit einem ee � 99,7 % mit 5 mg isolierter AtHNL 
(gelöst in 50 �l 50 mM Citrat-Phosphatpuffer, pH 6,5) erreicht. (Modifiziert nach Publikation 1, Fig. 1A) 

Des Weiteren wurde geprüft, ob die enantioselektive Synthese von weiteren 

relevanten Cyanhydrinen möglich ist (Abb. 24). Dazu wurden Synthesen von (R)-2-

Chlormandelsäurenitril, (2S)-Furan-2-yl(hydroxy)ethannitril und (R)-2-Hydroxy-

heptannitril, durchgeführt. Die beiden zuletzt genannten Cyanhydrine werden derzeit 



DISKUSSION 
 

 

80 

nicht industriell genutzt, (2S)-Furan-2-yl(hydroxy)ethannitril stellt jedoch ein 

relevantes Intermediat zu Synthese der Fluorenylmethoxycarbonyl (Fmoc)-

geschützten (2S,3S)-2-Hydroxy-3-Aminosäuren dar[167] und (R)-2-Hydroxyheptannitril 

diente als aliphatisches Beispielsubstrat. In jedem Fall konnte ein vollständiger 

Substratumsatz erreicht werden. Der Enantiomerenüberschuss des gebildeten (R)-2-

Chlormandelsäurenitrils und des (2S)-Furan-2-yl(hydroxy)ethannitrils lag bei � 99 % 

und für (R)-2-Hydroxyheptannitril bei � 95%. 

 

 
Abb. 24: AtHNL-katalysierte Synthese von industriell relevanten Cyanhydrinen. Ausgehend von 
Benzaldehyd, 2-Chlorbenzaldehyd, Furfural oder Hexanal wurde enzymatisch das jeweilige 
Cyanhydrin synthetisiert (Publikation 1: Scheme 1). 

Nachdem geeignete Reaktionsparameter zur Synthese von enantiomerenreinen 

Cyanhydrinen identifiziert werden konnten, wurde das Augenmerk auf die 

Wiederverwendbarkeit einer Enzymcharge für mehrere Synthesezyklen gelegt. Zwar 

präzipitiert die AtHNL in aktiver Form in dem einphasigen MTBE, jedoch wird durch 

die Instabilität des Präzipitats ein Abfiltrieren, Waschen und Wiederverwenden des 

Enzyms erschwert. Aus diesem Grund wurde der Einfluss von verschiedenen 

Immobilisierungsmethoden auf die AtHNL untersucht.  
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4.3. Synthese von industriell relevanten Cyanhydrinen mittels 
immobilisierter AtHNL 

Technisch relevante HNLs, wie die MeHNL, HbHNL und PaHNL wurden bereits auf 

verschiedene Weise (hauptsächlich für Laborverfahren) immobilisiert, um sie in 

stabiler Form in einphasigen organischen Lösungsmitteln einsetzen zu können. Die 

verwendeten Methoden umfassten, wie in Kapitel 1.4.1 dargestellt, z.B. die 

adsorptive Bindung an Kieselgur (Celite), Cellulose und Nitrocellulose; das 

Quervernetzen von Enzymkristallen (CLECs) oder gefällten Enzymen (CLEAs); oder 

den Einschluss in Hydrogelen.[96, 140, 168-171]  

Um eine Wiederverwendung der AtHNL für mehrere Reaktionszyklen zu 

ermöglichen, wurde sie durch drei unterschiedlichen Methoden immobilisiert:  

Die AtHNL wurde mittels adsorptiver Bindung an Celite R-633 Partikel gebunden 

(Celite-AtHNL; Publikation 1), in ein Solgel mit reduziertem Methanolgehalt 

eingeschlossen (Solgel-AtHNL; Publikation 1) und zu AtHNL-CLEAs quervernetzt 

(nicht veröffentlicht). Zudem wurde die Anwendbarkeit der Ganzzellbiokatalyse zur 

enantioselektiven Synthese von Cyanhydrinen mit rekomnianten E. coli Zellen 

untersucht (Publikation 2).  

Im Folgenden werden die verschiedenen Immobilisierungsmethoden, deren 

Auswirkung auf die Enzymaktivität und Stabilität der AtHNL sowie die Produktivität 

aller Enzympräparationen vergleichend diskutiert. 

 

4.3.1. Die Reinigung von HNLs und der Einsatz ganzer Zellen 

Die Verwendung von isolierten Enzymen erfordert immer die Reinigung des Enzyms. 

Dabei kann eine schnell durchführbare Teilreinigung durch Fällung oder Ultrafiltration 

oder eine (nahezu) vollständige Reinigung unter Verwendung chromatographischer 

Verfahren durchgeführt werden. Die Sekretion von Enzymen ins 

Expressionsmedium, wie z.B. bei der heterologen Expression der PaHNL in Pichia 

pastoris, ermöglicht eine schnelle Teilreinigung durch die Trennung der 

Expressionszellen vom Kulturüberstand und eine anschließende Aufkonzentrierung 

des sekretierten Enzyms mittels Ultrafiltration.[55] Bei der intrazellulären Expression 

kann eine Teilreinigung des Enzyms durch den Aufschluss der rekombinanten Zellen 

und die anschließende Abtrennung des HNL-haltigen Rohzellextrakts von den 
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Zelltrümmern erreicht werden. Für industrielle Maßstäbe werden aus Zeit- und 

Kostengründen nur teilgereinigte HNLs verwendet, sofern keine Nebenprodukte bei 

der Biokatalyse auftreten. Der Einsatz teilgereinigter PaHNL (65 % HNL) für die 

Synthese von (R)-Mandelsäurenitril ist bereits erfolgreich gezeigt worden.[172] Für 

analytische Zwecke sollten die Enzyme jedoch in gereinigter Form mit mind. 90 % 

Reinheit vorliegen, um z.B. ihre katalytische Effizienz exakt bestimmen zu 

können.[173] Hierzu sind entsprechende chromatographische Trennungsschritte 

erforderlich.[174]  

Für die Immobilisierungsuntersuchungen der AtHNL in dieser Arbeit wurde isoliertes 

Enzym mit 90 %iger Reinheit verwendet, um eine exakte Aussage über den Einfluss 

der angewendeten Immobilisierungsmethode auf die AtHNL geben zu können. Zwar 

ist die Verwendung dieser Enzympräparation für technische Zwecke nicht rentabel, 

jedoch liefert sie gute Anhaltspunkte für die mögliche spätere Etablierung eines 

technischen Verfahrens mit teilgereinigtem Enzym.  

Im Gegensatz zur Enzymreinigung erfordert der Einsatz ganzer Zellen für einen 

biokatalytischen Prozess lediglich die Abtrennung der Zellen vom 

Kultivierungsmedium. Prozessabhängig kann dabei die Zellwand permeabilisiert 

werden, um eine Steigerung der katalytischen Effizienz zu erreichen (Kapitel 1.4.2). 

Die Ganzzellbiokatalyse stellt das kostengünstigste Verfahren dar und wurde aus 

diesem Grund ebenfalls mit E. coli Expressionszellen der AtHNL untersucht. 

 

4.3.1.1. Vergleich der AtHNL-Präparationsmethoden 

Ein direkter Vergleich der Präparationsmethoden zur Immobilisierung der AtHNL und 

der Aufarbeitung aus rekombinanten Zellen (als Ganzzellbiokatalysator) ermöglicht 

die Bewertung des Zeit- und Materialaufwands. Methoden mit hohem Zeit- und 

Materialaufwand sind kostenintensiver und sollten dementsprechend im Idealfall bei 

der späteren Anwendung der Enzympräparation zu einer höheren Langlebigkeit des 

Enzyms und somit zu einer Steigerung der Prozessrentabilität führen. 

Beim Zeitaufwand sollte zudem die aktive Präparationszeit, d.h. die Zeit, in der 

Präparationsschritte manuell durchgeführt werden müssen, von der passiven 

Präparationszeit (z.B. Trocknungszeit) unterschieden werden. 
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Die in Tab. 2 zusammengestellten Methoden zur AtHNL-Präparation werden im 

Folgenden näher beschrieben. Dabei muss berücksichtigt werden, dass für die 

AtHNL-Immobilisierung isoliertes Enzym verwendet wurde und der Zeitaufwand für 

die  Enzymreinigung in Tab. 2  nicht berücksichtigt wurde. 

 

Tab. 2: Gegenüberstellung der Präparationsmethoden der AtHNL.  

Methode Reinheitsgrad
der AtHNL 

Material Präparations-
schritte 

Zeitauf-
wand 

 
Celite 
Adsorption 

 
gereinigt oder 
teilgereinigt in 
Pufferlösung 

 
Celite R-633  
(0,70 Euro pro kg) 
Exsikkator zur 
Trocknung  

 
1. Benetzen der 

Partikel mit 
Enzymlösung; 

2. Trocknen 

 
Aktiv:    0,2 h 
Passiv: 16 h 

 
Solgel 
Einschluss 

 
gereinigt oder 
teilgereinigt in 
Pufferlösung 

 
Tetramethoxysilane 
(170 Euro pro L), 
Methyltrimethoxysilane, 
(105 Euro pro L) 
Wasser (pH 2,85), 
Rotationsverdampfer, 
Laborabzug, 
Magnetrührer 

 
1. Herstellung des 

Polymergemischs;  
2. Verdampfen des 

Methanols; 
3. Mischung von 

Enzymlösung und 
gelierendem Solgel 

4. Lagerung bei 4 °C 
5. Zermahlen des 

Solgels 

 
Aktiv:    2 h 
Passiv: 16 h 

 

CLEA 
Querver-
netzung 

 
gereinigt oder 
teilgereinigt in 
Pufferlösung 

 
ges. Salzlösung oder 
org. Lösungsmittel, 
Glutardialdehyd,  
(160 Euro pro 100 ml) 
Magnetrührer, 
Zentrifuge, 
Eis bzw. Kühlaggregat, 
Exsikkator oder 
Lyophylle zur 
Trocknung 

 
1. Fällung des 

Enzyms durch ges. 
Salzlösung oder 
org. Lösungsmittel 

2. Trennung durch 
Zentrifugation 

3. Quervernetzen 
4. mehrfache 

Waschschritte 
5. Trocknung 

 
Aktiv:    3 h 
Passiv: 24-35 h 

 
Ganzzell-
ansatz 

 
rek. E. coli 
BL21(DE3)-Zellen 

 
Zentrifuge, 
Laborabzug, 
org. Lösungsmittel  
 

 
1. Zellpelletierung 

mittels 
Zentrifugation 

2. Trocknung des 
Zellpellets durch 
Waschschritte in 
org. Lösungsmittel 

 
Aktiv:    0,5 h 
Passiv: - 

 

Die Präparation von adsorptiv an Celite-Partikel gebundener AtHNL ist durch das 

Benetzen der Celite Partikel mit in Puffer gelöster AtHNL und dem anschließenden 

Trocknen unter Vakuum sehr einfach. Diese Methode benötigt ca. 15 min aktiven 

Arbeitsaufwand, sowie ca. 16 h Trocknungszeit. Es werden keine giftigen 

Substanzen verwendet, sodass die Präparation keinen besonderen 
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Sicherheitsaufwand benötigt. Außerdem ist das Trägermaterial mit 70 Cent/kg sehr 

preiswert. 

Die Präparation von in Solgel eingeschlossener AtHNL ist aufwändiger und erfordert 

den Einsatz von brandgefährlichen bzw. giftigen Ausgangsstoffen. Das Entfernen 

des giftigen Methanols (Rotationsverdampfung), welches bei der Polymerisation des 

Solgels freigesetzt wird, erfordert zudem besondere Vorsichtsmaßnahmen. 

