000002082 001__ 2082
000002082 005__ 20240712100950.0
000002082 0247_ $$2DOI$$a10.1029/2008JD010857
000002082 0247_ $$2WOS$$aWOS:000264862000003
000002082 0247_ $$2ISSN$$a0141-8637
000002082 0247_ $$2Handle$$a2128/20399
000002082 037__ $$aPreJuSER-2082
000002082 041__ $$aeng
000002082 082__ $$a550
000002082 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000002082 1001_ $$0P:(DE-HGF)0$$aTakegawa, N.$$b0
000002082 245__ $$aVariability of Submicron aerosol observed at a rural site in Beijing in the summer of 2006
000002082 260__ $$aWashington, DC$$bUnion$$c2009
000002082 300__ $$a1 - 21
000002082 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000002082 3367_ $$2DataCite$$aOutput Types/Journal article
000002082 3367_ $$00$$2EndNote$$aJournal Article
000002082 3367_ $$2BibTeX$$aARTICLE
000002082 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000002082 3367_ $$2DRIVER$$aarticle
000002082 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v114$$x0148-0227$$yD00G05
000002082 500__ $$aThe authors acknowledge the NOAA Air Resources Laboratory (ARL) for providing the HYSPLIT transport and dispersion model and READY website (http://www.arl.noaa.gov/ready.html) used in this publication. The measurements by the UT group were supported by the Japan Society for the Promotion of Science (JSPS). This measurement campaign was conducted as a part of CAREBEIJING 2006, which was supported by Beijing Council of Science and Technology (HB200504-6, HB200504-2). This study was conducted also as a part of the Mega-Cities: Asia Task under the framework of the International Global Atmospheric Chemistry (IGAC) project.
000002082 520__ $$aGround-based measurements of aerosol and trace gases were conducted at a rural site in Beijing in the summer of 2006 as a part of the Campaigns of Air Quality Research in Beijing and Surrounding Region 2006 (CAREBeijing 2006). The size-resolved chemical composition of submicron aerosol was measured using an Aerodyne quadrupole aerosol mass spectrometer (AMS). The data obtained from 15 August to 10 September 2006 are presented. Meteorological analysis shows that the measurement period can be characterized as a cycle of low wind speed periods over the course of a few days (stagnant periods) followed by rapid advection of clean air from the north./northwest mostly due to passage of a midlatitude cyclone. Mass concentrations of total measured aerosol with diameters less than 1 mu m (total PM1), which is defined as the sum of elemental carbon and nonrefractory components measured by the AMS, were highly variable, ranging from similar to 2 to similar to 100 mu g m(-3). Large variability of the PM1 composition and drastic changes in the sulfate (SO42-) size distribution were observed to be associated with the cycle of stagnant periods and advection of clean air, indicating that both chemical and physical properties of aerosols were significantly altered on a time scale of a few days. We have found the dominance of organic aerosol at lower total PM1 mass loadings and that of SO42- at higher mass loadings, which may have important implications for the PM control strategy in Beijing. Possible factors affecting the evolution of the mass concentration and size distribution of SO42- are discussed.
000002082 536__ $$0G:(DE-Juel1)FUEK406$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP22$$x0
000002082 588__ $$aDataset connected to Web of Science
000002082 650_7 $$2WoSType$$aJ
000002082 7001_ $$0P:(DE-HGF)0$$aMiyakawa, T.$$b1
000002082 7001_ $$0P:(DE-HGF)0$$aKuwata, M.$$b2
000002082 7001_ $$0P:(DE-HGF)0$$aKondo, Y.$$b3
000002082 7001_ $$0P:(DE-HGF)0$$aZhao, Y.$$b4
000002082 7001_ $$0P:(DE-HGF)0$$aHan, S.$$b5
000002082 7001_ $$0P:(DE-HGF)0$$aKita, K.$$b6
000002082 7001_ $$0P:(DE-HGF)0$$aMiyazaki, Y.$$b7
000002082 7001_ $$0P:(DE-HGF)0$$aDeng, Z.$$b8
000002082 7001_ $$0P:(DE-HGF)0$$aXiao, R.$$b9
000002082 7001_ $$0P:(DE-HGF)0$$aHu, M.$$b10
000002082 7001_ $$0P:(DE-HGF)0$$avan Pinxteren, D.$$b11
000002082 7001_ $$0P:(DE-HGF)0$$aHerrmann, H.$$b12
000002082 7001_ $$0P:(DE-Juel1)16326$$aHofzumahaus, A.$$b13$$uFZJ
000002082 7001_ $$0P:(DE-Juel1)16342$$aHolland, F.$$b14$$uFZJ
000002082 7001_ $$0P:(DE-Juel1)16324$$aWahner, A.$$b15$$uFZJ
000002082 7001_ $$0P:(DE-HGF)0$$aBlake, D.R.$$b16
000002082 7001_ $$0P:(DE-HGF)0$$aSugimoto, N.$$b17
000002082 7001_ $$0P:(DE-HGF)0$$aZhu, T.$$b18
000002082 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2008JD010857$$gVol. 114, p. 1 - 21$$p1 - 21$$q114<1 - 21$$tJournal of geophysical research / Atmospheres$$tJournal of Geophysical Research$$v114$$x0148-0227$$y2009
000002082 8567_ $$uhttp://dx.doi.org/10.1029/2008JD010857
000002082 8564_ $$uhttps://juser.fz-juelich.de/record/2082/files/2008JD010857.pdf$$yOpenAccess
000002082 8564_ $$uhttps://juser.fz-juelich.de/record/2082/files/2008JD010857.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000002082 909CO $$ooai:juser.fz-juelich.de:2082$$pdnbdelivery$$pdriver$$pVDB$$popen_access$$popenaire
000002082 9141_ $$y2009
000002082 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000002082 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000002082 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000002082 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000002082 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000002082 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000002082 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000002082 9131_ $$0G:(DE-Juel1)FUEK406$$aDE-HGF$$bUmwelt$$kP22$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zfortgesetzt als P23
000002082 9201_ $$0I:(DE-Juel1)VDB791$$d30.09.2010$$gICG$$kICG-2$$lTroposphäre$$x1
000002082 970__ $$aVDB:(DE-Juel1)104503
000002082 9801_ $$aFullTexts
000002082 980__ $$aVDB
000002082 980__ $$aConvertedRecord
000002082 980__ $$ajournal
000002082 980__ $$aI:(DE-Juel1)IEK-8-20101013
000002082 980__ $$aUNRESTRICTED
000002082 981__ $$aI:(DE-Juel1)ICE-3-20101013
000002082 981__ $$aI:(DE-Juel1)IEK-8-20101013