Insgesamt werden ca. 2 h aktive Präparationszeit, sowie 16 h für einen 

Inkubationsschritt bei 4 °C beansprucht.  

Das Quervernetzen von gefällter AtHNL zu CLEAs ist die aufwändigste Methode. Sie 

setzt zunächst die Etablierung eines geeigneten Präparationsprotokolls voraus, was 

mehrere Wochen in Anspruch nehmen kann und ist zudem durch viele 

Zentrifugations- und Resuspendierungsschritte fehleranfällig. Insgesamt werden ca. 

3 h für die aktive Präparation und 24 – 35 h für Inkubationen und Trocknung benötigt.  

Gegenüber der Immobilisierung der AtHNL ist das Aufarbeiten rekombinanter E. coli-

Zellen sehr einfach und innerhalb von 30 min durchführbar: Die Zellen einer 

Expressionskultur werden mittels Zentrifugation pelletiert und anschließend durch die 

mehrfache Resuspendierung in organischem Lösungsmittel (MTBE) weitestgehend 

getrocknet. 

Im Folgenden wird zuerst die Auswirkung der Immobilisierung auf die Aktivität der 

AtHNL beschrieben und anschließend die Produktivität von isolierter und 

immobilisierter AtHNL sowie des Ganzzellansatzes verglichen.  

 

4.3.2. Synthese von (R)-Cyanhydrinen mittels immobilisierter 
AtHNL und durch Ganzzellbiokatalyse  

Die Aktivität der immobilisierten AtHNL wurde anhand der Synthesen von (R)-

Mandelsäurenitril, (2S)-Furan-2-yl(hydroxy)ethannitril, (R)-2-Chlormandelsäure-nitril 

und (R)-2-Hydroxyheptannitril untersucht.  

Vor dem Vergleich wurde die Enzymbeladung der Träger optimiert, sodass die 

Präparationen einen vergleichbaren Substratumsatz bei der Cyanhydrin-synthese 

zeigten. Anschließend wurden die relative Enzymaktivität und die Selektivität der 

immobilisierten AtHNL mit dem präzipitierten Enzym unter gleichen 

Reaktionsbedingungen verglichen. Ein Vergleich der Enzymaktivität konnte lediglich 
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zwischen präzipitierter und immobilisierten AtHNL durchgeführt werden, da beim 

Ganzzellansatz die eingesetzte (aktive) Enzymmenge nicht bestimmbar war. 

 

4.3.2.1. Trägerbeladung und Etablierung der immobilisierten 
AtHNL  

Um einen direkten Vergleich zur präzipitierten AtHNL durchführen zu können, wurde 

die Enzymbeladung der Celite-Partikel und des Solgels optimiert, sodass Synthesen 

von (R)-Mandelsäurenitril mit vergleichbaren Substratumsätzen erzielt werden 

konnten. Die Enzymkonzentration wurde dabei so eingestellt, dass nach 120 min ein 

vollständiger Substratumsatz erreicht wurde. 

 

4.3.2.1.1. Präparation von Celite-AtHNL 

Für die Immobilisierung auf Celite erwies sich eine Trägerbeladung im Verhältnis 

1 : 4 (Enzym : Träger) als geeignet, um beim Einsatz von 30 mg Celite-AtHNL 

(entspricht 7,5 mg AtHNL) einen vergleichbaren Substratumsatz und 

Enantiomerenüberschuss (ee � 99 %) zur präzipitierten AtHNL unter gleichen 

Reaktionsbedingungen zu erreichen (Abb. 25). 

 

 
Abb. 25: Synthese von  (R)-Mandelsäurenitril mittels Celite-AtHNL. Links: Foto des 
Reaktionsgefäßes (Reaktionsvolumen 1 ml). Rechts: Gemessener Substratumsatz (�) und 
Enantiomerenüberschuss (�). Ausgehend von 0,5 mmol Benzaldehyd und 1,5 mmol HCN wurde 
innerhalb von 45 min ein nahezu vollständiger Substratumsatz von 96 % zu (R)-Mandelsäurenitril mit 
einem ee � 99,8 % mit 30 mg Celite-AtHNL (entspricht 7,5 mg isolierter AtHNL) erreicht. (Modifiziert 
nach Publikation 1, Fig. 1B) 
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4.3.2.1.2. Präparation von Solgel-AtHNL 

Für den Solgel-Einschluss der AtHNL zeigte die Verwendung einer Enzymlösung mit 

50 mg ml-1 und ein Mischverhältnis von 1 : 1 (Solgel Ausgangsstoffe : Enzymlösung 

(v/v)) die besten Ergebnisse. Die Enzymkonzentration der Solgel-immobilisierten 

AtHNL variierte je nach Charge leicht, sodass zwischen 150 und 175 mg Solgel-

AtHNL 5 mg isolierte AtHNL enthielten. Der Einsatz von Solgel-AtHNL führte bei der 

Synthese von (R)-Mandelsäurenitril zu einer sehr schnellen Substratumsetzung mit 

ee � 99 % (Abb. 26). 

 

 
Abb. 26: Synthese von (R)-Mandelsäurenitril mittels Solgel-AtHNL. Links: Foto des 
Reaktionsgefäßes (Reaktionsvolumen 1 ml). Rechts: Gemessener Substratumsatz (�) und 
Enantiomerenüberschuss (�). Ausgehend von 0,5 mmol Benzaldehyd und 1,5 mmol HCN wurde 
innerhalb von 10 min ein nahezu vollständiger Substratumsatz von 97 % zu (R)-Mandelsäurenitril mit 
einem ee � 99,5 % mit 165 mg Solgel-AtHNL (entspricht 5 mg isolierter AtHNL) erzielt. (Modifiziert 
nach Publikation 1, Fig. 1C) 

4.3.2.1.3. Etablierung eines Herstellungsprotokolls für AtHNL-
CLEAs 

Die Etablierung eines Protokolls zur Herstellung von AtHNL-CLEAs mit einer hohen 

Restaktivität bedurfte einer mehrwöchigen Studie. Die Kombination aus 

verschiedenen organischen Lösungsmitteln bzw. gesättigten Salzlösungen zur 

Fällung der AtHNL und der Zugabe von 0,5 – 2,0 vol% des Vernetzungsreagenz 

Glutardialdehyd zeigte, dass die Enzymfällung mittels ges. Ammoniumsulfatlösung 

und dem anschließenden Quervernetzen durch die Zugabe von 0,5 vol-% 

Glutardialdehyd zu AtHNL-CLEAs mit 29 % Restaktivität führt (Abb. 27).  Eine 
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geringe enzymatische Restaktivität wurde zuvor auch bei PaHNL-CLEAs (9,6 % 

Restaktivität) und HbHNL-CLEAs (16 % Restaktivität) beobachtet.[168, 171] 

Problematisch bei der AtHNL-CLEA Präparation war der Trocknungsschritt, der zu 

unterschiedlichen Porengrößen führte und somit maßgeblich die Enzymaktivität 

beeinflusste. Trockneten die AtHNL-CLEAs zu einem porösen Granulat, so wurde 

eine Restaktivität von 27 – 29 % erreicht. In manchen Fällen trockneten in gleicher 

Weise präparierte AtHNL-CLEAs jedoch zu kompakten Partikeln, die eine 

Restaktivität von max. 10 % aufwiesen. Optimierungsversuche des 

Präparationsprotokolls führten zu keiner hinreichenden Reproduzierbarkeit, sodass 

lediglich Synthesen mit ausgewählten Substraten durchgeführt wurden. 

 

 
Abb. 27: Katalytische Restaktivität von präparierten AtHNL-CLEAs. Die katalytische Aktivität der 
AtHNL wurde vor und nach der Fällung anhand der Spaltung von Mandelsäurenitril bestimmt und in 
Relation zur Ursprungsaktivität der eingesetzten AtHNL gesetzt. Die AtHNL wurde durch Zugabe von 
70 % (v/v) 1-9 präzipitiert und anschließend für 0,5 – 16 h mittels Glutardialdehyd (0,5 vol%) 
quervernetzt. 

Die Synthese von (R)-Mandelsäurenitril unter Verwendung von 5 mg AtHNL-CLEAs 

führte zu keinem vollständigen Substratumsatz innerhalb von 120 min. Erst der 

Einsatz von 17 mg AtHNL-CLEA lieferte einen vergleichbaren Substratumsatz zur 

präzipitierten AtHNL, sodass die Quervernetzung offensichtlich zu einem starken 

Aktivitätsverlust jedoch mit gleichbleibender Enantioselektivität (ee � 99 %) geführt 

hat (Abb. 28).  
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Abb. 28: AtHNL-CLEA katalysierte Synthese von (R)-Mandelsäurenitril in einphasigem MTBE. 
Links: Foto der AtHNL-CLEAs während der Reaktion (Reaktionsvolumen 1 ml). Rechts: Gemessener 
Substratumsatz (�) und Enantiomerenüberschuss (�). Ausgehend von 0,5 mmol Benzaldehyd und 1,5 
mmol HCN wurde innerhalb von 90 min ein nahezu vollständiger Substratumsatz von 97 % zu 
(R)-Mandelsäurenitril mit einem ee � 99,6 % mit 17 mg AtHNL-CLEAs erreicht. 

Die Berechnung der Enzymaktivität von immobilisierter AtHNL im Vergleich zur 

präzipitierten AtHNL erfolgte anschließend anhand der Synthesen verschiedener 

Cyanhydrine und wird im folgenden Kapitel genauer beschrieben. 

 

4.3.3. Gegenüberstellung der Enzymaktivität und Selektivität 
verschiedener AtHNL-Präparationen 

Die Immobilisierung von Enzymen hat Einfluss auf die Enzymflexibilität, wodurch z.B. 

die Aktivität und Selektivität verändert werden können. Zusätzlich wird auch die 

Diffusion der Substrate und Produkte beeinflusst, sodass z.B. eine reduzierte 

Enzymaktivität aufgrund einer schlechteren Substratverfügbarkeit oder einer 

Inhibierung durch akkumulierendes Produkt auftreten kann. 

Der Vergleich der Effektivität von immobilisierter AtHNL zum präzipitierten Enzym 

wurde anhand der Synthesen von (R)-Mandelsäurenitril, (2S)-Furan-2-

yl(hydroxy)ethannitril, (R)-2-Chlormandelsäurenitril und (R)-2-Hydroxyheptannitirl 

durchgeführt. Dazu wurde die eingesetzte Enzymmenge auf 5 mg normiert und 

wegen des schnellen Substratumsatzes, der technisch eine Bestimmung der 

Anfangsreaktionsgeschwindigkeit unmöglich machte, die Zeit bis zum Erreichen von 

50 % Substratumsatz betrachtet. Die Reaktionszeit der präzipitierten AtHNL diente 

als Referenzwert (100 %). 
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4.3.3.1. Vergleichende Cyanhydrinsynthesen 

In Tab. 3 sind die verschiedenen AtHNL-Präparationen bezüglich ihrer Effizienz  zur 

Synthese verschiedener Cyanhydrine zusammengestellt. Anhand der Synthese von 

(R)-Mandelsäurenitril soll die Berechnung der relativen Aktivitäten im Folgenden kurz 

erläutert werden. (R)-Mandelsäurenitril konnte mit jeder Enzympräparation bis zum 

vollständigen Substratumsatz mit � 99 % ee synthetisiert werden. Jedoch wurde ein 

Substratumsatz von 50 % mit präzipitierter AtHNL erst nach 9,0 min erreicht, 

wohingegen mit Solgel-AtHNL der gleiche Umsatz bereits nach 1,3 min erzielt wurde. 

Der Substratumsatz der Solgel-AtHNL verlief also 6,71-fach schneller (671 % 

Enzymaktivität im Vergleich zur präzipitierten AtHNL). Demgegenüber zeigen Celite-

AtHNL (78 % Enzymaktivität) und AtHNL-CLEAs (27 %) eine reduzierte 

Enzymaktivität im Vergleich zum präzipitierten Enzym (Tab. 3). 
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Tab. 3: Relative Enzymaktivität von präzipitierter und immobilisierter AtHNL (Celite, Solgel und 
CLEA) bei der Synthese verschiedener Cyanhydrine. Die Enzymmenge ist auf 5 mg AtHNL 
normiert. 100 % entspricht der benötigten Zeit bis 50 % Substrat von der präzipitierten AtHNL zum 
entsprechenden Cyanhydrin umgesetzt wurden. Benötigt eine Präparation 1/5 dieser Zeit, so beträgt 
die entsprechende  Enzymaktivität 500 %. Der erzielte Enantiomerenüberschuss der Produkte ist in 
Klammern angegeben. 

Cyanhydrin Präzipitierte 
AtHNL 

Celite-
AtHNL 

Solgel-
AtHNL 

AtHNL-
CLEAs 

 

 
(R)-Mandelsäurenitril 

100 
(ee � 99 %) 

78 
(ee � 99 %) 

671 
(ee � 99 %) 

27 
(ee � 99 %) 

 

 
(R)-2-Chlormandelsäurenitril 

100 
(ee � 99 %) 

86 
(ee � 99 %) 

1031 
(ee � 99 %) 

27 
(ee � 99 %) 

 

 
(2S)-Furan-2-yl 

(hydroxy)ethannitril 

100 
(ee � 99 %) 

76 
(ee � 98 %) 

176 
(ee � 99 %) 

6 
(ee � 99 %) 

 

 
(R)-2-Hydroxyheptannitirl 

100 
(ee � 95 %) 

57 
(ee � 86 %) 

86 
(ee � 58 %) 

nicht 
bestimmt 

 

 

Eine vergleichbare Relation der Enzymaktivitäten und ein gleichbleibend sehr guter 

Enantiomerenüberschuss (� 98 %) konnte bei der Synthese des aromatischen (R)-2-

Chlormandelsäurenitril und des heteroaromatischen (2S)-Furan-2-yl(hydroxy)-

ethannitril beobachtet werden (Tab. 3).  
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4.3.3.1.1. Solgel-AtHNL zeigt die höchste Enzymaktivität 

Die höchste Enzymaktivität, mit einer 10-fach gesteigerten Aktivität, konnte bei der 

Synthese von (R)-2-Chlormandelsäurenitril mittels Solgel-AtHNL (relative Aktivität: 

1031 %) erreicht werden. Der starke Aktivitätszuwachs relativ zum nicht 

immobilisierten Enzym wurde in dieser Arbeit zum ersten Mal bei einer Solgel-

immobilisierten HNL unter vergleichbaren Reaktionsbedingungen beobachtet. Zuvor 

war eine Steigerung der Enzymaktivität lediglich bei immobilisierten Lipasen 

beobachtet worden, die vermutlich in einer hyperaktivierten Form mit geöffneter 

Deckelstruktur oberhalb des aktiven Zentrums (open lid) immobilisiert werden 

konnten.[175] HNLs sind zwar strukturell mit Lipasen verwandt, weisen jedoch keine 

Deckelstruktur über dem Eingang des aktiven Zentrums auf, sodass die open lid 

Theorie nicht auf sie angewendet werden kann. Die Aktivitätssteigerung der Solgel-

AtHNL wird vermutlich durch den Einschluss des in Puffer gelösten Enzyms und die 

damit einhergehende wesentlich höhere Enzymflexibilität in dieser mikro-wässrigen 

Umgebung verursacht. Zudem trägt die große Oberfläche des fein gemahlenen 

Solgels zu einer guten Diffusion der Substrate bei. Dabei scheint die 

Wasserkonzentration innerhalb des Solgels niedrig genug zu sein, sodass bei 

aromatischen Substraten die nicht-katalysierte racemische Produktbildung nicht 

auftritt. Bei den von der AtHNL nicht favorisierten aliphatischen Substraten wie 

Hexanal (Produkt: (R)-2-Hydroxyheptannitirl) wurde diese Steigerung der 

Enzymaktivität relativ zum präzipitierten Enzym nicht beobachtet.  

 

4.3.3.1.2. Celite-AtHNL zeigt eine leicht reduzierte Enzymaktivität 

Celite-AtHNL zeigte bei der Synthese der aromatischen bzw. heteroaromatischen 

Cyanhydrine mit 76 – 86 % nur eine geringfügig niedrigere Restaktivität als das nicht 

immobilisierte Enzym. Der leichte Aktivitätsverlust ist vermutlich auf 

Enzyminaktivierung bei der Präparation der Celite-AtHNL, die geringere 

Enzymflexibilität und eine eventuell höhere Diffusionsbarriere zurückzuführen. 
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4.3.3.1.3. AtHNL-CLEAs verlieren viel Enzymaktivität und sind 
schlecht präparierbar 

AtHNL-CLEAs zeigten die mit Abstand geringste Restaktivität bei der Umsetzung von 

aromatischen und heteroaromatischen Substraten.  Dabei konnten die eingesetzten 

aromatischen  Substrate (Benzaldehyd und 2-Chlorbenzaldehyd) mit einer 

Restaktivität von 27 % und das heteroaromatische Substrat (Furfural) mit 6 % 

Restaktivität im Vergleich zur präzipitierten AtHNL umgesetzt werden. Der starke 

Aktivitätsverlust ist mit hoher Wahrscheinlichkeit auf die starkt eingeschränkte 

Enzymflexibilität, bedingt durch die kovalente Quervernetzung, zurückzuführen. 

Aufgrund der schlechten Reproduzierbarkeit bei zugleich hohem 

Präparationsaufwand, wurde auf weitergehende Studien mit AtHNL-CLEAs 

verzichtet. 

 

4.3.3.1.4. Bei  der (R)-2-Hydroxyheptannitirl-Synthese ist der 
Einfluss der Enzympräparation besonders groß 

Bei der Synthese des aliphatischen (R)-2-Hydroxyheptannitirls zeigte die präzipitierte 

AtHNL die höchste Enzymaktivität mit dem höchsten ee (95 %). Celite-AtHNL zeigte 

eine relative Enzymaktivität von 57 % mit einem ee von 86 %, wohingegen Solgel-

AtHNL eine Enzymaktivität von 86 % mit dem niedrigsten ee � 58 % aufwies (Tab. 

3).  

Der Grund für den geringeren Enantiomerenüberschuss des von der Celite- und 

Solgel-AtHNL katalysierten (R)-2-Hydroxyheptannitril-Synthese konnte in einem 

Kontrollexperiment aufgeklärt werden: Das Trägermaterial und der Wassergehalt 

fördert die racemische Produktbildung. Dies wird im folgenden Kapitel näher 

beleuchtet. 
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4.3.4. Der Einfluss des Wassergehalts auf die Synthese von 
Cyanhydrinen 

Der Wassergehalt innerhalb des einphasigen MTBEs hat in Abhängigkeit von der als 

Substrat verwendeten Carbonylkomponente unterschiedlichen Einfluss auf die 

Reaktion. Wie Andexer et al. 2007 zeigen konnten, verläuft die nicht-enzymatische 

Nebenreaktion mit sehr unterschiedlicher Geschwindigkeit.[74] Für Hexanal und 

Cyclohexanon ist die nicht-enzymatische Reaktion besonders schnell. Somit ist bei 

diesen Substraten eine besonders starke Auswirkung des Wassergehalts auf die 

optische Reinheit der Cyanhydrine zu erwarten. Bei den verwendeten aromatischen 

Substraten hat der Wassergehalt hingegen einen deutlich geringeren Einfluss auf die 

nicht-enzymatische Reaktion. Der Wassergehalt sollte jeweils so eingestellt werden, 

dass die höchste Aktivität des Enzyms erreicht und die Nebenreaktion minimiert wird.  

 

4.3.4.1. Einfluss des Wassergehalts auf den Enantiomeren-
überschuss 

Bei der Solgel-Immobilisierung der AtHNL wurde die in Puffer gelöste AtHNL in der 

Solgel-Polymermatrix eingeschlossen. Somit kann man den geringen ee von 58 % 

für (R)-Hydroxyheptannitril in diesem Fall mit dem hohen Wassergehalt innerhalb des 

Solgels erklären (Abb. 29). Dies konnte durch ein Kontrollexperiment bestätigt 

werden, in dem ein Solgel ohne AtHNL, jedoch mit dem gleichen Puffergehalt, 

präpariert und für die Synthese von Hydroxyheptannitril eingesetzt wurde. Abb. 29 

zeigt, dass innerhalb von 120 min 50 % des Hexanals racemisch zu dem Cyanhydrin 

umgesetzt werden.  
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Abb. 29: Synthese von (R)-Hydroxyheptannitril mittels Solgel-AtHNL. Das Diagramm zeigt den 
Gesamtumsatz von Hexanal (�) und den Enantiomerenüberschuss (�) der Reaktion. Der 
Enantiomerenüberschuss wird aufgrund der hohen nicht-enzymatischen Substratumsetzung (x) 
reduziert.  

Ein ähnlicher, wenn auch nicht so stark ausgeprägter Effekt konnte bei Celite 

Partikeln (ohne AtHNL) beobachtet werden, die innerhalb von 120 min 18 % Hexanal 

racemisch zu Hydroxyheptannitril umsetzen. Zudem konnte bei Celite-AtHNL 

beobachtet werden, dass bei der Synthese von aromatischen Cyanhydrinen der 

Wassergehalt einen starken Einfluss auf die katalytische Aktivität der AtHNL hat. 

Hierauf wird im Folgenden näher eingegangen. 

 

4.3.4.2. Einfluss des Wassergehalts auf die Aktivität der Celite-
AtHNL  

Bei Untersuchungen von Celite-immobilisierter HbHNL wurde der Einfluss des 

Wassergehalts von einphasigem Dibutylether auf die Enzymaktivität und 

Enantioselektivität bei der Synthese des aromatischen Cyanhydrins (S)-2-Hydroxy-4-

phenylbutyrnitril beschrieben. Dabei konnte gezeigt werden, dass ein zu geringer (< 

1%) oder zu hoher (> 2 %) Wassergehalt des Reaktionsmediums in erster Linie die 

Enzymaktivität drastisch verringert. Die Enantioselektivität des Enzyms wird 

hingegen nur geringfügig beeinflusst.[96]  

Im Fall der Celite-AtHNL ist der Wassergehalt des Puffer-gesättigten MTBEs bei der 

Verwendung von sehr trockenen Celite-AtHNL Präparationen (Wassergehalt 3 – 5 % 

(w/w)) für die Synthese von (R)-Mandelsäurenitril zu gering, um eine optimale 
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Enzymaktivität zu gewährleisten (Abb. 30). Feuchte Celite-AtHNL Präparationen 

(Wassergehalt � 10 % (w/w)) zeigten eine deutlich höhere Enzymaktivität bei 

gleichbleibendem ee des gebildeten (R)-Mandelsäurenitrils. Bei der Verwendung von 

trockenen Celite-AtHNL Präparationen für die Synthese konnte durch die Zugabe 

von 10 �l Citrat-Phosphat Puffer (50 mM, pH 6,0) pro ml Reaktionsmedium eine 

Optimierung des Wassergehalts erreicht werden. 

 

 
Abb. 30: Einfluss des Wassergehalts von Celite-AtHNL auf die Enzymaktivität. Fünf Celite-
AtHNL Präparationen mit 3 – 26 %  Wassergehalt (w/w) wurden unter gleichen Reaktionsbedingungen 
auf Enzymaktivität untersucht. In jeder Reaktion konnte ein ee � 98 % gemessen werden. (Abbildung 
modifiziert nach Publikation 1, Figure  4B) 

4.3.5. Ganzzellbiotransformationen zur Synthese von 
Cyanhydrinen 

Der Einsatz ganzer Zellen stellt die Schritt-ökonomischste, kostengünstigste und 

effizienteste Form der Biokatalyse dar, wenn keine Nebenreaktionen durch andere 

zelluläre Enzyme auftreten. Ganzzellbiokatalyse wird üblicherweise in wässrigen 

Medien oder wässrig-organischen Zweiphasensystemen betrieben. Bisher gibt es nur 

wenige Beispiele, bei denen mit ganzen Zellen in organischen Lösungsmitteln bzw. 

reinen Substraten gearbeitet wurde.[144, 146, 148] Im Rahmen dieser Arbeit wurde die 

Anwendung von E. coli Expressionszellen der AtHNL in der 

Ganzzellbiotransformation zur Synthese von (R)-Cyanhydrinen in einphasigem 

Lösungsmittel in Kooperation mit Kathrin Scholz im Rahmen deren parallel laufender 

Dissertation untersucht. 
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Mittels eines Fusionsproteins, bestehend aus der AtHNL und einem 

Fluoreszenzreporter-Protein der Light-Oxygen-Voltage Familie (LOV), konnte Kathrin 

Scholz MTBE als geeignetes organisches Lösemittel identifizieren, da es die 

Zellwand von E. coli intakt lässt, sodass weder fluoreszierendes Fusionsprotein noch 

der nicht kovalent gebundene Chromophor (FMN) in das Reaktionsmedium 

ausbluten (Abb. 31).  

 

 
Abb. 31: Ausbluten des AtHNL-LOV-Fusionsproteins aus den E. coli Zellen ins Lösungsmittel. 
E. coli Expressionszellen des Fusionsproteins wurden in unterschiedlichen Lösungsmitteln (MTBE, 
Dieethylether (DEE), Aceton) inkubiert und anschließend vom Lösungsmittel getrennt. Fluoreszenz 
des Lösungsmittels zeigte Ausbluten des Fusionsproteins oder des Chromophors. 

Zur enantioselektiven Synthese von Cyanhydrinen mussten die rekombinanten E. 

coli Zellen getrocknet werden. Dazu reichte zur Synthese von (R)-Mandelsäurenitril 

das Ernten der Zellen mittels Zentrifugation und das anschließende mehrfache 

Waschen der Zellfeuchtmasse in MTBE.  

Durch den Einsatz von 350 mg in MTBE gewaschener E. coli Zellen konnte innerhalb 

von 60 min ein nahezu vollständiger Substratumsatz mit einem ee � 98 % für das 

gebildete (R)-Mandelsäurenitril erreicht werden. Der erzielte Enantiomeren-

überschuss liegt nur leicht unter dem mit isoliertem bzw. immobilisierten Enzym 

erzielbaren (Abb. 23, ee � 99 %).  

Bei der Synthese substituierter aromatischer Cyanhydrine (Tab. 4) führte die 

Verwendung in MTBE gewaschener Zellfeuchtmasse zwar zu guten 

Substratumsätzen (80 – 85 %), jedoch nur zu moderaten Enantiomeren-

überschüssen zwischen 70 und 90 %. Das heteroaromatische Furfural wurde 

hingegen nur zu 50 % mit einem ee � 30 % zu (2S)-Furan-2-yl(hydroxy)ethannitril 

umgesetzt. Der stark schwankende Enantiomerenüberschuss ist vermutlich auf den 

hohen Wassergehalt der Zellen zurück zu führen. Auch durch häufigeres Waschen 
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der Zellen in MTBE konnte der Wassergehalt nicht verringert werden. Aus diesem 

Grund wurde der Einsatz gefriergetrockneter Zellen untersucht. Die Verwendung der 

gleichen Zellmasse (350 mg Zellfeuchtmasse = 80 mg Lyophilisat) zeigte, dass die 

lyophilisierten Zellen zwar Enzymaktivität verlieren, sodass der Substratumsätze 

zwischen 33 – 67 % innerhalb von 60 min erreicht wurden, jedoch aromatische 

Cyanhydrine mit ee � 90 – 98 % und das heteroaromatische (2S)-Furan-2-

yl(hydroxy)ethannitril mit 88 % Enantiomerenüberschuss gebildet wurden (Tab. 4). 

 

Tab. 4: Synthese von verschiedenen Cyanhydrinen mittels Ganzzellbiokatalyse. Die Zellen 
wurden mittels Zentrifugation geerntet und anschließend in MTBE gewaschen oder als Lyophilisat für 
60 min in einphasigem Puffer-gesättigten MTBE zur Synthese eingesetzt. Reaktionsbedingungen: 1 
ml Puffer-gesättigtes MTBE, 0,5 mmol Substrat, 1,5 mmol HCN, 350 mg Zellen (entspricht 80 mg 
Lyophilisat) 

Cyanhydrin 
Zellfeuchtmasse in 
MTBE gewaschen 

(3-fach) 
Lyophilisierte  

Zellen  

 
Substrat-
umsatz 

(%) 

ee 
(%) 

Substrat-
umsatz 

(%) 

ee  
(%) 

 

 
(R)-Mandelsäurenitril 

98 � 98 45 � 98 

 

 
(R)-2-Chlormandelsäurenitril 

80 � 70 43 � 90 

 

 
(R)-2-Fluormandelsäurenitril 

85 � 90 33 � 98 

 

 
(2S)-Furan-2-yl(hydroxy)ethannitril 

50 � 30 67 � 88 
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Auch bei der Ganzzellbiokatalyse konnte gezeigt werden, dass der Enantiomeren-

überschuss stark von der eingesetzten Carbonylverbindung und dem Wassergehalt 

der Zellen abhängt.  

Der Einsatz ganzer Zellen (MTBE gewaschen) macht bei der Synthese von (R)-

Mandelsäurenitril Sinn, da ein vergleichbarer Substratumsatz und Enantiomeren-

überschuss zum isolierten (bzw. immobilisierten) Enzym  unter gleichen Reaktions-

bedingungen erzielt werden kann. Das Lyophilisieren der E. coli Zellen verursacht 

zwar einen höheren Präparationsaufwand, der insgesamt bis zu 72 h (größtenteils 

Trocknungszeit) beansprucht, ist jedoch geeignet, die Enantioselektivität zu erhöhen. 

Bedingt durch den Aktivitätsverlust bei der Gefriertrocknung muss allerdings mehr 

Zellmaterial eingesetzt werden, um einen vollständigen Umsatz zu erreichen. 

 

4.3.6. Vergleich der Produktausbeuten bei der Synthese von (R)-
Mandelsäurenitril 

Eine Gegenüberstellung von isolierter bzw. immobilisierter AtHNL, der 

Ganzzellbiotransformation und in der Literatur beschriebener Daten der PaHNL zur 

Synthese von (R)-Mandelsäurenitril sollte Aufschluss über die erzielbaren 

Maximalausbeuten mittels der jeweiligen AtHNL Präparation (inkl. Recyclierung) 

liefern und einen Bezug zu einem etablierten Prozess ermöglichen.  

 

4.3.6.1. Recyclierbarkeit und Stabilität der immobilisierten 
AtHNL und des Ganzzellansatzes 

Die Recyclierbarkeit der immobilisierten AtHNL (Celite, Solgel), sowie des 

Ganzzellansatzes, wurde durch fünf aufeinander folgende (R)-Mandelsäurenitril 

Synthesen (jeweils 60 min) unter Verwendung derselben Enzym- bzw. 

Zellpräparation untersucht. Dazu wurde der Versuchsaufbau leicht modifiziert und die 

jeweilige AtHNL Präparation in ein Lösungsmittel-beständiges feinmaschiges 

Nylongase-Säckchen verpackt, welches einen Waschschritt zwischen den 

Synthesezyklen (in MTBE) und den Transfer der Enzym- bzw. Zellpräparation in ein 

anderes Reaktionsgefäß ermöglichte (Abb. 32).  
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Abb. 32: Reaktionsaufbau zur Untersuchung Recyclierbarkeit von AtHNL Präparationen. Die 
AtHNL Präparation ist in einem Lösungsmittel-beständigen feinmaschigen Nylongase-Säckchen 
verpackt, welches die Entnahme sowie den Transfer des Biokatalysators ermöglicht. 

Die Recyclierung der Celite-AtHNL zeigte eine gleichbleibend gute Enantioselektivität 

(ee � 98 %) und lediglich einen geringen Aktivitätsverlust ab dem dritten 

Reaktionszyklus, wohingegen die Solgel-AtHNL bereits nach dem ersten 

Reaktionszyklus deutlich Aktivität und Selektivität verlor (Abb. 33). 

 

 
Abb. 33: Recyclierung von Celite-AtHNL (links) und Solgel-AtHNL (rechts) bei der Synthese 
von (R)-Mandelsäurenitril. In fünf direkt aufeinander folgenden Synthesen wurden 0,5 mmol 
Benzaldehyd und 1,5 mmol HCN von 5 mg immobilisierter AtHNL zu (R)-Mandelsäurenitril umgesetzt 
(30 mg Celite-AtHNL bzw 161 mg Solgel-AtHNL). Zwischen den Reaktionszyklen wurde die 
immobilisierte AtHNL mit Puffer-gesättigtem MTBE gewaschen. (Abbildung modifiziert nach 
Publikation 1, Figure 3AB) 
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Die Recyclierung des Ganzzellansatzes verlief vergleichbar zur Celite-AtHNL mit 

gleichbleibender Enantioselektivität (� 98 %) und leichter Aktivitätsabnahme (Abb. 

34).  

 

 
Abb. 34: Recyclierung des Ganzzellansatzes bei der Synthese von (R)-Mandelsäurenitril. In fünf 
direkt aufeinander folgenden Reaktionen wurden 0,5 mmol Benzaldehyd und 1,5 mmol HCN von 350 
mg rekombinanten E. coli-Zellen (Zellfeuchtmasse) zu (R)-Mandelsäurenitril umgesetzt. Zwischen den 
Reaktionszyklen wurden die Zellen mit MTBE gewaschen. (Abbildung modifiziert nach Publikation 2, 
Figure 1) 

Der moderate Aktivitätsverlust der Celite-AtHNL und des Ganzzellansatzes konnte 

auf Enzyminaktivierung während der Reaktion zurückgeführt werden, da in beiden 

Fällen das Ausbluten von AtHNL ausgeschlossen wurde (Abb. 31, Abb. 36). Zudem 

wurde in beiden Untersuchungen im 5. Reaktionszyklus ein vollständiger 

Substratumsatz erreicht, sodass mit hoher Wahrscheinlichkeit ebenfalls 6 - 8 

Reaktionszyklen mit vollständigem Substratumsatz und gleichbleibend gutem 

Enantiomerenüberschuss möglich wären. Die hohe Stabilität beider Präparationen ist 

auch bei der Lagerung zu beobachten: Celite-AtHNL zeigte bei der Lagerung bei 4 

°C (trocken) eine Halbwertszeit von 2,4 Monaten (Abb. 35) und geerntete 

Zellfeuchtmasse kann problemlos � 6 Monate bei -20 °C gelagert werden. 

Vergleichbare Untersuchungen mit weiteren HNLs sind derzeit nicht beschrieben. 
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Abb. 35: Lagerung von Celite-AtHNL bei 4 °C über einen Zeitraum von 31 Tagen. 400 mg Celite-
AtHNL wurden über 31 Tage bei 4 °C gelagert. Während des Versuchsverlaufs wurden jeweils 20 mg 
Celite-AtHNL der gelagerten Charge entnommen und Synthesen von (R)-Mandelsäurenitril unter 
gleichen Reaktionsbedingungen durchgeführt. Die Bestimmung der relativen Enzymaktivität erfolgte 
durch den Vergleich des Substratumsatzes nach 25 min Reaktionszeit. Innerhalb der ersten 
Versuchstage nahm Celite-AtHNL Luftfeuchtigkeit auf, sodass die Aktivität zunahm. Ab dem 
Scheitelpunkt wurde die Halbwertszeit der Enzymaktivität bestimmt: Sie beträgt 71 Tage (2,4 Monate). 
(Abbildung modifiziert nach Publikation 1, Figure 4A) 

Der deutliche Aktivitätsverlust bei der Recyclierung der Solgel-AtHNL wurde nicht 

durch das Ausbluten der AtHNL verursacht (Abb. 36), sondern konnte auf die 

inaktivierende Wirkung des Puffer-gesättigten MTBEs zurück geführt werden. 

 

 

 
Abb. 36: Untersuchung zur Bindungsstärke von aktiver, immobilisierter AtHNL. Jeweils zwei 
(R)-Mandelsäurenitril-Synthesen mit Celite- (links) bzw. Solgel-AtHNL (rechts), bei der zum einen die 
immobilisierte AtHNL für 60 min im Reaktionsmedium verblieb (�) und zum anderen nach 8 min aus 
dem Medium entfernt wurde (�). Das Entfernen des Immobilisats führte zum Abbruch der Reaktion. 
(Abbildung modifiziert nach Publikation 1, Figure 2AB)  

Wurde die Solgel-AtHNL für 60 bzw. 120 min in Puffer-gesättigtem MTBE (ohne 

Substrate) inkubiert und anschließend zur Synthese von (R)-Mandelsäurenitril 

verwendet, so verlief der Substratumsatz wie der 2. bzw. 3. Synthesezyklus bei der 
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Recyclierung (Abb. 33). Eine vergleichbare Untersuchung der Solgel-immobilisierten 

HbHNL zeigte bei der Recyclierung eine schwächere Enzyminaktivierung durch das 

Waschen des Immobilisats in Pufferlösung.[140] Die Waschschritte in Pufferlösung 

führten bei der Solgel-AtHNL jedoch nur zu einer geringen Aktivitätsverbesserung, 

einhergehend mit deutlich niedrigeren Enantioselektivitäten aufgrund des höheren 

Wassergehalts im Reaktionsmedium (Abb. 37). 

 

 
Abb. 37: Recyclierung von Solgel-AtHNL mit intermediären Waschschritten in Puffer. In fünf 
direkt aufeinander folgenden Reaktionen wurden 0,5 mmol Benzaldehyd und 1,5 mmol HCN zu (R)-
Mandelsäurenitril umgesetzt. Zwischen den Reaktionszyklen wurde die Solgel-AtHNL mit Kalium-
Phosphat Puffer (50 mM, pH 6,0) gewaschen. (Abbildung modifiziert nach Publikation 1, Figure 3C) 

Neben der geringen Prozessstabilität weist Solgel-AtHNL bei 4 °C eine Halbwertszeit 

von 1 Monat auf (Abb. 38) und ist somit ebenfalls instabiler als Celite-AtHNL und die 

AtHNL in rekombinanten E. coli-Zellen.  

 

 
Abb. 38: Lagerung von Solgel-AtHNL bei 4 °C über einen Zeitraum von 31 Tagen. 2 g Solgel-
AtHNL wurden über 31 Tage bei 4 °C gelagert. Während des Versuchsverlaufs wurden jeweils 100 
mg Solgel-AtHNL der gelagerten Charge entnommen und Synthesen von (R)-Mandelsäurenitril unter 
gleichen Reaktionsbedingungen durchgeführt. Die Bestimmung der relativen Enzymaktivität erfolgte 
durch den Vergleich des Substratumsatzes nach 5 min Reaktionszeit. (Abbildung modifiziert nach 
Publikation 1, Figure 5) 
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Die Verwendung von Solgel-AtHNL ist aus diesem Grund lediglich für Experimente 

im kleinen Maßstab geeignet. Zwar zeigte Solgel-AtHNL eine wesentlich höhere 

Enzymaktivität im Vergleich zu den anderen AtHNL-Präparationen (Kapitel 4.3.3, 

Tab. 3), jedoch kann sie nur für zwei bis drei Reaktionszyklen wiederverwendet 

werden und der Präparationsaufwand ist vergleichsweise hoch (Tab. 2).  

 

4.3.6.2. Produktivitätsvergleich der enzymatischen (R)-Mandel-
säurenitril-Synthese 

Zur besseren Vergleichbarkeit wurden die verschiedenen AtHNL-Präparationen 

hinsichtlich ihrer Produktivität zur Synthese von (R)-Mandelsäurenitril unter 

Berücksichtigung des Präparationsaufwandes und des Einsatzes vergleichbarer 

Enzym- bzw. Zellkonzentrationen gegenübergestellt (Tab. 5). 

Die zuvor etablierten Reaktionsbedingungen sowie die Optimierung der AtHNL 

Präparation ermöglichten mit einem Synthesezyklus innerhalb von 60 min 

(mindestens) eine vollständige Umsetzung von 0,5 mmol Benzaldehyd zu (R)-

Mandelsäurentitril (0,5 mmol, entsprechen 67 mg).  

In Tab. 5 sind die in dieser Arbeit etablierten AtHNL-Präparationen, ihre maximale 

Recyclierbarkeit, das eingesetzte Trägermaterial, sowie die zur Synthese 

verwendeten AtHNL Konzentrationen und erzielten Produktausbeuten aufgelistet. 
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Tab. 5: Zusammenstellung der AtHNL Präparationen und der erzielbaren (R)-Mandel-
säurenitrilausbeute pro g Zellmasse. Im Falle einer möglichen Recyclierung der verwendeten 
Enzym- bzw. Zellpräparation wurde die Produktausbeute mit den Synthesezyklen multipliziert. Zur 
Normierung der Produktausbeute pro g Zellfeuchtmasse wurde auf die aus 1 g Zellfeuchtmasse 
isolierbare AtHNL Menge (25 mg) bezogen. Reaktionsbedingungen: 1 ml Puffer-gesättigtes MTBE (50 
mM Citrat-Phosphatpuffer, pH 6), 53 mg Benzaldehyd (0,5 mmol), 40,5 mg HCN (1,5 mmol). 
Vollständiger Substratumsatz führt zur Bildung von 67 mg (R)-Mandelsäurenitril (0,5 mmol). 

Präparation Recyclierung Biokataly-
sator 

Produktausbeute 
inkl. Recyclierung 

(mg)a 

Produktausbeute 
pro g Zellfeucht-

masseb (mg)a 

 

AtHNL 
(präzipitiert) 

 

nicht 
untersucht 

 

5 mg AtHNL 
 

67 
 

335 

AtHNL-CLEA nicht 
untersucht 

17 mg AtHNL 67 120 - ? 

 

Solgel-AtHNL 

 

2- bis 3-mal 
 

ca. 100 mg 
Solgel 

3 mg AtHNL 

 

134 - 200 

 

1116 - 1666 

 

Celite-AtHNL 
 

6- bis 8-mal 
 

30 mg Celite 

7,5 mg AtHNL 

 

400 - 536 
 

1333 – 1786 

 

Ganzzell-

ansatz 

 

6- bis 8-mal 350 mg E. coli 

Zellen 

 

400 - 536 

 

1200 – 1600 

 
aProduktausbeuten berechnet aus GC-Daten  //  bEntspricht 25 mg isolierter AtHNL  

 

4.3.6.2.1. (R)-Mandelsäurenitrilsynthese mit präzipitierter AtHNL 

Die nicht immobilisierte (präzipitierte) AtHNL konnte nicht recycliert werden, da der 

verwendete Versuchsaufbau (siehe Abb. 23) keine effiziente Filterung der 

präzipitierten AtHNL zuließ, wie es bei Celite oder Solgel immobilisierter AtHNL 

möglich war (siehe Abb. 32). Das vorsichtige Öffnen des Reaktionsgefäßes und 

anschließende Abschütten des Reaktionsansatzes hätte zum Ablösen des 

Präzipitats und zum Austritt gasförmiger Blausäure in gesundheitsgefährdenden 

Konzentrationen geführt. Aus diesem Grund wurde lediglich ein Reaktionszyklus 

durchgeführt, der bei vollständigem Benzaldehydumsatz zur Ausbeute von 67 mg 

(R)-Mandelsäurenitril unter Verwendung von 5 mg AtHNL führte. Bezogen auf die 

Produktausbeute pro g Zellfeuchtmasse (entspricht 25 mg AtHNL) konnten 335 mg 

(R)-Mandelsäurenitril synthetisiert werden. Mit großer Wahrscheinlichkeit könnte eine 
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Recyclierung des präzipitierten Enzyms zu einer Steigerung der Produktivität führen. 

Dies wäre beispielsweise unter Verwendung eines Rührkesselreaktors, mit einem am 

Boden befindlichem Ablauf (mit feinporigen Sieb) möglich, sodass das präzipitierte 

Enzym beim Abpumpen des Reaktionsmediums im Reaktor verbleibt und recycliert 

werden kann.   

 

4.3.6.2.2. (R)-Mandelsäurenitrilsynthese mit AtHNL-CLEAs 

Eine Methode zur Produktion von AtHNL-CLEAs wurde im Rahmen dieser Arbeit 

etabliert, jedoch zeigten die AtHNL-CLEAs einen starken Aktivitätsverlust (� 27 % 

Restaktivität) und schlechte Reproduzierbarkeit unter zugleich hohem 

Präparationsaufwand (Kapitel 4.3.2.1). Aus diesem Grund wurde keine Recyclierung 

durchgeführt, sodass nur ein Reaktionszyklus unter Verwendung von 17 mg AtHNL-

CLEA einen vollständigen Substratumsatz lieferte und somit die Produktion von 120 

mg (R)-Mandelsäurenitril pro g Zellfeuchtmasse ermöglichte. CLEAs weisen in der 

Regel eine hohe Prozessstabilität auf. So zeigten z.B. Nitrilhydratase-CLEAs nach 36 

Reaktionszyklen und Lipase-CLEAs nach 10 Reaktionszyklen lediglich einen 

geringen Aktivitätsverlust.[176] In Anbetracht des hohen Aktivitätsverlusts bei der 

Präparation der AtHNL-CLEAs müssen mehr als 3 Recyclierungen durchgeführt 

werden, um eine mit der nicht immobilisierten AtHNL vergleichbare Produktivität zu 

erreichen. Hinzu kommt der hohe Präparationsaufwand, der AtHNL-CLEAs für den 

technischen Einsatz ungeeignet macht. 

 

4.3.6.2.3. (R)-Mandelsäurenitrilsynthese mit Solgel-AtHNL 

Solgel-immobilisierte AtHNL zeigte bei der Umsetzung von aromatischen Substraten 

eine überraschend hohe Aktivität im Vergleich zu den anderen Enzympräparationen 

(Kapitel 4.3.3, Tab. 3). Untersuchungen der Recyclierbarkeit und Stabilität der 

Solgel-AtHNL ergaben jedoch einen rapiden Aktivitätsverlust bei der Recyclierung 

und eine nur mäßige Lagerfähigkeit. Somit konnte durch den Einsatz von 3 mg 

immobilisierter AtHNL 134 – 200 mg (2 bzw. 3 Recyclierungen mit vollständigem 

Substratumsatz) (R)-Mandelsäurenitril synthetisiert werden. Die Produktausbeute pro 

g Zellfeuchtmasse beträgt dementsprechend 1116 – 1666 mg (R)-Mandelsäurenitril. 
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In Anbetracht des Präparationsaufwands, der Handhabung der z.T. toxischen 

Substanzen und des Preises der Solgel-Komponenten ist die Solgel-Immobilisierung 

eher für Untersuchungen im Labormaßstab geeignet. 

 

4.3.6.2.4. (R)-Mandelsäurenitrilsynthese mit Celite-AtHNL 

Celite-AtHNL konnte lediglich ein geringer Aktivitätsverlust bei der Synthese von 

aromatischen Cyanhydrinen nachgewiesen werden. Zudem machen die sehr 

geringen Materialkosten des Celites (0,72 Euro/kg) und die einfachen Präparation 

der adsorptiv an den Träger gebundenen AtHNL seine Anwendung attraktiv. 

Aufgrund der guten Stabilität ermöglicht der Einsatz von 7,5 mg immobilisierter 

AtHNL (entspr. 30 mg Celite-AtHNL) bei einer 6- bis 8-maligen Recyclierung die 

Synthese von 400 – 536 mg (R)-Mandelsäurenitril. Somit konnte eine maximale 

Produktausbeute von 1333 – 1786 mg (R)-Mandelsäurenitril pro g Zellfeuchtmasse 

erreicht werden. Neben (R)-Mandelsäurenitril wurden weitere technisch relevante 

aromatische und heteroaromatische Cyanhydrine mit ee � 98 % synthetisiert (Tab. 

3), allerdings wurden bisher mit diesen Substraten noch keine Recyclierungsstudien 

durchgeführt, die die Produktivität weiter verbessern würden. Celite-AtHNL könnte 

mit hoher Wahrscheinlichkeit im größeren Maßstab zur effizienten Synthese 

verschiedener aromatischen Cyanhydrinen eingesetzt werden.  

 

4.3.6.2.5. (R)-Mandelsäurenitrilsynthese mittels Ganzzellbio-
katalyse 

Die Verwendung von mit MTBE gewaschener Zellfeuchtmasse zeigte lediglich bei 

der Synthese von (R)-Mandelsäurenitril vollständige Substratumsätze mit hohem 

Enantiomerenüberschuss (ee � 98 %, Tab. 4). Durch eine 6- bis 8-fache 

Recyclierung von 350 mg Zellfeuchtmasse ist die Synthese von 400 – 536 mg (R)-

Mandelsäurenitril und somit eine Produktausbeute von 1200 – 1600 mg pro g 

Zellfeuchtmasse möglich. Aufgrund des geringen Präparationsaufwandes ist die 

Ganzzellbiokatalyse die effizienteste und günstigste Methode zur Synthese von (R)-

Mandelsäurenitril. Enantiomerenüberschüsse � 88 % konnten bei der Synthese von 
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substituierten aromatischen bzw. heteroaromatischen Cyanhydrinen mittels 

lyophilisierter Zellen erzielt werden (Tab. 4). Das Lyophilisieren der Zellen führt zwar 

zu einem signifikanten Aktivitätsverlust, jedoch steigt die Stereoselektivität der 

Hydrocyanierung deutlich, da durch den verringerten Wassergehält die nicht 

enzymatische Nebenreation unterdrückt wird. Nebenprodukte konnten bei den hier 

untersuchten Biotransformationen nicht festgestellt werden. Dies muss jedoch für 

verschiedene Carbonylverbindungen und E. coli-Expressionsstämme jeweils 

überprüft werden, ehe die Ganzzellbiotransformation erwogen wird. Besonders 

hervorzuheben ist jedoch, dass die Ganzzellbiotransformation zur Cyanhydrin-

synthese in Minimalwasser-Systemen, wie Puffer-gesättigtem MTBE, möglich ist. 

Dies erleichtert die Produktaufarbeitung erheblich. 

 

4.3.7. Vergleich der Produktivität der AtHNL-Präparationen zur 
etablierten PaHNL 

Durch den Einsatz von 1 g Zellfeuchtmasse bzw. 100 mg Celite-AtHNL (entspricht 25 

mg isolierter AtHNL) kann eine Ausbeute von ca. 1,6 g (R)-Mandelsäurenitril erreicht 

werden. Ein Vergleich mit der entsprechenden Produktivität der für die Synthese von 

(R)-Mandelsäurenitril etablierten PaHNL zeigt, dass die AtHNL momentan noch 

keine technische Alternative darstellt. So können beispielsweise durch den Einsatz 

von 11 mg PaHNL (teilgereinigt, 65 % PaHNL) in einem organisch-wässrigen 

Zweiphasensystem 6 g (R)-Mandelsäurenitril synthetisiert werden, was einer 8,5-fach 

höheren Produktivität im Vergleich zur AtHNL entspricht.[101] Eine Steigerung der 

katalytischen Effizienz, sowie Enzymstabilität der AtHNL könnte durch eine 

Mutagenese (rational oder ungerichtet) erreicht werden.  

Im Folgenden werden Ergebnisse zur Stabilisierung der AtHNL mittels rationalem 

Enzymdesign zum Einsatz des Enzyms im wässrig-organischen Zweiphasensystem 

beschrieben. 
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4.4. Stabilisierung der AtHNL durch rationales Enzymdesign 

Das Grundkonzept zur Stabilisierung der AtHNL basierte auf der Identifizierung  

signifikanter molekularer Unterschiede zwischen der sehr stabilen MeHNL und der 

wesentlich labileren AtHNL. Die Stabilität wird vermutlich vom unterschiedlichen 

Oligomerisierungszustand beider Enzyme beeinflusst (Kapitel 1.2.4.4.1-2). Die 

Ausarbeitung relevanter Abweichungen auf  Sequenz- und Strukturebene ergab 

Anhaltspunkte für eine mögliche Stabilisierung der AtHNL durch den Einsatz von 

rationalem Enzymdesign. Bei einer computergestützten Modellierung einer AtHNL 

Variante wurde durch den gezielten Austausch von Aminosäuren der AtHNL zu den 

korrespondierenden Aminosäuren der MeHNL versucht, eine Dimer-Dimer 

Interaktionsfläche zu konstruieren, die zu einer Tetramerisierung der AtHNL Variante 

führt. Die Entwicklung und Charakterisierung der AtHNL Variante relativ zum Wildtyp-

Enzym wird in Publikation 3 beschrieben. 

 

4.4.1. Sequenzieller und struktureller Vergleich von AtHNL und 
MeHNL 

Die Aminosäuresequenzen der AtHNL und MeHNL weisen eine hohe 

Sequenzähnlichkeit von 68 % mit einer Sequenzidentität von 46 % auf. Insbesondere 

die Aminosäuren der Monomer-Monomer Kontaktfläche, die zur Bildung des Dimers 

führt, sind stark konserviert (Abb. 39, gelb hinterlegt). An dem potentiellen 

Tetramerinterface der MeHNL sind 22 Aminosäuren beteiligt (Abb. 39, grau 

hinterlegt). Diese 22 Aminosäuren sind größtenteils nicht konserviert. Die AtHNL  

kann aufgrund der abweichenden Aminosäuresequenz in diesem Bereich, die bei 

einer Tetramerisierung zu zahlreichen ungünstigen Wechselwirkungen führen 

würden, sicher kein Tetramer bilden. Demgegenüber ist eine Tetramerbildung der 

MeHNL auf der Basis der nachfolgend beschriebenen in silico Analysen durchaus 

möglich. Dies wird druch die mittels Größenausschlusschromatographie 

beobachteten höheren Assoziationszustände der MeHNL belegt.[86] 
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Abb. 39: Alignment der Aminosäuresequenzen von AtHNL und MeHNL. Die konservierten 
Aminosäuren sind mit einem Stern (*) und ähnliche Aminosäuren mit einem Plus (+) markiert. 
Aminosäuren am Dimerinterface sind gelb markiert. Aminosäuren, die an der möglichen 
Tetramerbildung der MeHNL beteiligt sind, sind grau hinterlegt. 

Die hohe Sequenzähnlichkeit von AtHNL und MeHNL resultiert in einer sehr hohen 

strukturellen Ähnlichkeit, wie in Abb. 40 gezeigt. 

 

 
Abb. 40: Vergleich der Rückgratstruktur des AtHNL- und MeHNL-Dimers. Links: Rückgrat der 
AtHNL (orange). Mitte: Rückgrat der MeHNL (blau). Rechts: Strukturalignment der AtHNL und 
MeHNL. 

Ein Zusammenhang zwischen Oligomerisierungszustand und Enzymstabilität konnte 

bisher hauptsächlich bei Proteinen aus thermophilen Organismen nachgewiesen 

werden. Bei dem Vergleich homologer Proteine aus mesophilen und thermophilen 

Organismen konnte gezeigt werden, dass die höhere Thermostabilität dieser 

Proteine oft auf einen höheren Oligomerisierungszustand zurückgeführt werden 

konnte.[177] Dieses Prinzip wurde zudem bereits mehrfach experimentell bestätigt.[178] 
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Durch den gezielten Austausch von Aminosäuren der Interaktionsfläche von 

Proteinuntereinheiten wurde z.B. bei einer Triosephosphatisomerase aus Hefe eine 

Verstärkung der hydrophoben Wechselwirkung erzielt, die eine Steigerung der 

Thermostabilität bewirkte.[179] Ebenso konnte bei einer Malatdehydrogenase aus C. 

aurantiacus durch den Austausch einer Aminosäure der Dimer-Dimer-

Interaktionsfläche eine Steigerung der Thermo- und der pH-Stabilität erreicht 

werden.[180] 

Es ist denkbar, dass die höhere pH-Stabilität der MeHNL ebenfalls durch den 

höheren Oligomerisierungszustand hervorgerufen wird. Durch den Transfer der 

entsprechenden Aminosäuren der MeHNL-Dimer-Dimer-Interaktionsfläche auf die 

AtHNL sollte geprüft werden, ob der Assoziationszustand und die Stabilität der 

AtHNL beeinflusst werden können. Aufgrund der hohen strukturellen Ähnlichkeit 

beider Enzyme und der oberflächlichen Lage der Aminosäuren könnte der Austausch 

ohne Enzymaktivitätsverlust möglich sein. Vor der Herstellung entsprechender 

Mutanten, wurden die Mutationen zunächst in silico modelliert. 

 

4.4.2. Modellierung einer tetrameren AtHNL und Optimierung der 
Dimer-Dimer-Interaktion 

Die als Dimer im Kristall vorliegende MeHNL wurde an ihrer Drehachse vertikal 

gespiegelt, um ein Strukturmodell der tetrameren MeHNL zu erhalten (Kapitel 

1.2.4.4.1, Abb. 10). Durch ein Strukturaligment, basierend auf der tetrameren 

MeHNL, wurde anschließend ein Modell der tetrameren AtHNL erzeugt, welches eine 

nicht optimierte Dimer-Dimer Interaktionsfläche (Interface 2) mit positiver 

Komplexierungsenergie (�G = 1,6 kcal mol-1) aufwies (Abb. 41). Die positive 

Komplexierungsenergie führt zur Abstoßung der Dimere und unterstützt die 

experiementellen Beobachtungen, bei denen im Kristall und in Lösung bisher nur 

AtHNL-Dimere nachgewiesen werden konnten. Um eine Tetramerisierung zu 

ermöglichen, müssen die interagierenden Aminosäuren ausgetauscht werden, um 

eine negative Komplexierungsenergie zu erreichen.  
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Abb. 41: Strukturalignment der tetrameren MeHNL (blau) und des putativen AtHNL Modells 
(orange). Die Monomere A und B, sowie C und D bilden jeweils über das Interface 1 ein Dimer. Die 
beiden Dimere (AB / CD) bilden über das Interface 2 ein Tetramer. (Publikation 3, Figure 1) 

Die zuvor im Sequenzalignment (Abb. 39) identifizierten Aminosäuren der MeHNL 

wurden in silico schrittweise auf die AtHNL übertragen. Nach jedem 

Aminosäureaustausch fand eine Berechnung der Wechselwirkung zwischen den 

AtHNL Dimeren mittels des PDBePISA Servers (Protein Interfaces, Surfaces and 

Assemblies) statt. Dabei wurden nur Mutationen, die zur Absenkung der 

Komplexierungsenergie beitrugen in das tetramere AtHNL Modell übernommen. 

Nach dem Austausch von 11 Aminosäuren wurde die niedrigste theoretische 

Komplexierungsenergie von �G = - 5,0 kcal mol-1 erreicht, die sogar niedriger als bei 

der tetrameren MeHNL (�G = - 2,6 kcal mol-1) ist. Die entsprechenden 

Aminosäureaustausche sind in zusammengestellt. 

 



DISKUSSION 
 

 

112 

Tab. 6: Aminosäuren der Dimer-Dimer Interaktionsfläche der MeHNL und der abweichenden 
Aminosäuren der AtHNL. Die grau hinterlegten Aminosäuren der AtHNL wurden gegen die 
entsprechenden Aminosäuren der MeHNL ausgetauscht. (Tabelle modifiziert nach Publikation 3, 
Table 1).  

MeHNL AtHNL MeHNL AtHNL MeHNL AtHNL 
47 Gln 48 Pro 66 Glu 67 Lys 136 Phe 137 His 
49 Glu 50 Gln 92 Arg 93 Ile 137 Thr 138 Glu 
50 Gln 51 Ala 93 Tyr 94 Phe 138 Asn 139 Thr 
52 Asn 53 Glu 95 Asp 96 Ala 139 Ile 140 Arg 
59 Glu 60 Lys 133 Tyr 134 Phe 141 Thr 141 Asn 
63 Thr 64 Glu 134 Phe 135 Ser 142 Glu 142 Gly 
64 Phe 65 Thr 135 Thr 136 Ser 187 Arg 187 Lys 

   188 Pro 188 Glu 
 

4.4.3. Vergleichende Charakterisierung von Wildtyp-AtHNL und der 
Variante mit modifizierter Enzymoberfläche 

Das heterolog in E. coli BL21 (DE3) exprimierte synthetische Gen der modifizierten 

AtHNL (Surfmod-AtHNL) wurde anschließend vergleichend zum  Wildtyp-Enzym 

charakterisiert. 

 

4.4.3.1. Surfmod-AtHNL ist aktiver und zeigt ein breiteres pH-
Spektrum 

Das rationale Enzymdesign der AtHNL sollte in erster Linie eine Steigerung der 

Enzymaktivität und -stabilität unter sauren Reaktionsbedingungen (� pH 5,0)  

bewirken, damit ihr Einsatz in einem Zweiphasensystem zur Synthese 

enantiomerenreiner Cyanhydrine ermöglicht wird.  

Der Einfluss des pH-Werts auf die Anfangsreaktionsgeschwindigkeit des Wildtyp-

Enzyms und der Surfmod-AtHNL Variante wurde durch die Spaltung von 

Mandelsäurenitril photometrisch bestimmt. Dabei zeigte die Surfmod-AtHNL im 

Vergleich zum Wildtyp-Enzym eine über das gesamte pH-Spektrum (pH 4,0 – 6,5) 

deutlich gesteigerte Anfangsreaktionsgeschwindigkeit, die ihr pH-Optimum bei pH 

5,75 mit 227 U/mg erreicht (Abb. 42). Die Aktivität der Variante ist im Vergleich zur 

Wildtyp-AtHNL (133 U/mg) um das 1,7-fache gesteigert. Beachtenswert ist das um 

0,25 pH-Einheiten ins saure Milieu erweiterte pH-Spektrum der Surfmod-AtHNL. Sie 
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zeigt bereits bei pH 4,5 eine Enzymaktivität von 24 U/mg, wohingegen das Wildtyp-

Enzym erst bei pH 4,75 eine signifikant geringere Aktivität von 12 U/mg aufweist.  

Die Enzymaktivität wird grundsätzlich vom Protonierungszustand katalytisch aktiver 

Aminosäuren im aktiven Zentrum und der Stabilität des Enzyms unter den 

gegebenen Reaktionsbedingungen bestimmt. Bei der Surfmod-AtHNL wurde keine 

Modifikation der katalytisch aktiven Aminosäuren vorgenommen, sodass davon 

ausgegangen werden kann, dass die Aktivitätssteigerung durch eine Stabilisierung 

des Enzyms hervorgerufen wurde.  

Entfaltungsstudien der Wildtyp AtHNL zeigten eine rapide Aggregation unter sauren 

Reaktionsbedingungen, die zum Verlust der katalytischen Aktivität führten.[53] Durch 

die Modifikation der Enzymoberfläche scheint die Aggregation und somit die rapide 

Enzyminaktivierung abgeschwächt worden zu sein. Eine Untersuchung der pH-

Stabilität sollte den experimentellen Beweis dazu liefern. 

 

 
Abb. 42: Vergleich der pH-abhängigen Anfangsreaktionsgeschwindigkeiten von Wildtyp-AtHNL 
(�) und Surfmod-AtHNL (�).  Die Anfangsreaktionsgeschwindigkeit beider Enzyme wurde anhand 
der Spaltung von Mandelsäurenitril in 50 mM Citrat-Phosphatpuffer bei pH 4,0 – 6,5 bei 20 °C 
bestimmt. 

Wie in Tab. 7 dargestellt, zeigt die Surfmod-AtHNL im sauren Milieu � pH 5,4 eine 

deutlich höhere pH-Stabilität als das Wildtyp-Enzym. Bei pH 5,0 ist die Halbwertszeit 

der Variante gegenüber dem Wildtyp-Enzym um das 14-fache gesteigert (2,23 h). 

Zudem hat die Surfmod-AtHNL bei pH 4,5 eine Halbwertszeit von 0,22 h, was zur 

Synthese von (R)-Mandelsäurenitril in einem Zweiphasensystem ausreichen könnte. 

Oberhalb von pH 5,4 zeigen beide AtHNL-Varianten eine vergleichbare 

Halbwertszeit. 
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Diese Untersuchung bestätigte, dass die höhere Enzymaktivität der Surfmod-

Variante auf die gesteigerte pH-Stabilität zurückgeführt werden kann. Ob die 

Modifikation zudem eine Auswirkung auf die Thermostabilität hat, wurde nachfolgend 

untersucht. 

 

Tab. 7: pH-Stabilität von Wildtyp-AtHNL und Surfmod-AtHNL. Die Spaltungsaktivität 
(Mandelsäurenitril) der Enzym-Varianten wurde nach der Inkubation in 50 mM Citrat-Phosphatpuffer 
(pH 4,5 – 6,0, 20°C) bestimmt. Aus der Abnahme der Enzymaktivität wurde die Halbwertszeit 
berechnet.  

pH Wildtyp-AtHNL* 
(𝝉1/2 in h) 

Surfmod-AtHNL 
(𝝉1/2 in h) 

4,5 0 0,22 
5,0 0,16 2,23 
5,4 2 3,40 
5,8 > 24 13,74 
6,0 60 52,17 

*Die Halbwertszeiten wurden der Dissertation von J. Guterl entnommen.[53] 

 

4.4.3.2. Surfmod-AtHNL ist thermostabiler  

Aus prozesstechnischer Sicht ist die Enzymstabilität von HNLs nur bei Temperaturen 

bis 20 °C relevant, da oberhalb von 20 °C die nicht-enzymatische Produktbildung bei 

der enzymatischen Synthese von Cyanhydrinen stark steigt und die gebildeten 

Cyanhydrine thermisch nicht stabil sind. 

Der Vergleich der Thermostabilität der Wildtyp-AtHNL und der Surfmod-Variante 

wurde bei pH 5,0 durchgeführt (Abb. 43). Das Wildtyp-Enzym zeigt bei 0 – 10 °C eine 

durchschnittliche Halbwertszeit von 22 min, die bei einer Temperaturerhöhung auf 20 

°C auf 9,6 min sinkt. Die durchschnittliche Halbwertszeit der Surfmod-AtHNL erreicht 

hingegen bei 0 - 20 °C ca. 135 min und die Variante ist somit um das 6- bis 13-Fache 

stabiler als das Wildtyp-Enzym. 

HNLs stellen im Hinblick auf die sehr niedrige Prozesstemperatur eine Ausnahme im 

Vergleich zum Großteil der technisch genutzten Biokatalysatoren dar. Enzyme wie 

z.B. die Triosephosphatisomerase der Hefe oder Lipase B aus Candida antarctica 

werden bei Temperaturen um die 90 - 100 °C verwendet und müssen unter den 

gegebenen Reaktionsbedingungen stabil sein.[179] Eine Verbesserung der 
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Thermostabilität wird hierbei z.B. durch die Analyse und gezielte Reduktion der 

Beweglichkeit von Atomen erreicht, die anhand der B-Faktoren von 

Enzymkristallstrukturen identifiziert werden können.[181] Dies kann einerseits durch 

den gezielten Austausch von Aminosäuren in potentiell instabilen Proteinbereichen 

geschehen. Andererseits kann eine Verringerung des B-Faktors von Aminosäuren 

durch die Verstärkung der molekularen Wechselwirkung mit anderen Aminosäuren 

(Oligomerisierung) oder ihrer Stabilisierung durch die Bindung an einen Träger 

(Immobilisierung) bewirkt werden.[178, 182]  

Im Fall der AtHNL wurden die Untersuchungen auf eine Steigerung der pH-Stabilität 

unter sauren Reaktionsbedingungen und bei niedrigen Temperaturen fokussiert. Eine 

molekularbiologische Modifikation der Proteinstruktur zur Veränderung des 

Oligomerisierungszustandes oder der Austausch einzelner Aminosäuren kann dabei 

ebenfalls einen Einfluss auf die Thermostabilität haben. Das Beispiel der 

Malatdehydrogenase aus C. aurantiacus zeigt, dass der Austausch nur einer 

Aminosäure zur Steigerung der Thermostabilität und pH-Stabilität geführt hat.[180] 

 

 
Abb. 43: Thermostabilität von Wildtyp-AtHNL und Surfmod-AtHNL. Die Spaltungsaktivität 
(Mandelsäurenitril) wurde nach der Inkubation in 50 mM Citrat-Phosphatpuffer bei Temperaturen 
zwischen 0 – 20 °C bei pH 5 bestimmt. Aus der Abnahme der Enzymaktivität wurde die Halbwertszeit 
berechnet. 

Die molekularen Ursachen für die erhöhte Stabilität der Surfmod-AtHNL wurden 

durch die Bestimmung des isoelektrischen Punktes und der Quartärstruktur näher 

untersucht. 
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4.4.3.3. Surfmod-AtHNL ist ein Dimer mit niedrigerem iso-
elektrischen Punkt 

Die denaturierte AtHNL zeigt ein zur MeHNL identisches Molekulargewicht von 29 

kDa je Untereinheit.[86] Die Wildtyp-AtHNL hat in nativer Form ein Molekulargewicht 

von ca. 58 kDa und die tetramere Variante würde ein Molekulargewicht von 116 kDa 

aufweisen.  

Eine Größenausschlusschromatographie zeigte, dass beide Enzymvarianten bei pH 

7,5 ein ähnliches Elutionsvolumen  aufweisen (Abb. 44, links). Über die Berechnung 

des Verteilungskoeffizienten (Kav) konnte ein natives Molekulargewicht der Wildtyp-

AtHNL von 58 kDa (29 kDa pro Untereinheit) und 55 kDa für die Surfmod-AtHNL 

ermittelt werden. Die Surfmod-AtHNL liegt bei pH 7,5 also wie das Wildtyp-Enzym als 

Dimer vor (Abb. 44, rechts). 

 

 
Abb. 44: Größenausschlusschromatographie von Wildtyp-AtHNL und Surfmod-AtHNL. Links: 
Größenausschlusschromatogramm mit fünf Standardproteinen (schwarz, Molekulargewicht: 13 - 158 
kDa), Wildtyp-AtHNL (orange, Elutionsvolumen: 210,48 ml) und Surfmod-AtHNL (grün, 
Elutionsvolumen: 214,65 ml). Es wurden Proteinlösungen (1,6 ml) mit einer Konzentration 2-3 mg/ml 
auf eine Superdex G200 Säule (320 ml) bei pH 7,5 (50 mM Cirat-Phosphatpuffer + 150 mM NaCl) 
aufgetragen. Rechts: Lineare Auftragung der Standardproteine nach Berechnung des 
Verteilungskoeffizienten Kav zur Ermittlung des nativen Molekulargewichts der Wildyp-AtHNL (Log Mr 
4,76 = 58 kDa) und der Surfmod-AtHNL (Log Mr, 4,73 = 55 kDa). (Publikation 3)  

Um ausschließen zu können, dass die Surfmod-AtHNL im sauren Milieu 

tetramerisiert, wurde zusätzlich das Molekulargewicht bei pH 5 bestimmt, was ein 

Molekulargewicht im Bereich eines Dimers (53 kDa) ergab.  

Die Tetramerisierung kann somit als mögliche Stabilisierungsursache der Surfmod-

AtHNL ausgeschlossen werden.  
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Jedoch hat der Austausch der oberflächlichen Aminosäuren zu einer Verschiebung 

des isoelektrischen Punkts (IP) und somit zu einer Verschiebung des pH-Optimums 

geführt. Eine isoelektrische Fokussierung zeigte eine Verschiebung des IPs der 

Surfmod-AtHNL um 0,3 pH-Einheiten von ursprünglich pH 5,1 des Wildtyp Enzyms in 

den sauren Bereich zu pH 4,8. Diese Verschiebung korreliert mit dem erweiterten 

pH-Spektrum der Variante im sauren Milieu (Abb. 24).  

Der pH-Wert des umgebenden Mediums eines Proteins beeinflusst den 

Ionisierungszustand von sauren und basischen Aminosäuren (sauer: 

Asparaginsäure, Glutaminsäure; basisch: Lysin, Arginin, Histidin). Diese werden je 

nach pH-Wert unterschiedlich protoniert, wodurch die intermolekulare 

Wechselwirkung und somit die Proteinintegrität stark beeinflusst werden kann.[183]  

Unter den ausgetauschten Aminosäuren der Surfmod-AtHNL waren die basischen 

Aminosäuren Arginin und Lysin, sowie die saure Aminosäure Glutaminsäure (Tab. 

6). Der Austausch von zwei basischen Lysinen gegen saure Glutaminsäuren 

(Lys60Glu, Lys67Glu) könnte einen starken Einfluss auf den IP und auch auf die 

Verbreiterung der pH-Optimumskurve im sauren pH-Bereich (Abb. 24) haben. 

Darüberhinaus wurden Glutaminsäure- und Arginin-Reste lediglich in ihrer Position 

verschoben. Ohne weiterführende punktuelle Rückmutationen und anschließende 

Charakterisierung der Varianten ist der genaue Einfluss der ausgetauschten 

Aminosäuren auf die Enzymstabilität nicht vorhersagbar. Interessante Ansatzpunkte 

für Rückmutationen sind die zuvor beschriebenen Aminosäurepositionen 60, 67 

sowie 93, bei der die Aminosäure Isoleucin, welche in der Kristallstruktur einen sehr 

hohen B-Faktor aufweist, gegen Arginin getauscht wurde. 
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4.4.4. Surfmod-AtHNL katalysierte enantioselektive Synthese von 
Cyanhydrinen in einem Zweiphasensystem  

Mit der Entwicklung der Surfmod-AtHNL wurde das Ziel verfolgt, die AtHNL für den 

Einsatz im organisch-wässrigen Zweiphasensystem zu stabilisieren. Der 

beschriebene strukturbasierte Ansatz zur Steigerung der pH-abhängigen 

Enzymaktivität und -stabilität führte zu einer AtHNL-Variante, die bei pH 4,5 mit einer 

Halbwertszeit von 0,22 h eine Enzymaktivität (für die Spaltungsreaktion) von 

24 U/mg aufweist. Unter diesen Reaktionsbedingungen ist das Wildtyp-Enzym 

inaktiv.  

Wie zuvor gezeigt, kann die nicht-selektive Produktbildung von Mandelsäurenitril im 

wässrig-organischen Zweiphasensystem bei pH 4,5 und 0 °C ausreichend 

unterdrückt werden (Kapitel 4.2, Abb. 22), sodass diese Reaktionsbedingungen für 

eine von der Surfmod-AtHNL katalysierte enantioselektive Synthese von (R)-Mandel-

säurenitril gewählt wurden. Die Surfmod-AtHNL (0,6 mg) erreichte nach 120 min 

einen Substratumsatz von 71 % mit einem Enantiomerenüberschuss des gebildeten 

(R)-Mandelsäurenitrils von 99,3 % (Abb. 45). 

 

 
Abb. 45: Surfmod-AtHNL katalysierte Synthese von (R)-Mandelsäurenitril im wässrig- 
organischen Zweiphasensystem. Reaktionssystem: 1 ml Citrat-Phosphatpuffer (pH 4,5) und 1 ml 
MTBE, 0,6 mg Surfmod-AtHNL, 0,5 mmol Benzaldehyd und 1,5 mmol HCN bei 0 °C. Der 
Substratumsatz (�) und Enantiomerenüberschuss (�) des gebildeten (R)-Mandelsäurenitrils wurden 
über 120 min Reaktionszeit gaschromatographisch verfolgt. (Abbildung modifiziert nach Publikation 3, 
Figure 6B) 
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Ein vollständiger Substratumsatz innerhalb der 120 min hätte bei der eingesetzten 

Enzymkonzentration vermutlich durch eine Verlängerung der Versuchszeit erreicht 

werden können, da bis zu diesem Zeitpunkt ein konstanter Anstieg der 

Produktkonzentration beobachtet wurde.  

Um die Anwendungsbreite der Surfmod-AtHNL zu demonstrieren, wurden darüber 

hinaus Synthesen von (R)-3-Fluormandelsäurenitril und von (2S)-Furan-2-

yl(hydroxy)ethannitril durchgeführt. Nach 120 min Reaktionszeit konnten 74 % bzw. 

88 % Substratumsatz mit guten Enantiomerenüberschüssen für das gebildete (R)-3-

Fluormandelsäurenitril (ee � 95 %) und für (2S)-Furan-2-yl(hydroxy)ethannitril (ee � 

92 %) erreicht werden. Die moderate Abnahme des Enantiomeren-überschusses 

während der Synthesen ist auf die begünstigte nicht-enzymatische Nebenreaktion 

aufgrund des hohen Wassergehalts im System zurückzuführen. Eine weitergehende 

Unterdrückung der Nebenreaktion wäre durch ein weiteres Absenken des pH-Wertes 

möglich, wodurch jedoch die Surfmod-AtHNL inaktiviert würde.  

 

 
Abb. 46: Surfmod-AtHNL katalysierte Synthese von (R)-3-Fluormandelsäurenitril (A) und (2S)-
Furan-2-yl(hydroxy)ethannitril (B) im wässrig-organischen Zweiphasensystem. 
Reaktionssystem: 1 ml Citrat-Phosphatpuffer (pH 4.5) und 1 ml MTBE, 1 mg Surfmod-AtHNL, 0,5 
mmol 3-Fluorbenzaldehyd bzw. Furfural und 1,5 mmol HCN bei 0 °C. Der Substratumsatz (�) und 
Enantiomerenüberschuss (�) des gebildeten Cyanhydrins wurden über 120 min Reaktionszeit 
gaschromatographisch verfolgt. Abbildung modifiziert nach Publikation 3, Supplementary Material. 

Die durchgeführten Cyanhydrin-Synthesen mittels Surfmod-AtHNL im organisch-

wässrigen Zweiphasensystem zeigten gute Enantiomeren-überschüsse und 

akzeptable Substratumsätze. Das Abflachen der Umsatzkurve während des 

Reaktionsverlaufs könnte entweder auf eine Inaktivierung des Enzyms oder 

Substratmangel in der wässrigen Phase hindeuten. 
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Anwendungsbezogener könnte der Einsatz der Surfmod-AtHNL im einphasigen 

organischen MTBE sein. Zukünftige Untersuchungen müssen klären, ob die 

gesteigerte Enzymaktivität und Stabilität auch bei präzipitierter oder immobilisierter 

Surfmod-AtHNL auftritt. 
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KAPITEL 5 

5. Ausblick 

Mit dieser Arbeit konnte am Beispiel der AtHNL gezeigt werden, dass hohe pH-

Stabilität einer Hydroxynitril-Lyase keine Grundvoraussetzung für die erfolgreiche 

Synthese enantiomerenreiner Cyanhydrine ist.  

Durch gezieltes Reaktionsdesign wie die Verwendung von einphasigem MTBE kann 

die spontane nicht-selektive Produktbildung unterbunden werden. Eine effiziente 

Enzymnutzung durch mehrfache Recyclierung konnte beispielhaft anhand der 

Synthese von (R)-Mandelsäurenitril unter Verwendung von Ganzzellansätzen oder 

einfach durchführbaren Immobilisierungsverfahren (adsorptive Bindung) gezeigt 

werden.  

Alternativ zum Reaktionsdesign wurde in dieser Arbeit eine oberflächen-modifizierte 

AtHNL Variante mit signifikant gesteigerter Enzymaktivität und Stabilität entwickelt. 

Diese könnte durch weitergehende Immobilisierungsstudien, bei denen eine 

Kombination unterschiedlicher Immobilisierungsmethoden eingesetzt wird (z.B. 

Solgel-umhüllte Celite-Partikel mit gebundenem Enzym) oder die kovalente Bindung 

des Enzyms an einen Träger, eine attraktive Alternative zu der technisch etablierten 

PaHNL darstellen. 

Grundlagenbasierte Untersuchungen zu den Auswirkungen der einzelnen 

Mutationspositionen der oberflächen-modifizierten AtHNL-Variante könnten zur 

Identifikation von stabilisierenden „hotspots“ führen, die dann als Grundlage zur 

Herstellung weiterer AtHNL Varianten genutzt werden können.  
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KAPITEL 6  
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