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1 Introduction

In order to describe the scattering of electrons and X-rays by crystals two theories are widely
used. The first and the most common one is the so-called kinematical theory. Within the kine-
matical theory, it is assumed that the incoming wave of e.g. electrons or X-rays is scattered from
the objects, which perform the scattering, e.g. atoms, only once. After such “once-scattering”
the intensities of the scattered waves are added taking into account the phase differences of the
scattered waves in order to form the intensities of the transmitted and reflected beams. What is
neglected in the kinematical theory is the interaction of the “once-scattered” waves with each
other and the matter. In terms of rigorous scattering theory, kinematical theory corresponds
to the (1Y) Born approximation, discussed in detail in the proceeding’s lecture by Prof. Ste-
fan Bliigel [1]. While kinematical theory works nicely in many cases, it is important to re-
member its limitations, namely, it works best when the crystals on which the incoming wave
1s scattered are small, thus, the interaction of the ”once-scattered” wave with matter and other
waves is negligible.

Very often, however, the diffraction of waves and particles on large crystals of very good crys-
talline quality is investigated, and the intensities of the transmitted and reflected beams are
measured after the waves forming them traverse large regions of space filled with atoms. In this
case the interaction between the scattered waves and atoms cannot be ignored anymore, and the
so-called multiple scattering of waves inside the crystal, which technically corresponds to going
beyond the Born approximation, has to be considered in order to explain observed phenomena
which cannot be understood within the kinematic theory. Here, the situation can be essentially
simplified if the perfect periodicity of the crystal is assumed. The foundations of the dynami-
cal scattering theory, which goes beyond the kinematical scattering theory of diffraction along
these lines, were set already by Darwin in 1914 [2]. On a more fundamental level the problem
was treated by Ewald in 1917 [3] and later by Laue [4]. For electrons, the problem has been
tackled further by Bethe [5]. Since then, many good books and reviews on the subject have
been published, see e.g. the books of Zachariasen [6], Cowley [7] or Authier [8], or reviews by
Slater [9], and Batterman and Cole [10]. In our manuscript, we mainly follow the review by
Slater [9] and a beautiful review by P. H. Dederichs [11].

The present manuscript presents the simplest possible introduction into dynamical scattering,
which is, however, mainly self-contained and can be understood without an advanced knowl-
edge of quantum mechanics and solid state physics. The variety of effects which can be ex-
plained within the dynamical scattering theory is vast, and there are considerable differences
for different types of radiation. There is, nevertheless, a common body of theory which lets us
appreciate the main types of phenomena to be observed, and we present this in the simplest and
most transparent form.

Below, summarized in Table I, we give an estimate of the most important for dynamical diffrac-
tion quantities. First, we give a typical energy E of neutrons, X-rays, electrons as well as for
the case of low-energy-electron diffraction. Correspondingly, we also provide the characteristic
wevelengths of different types of radiation A. The most important for dynamical diffraction is
the so-called extinction length, which is essentially the thickness of the crystal for which the
kinematic theory breaks down. Note that for different types of radiation this thickness, denoted
by d..: in Table I, can change over five orders of magnitude. In particular, this means, that the
dynamical theory is absolutely necessary for LEED, while it can be completely neglected for
neutrons and it is not that important for X-rays, which can be more or less nicely described
within the kinematic theory. Next, we provide the typical absorption length 1/, see sec-
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neutrons X-rays electrons | LEED

energy £ | 10 meV 10 keV 100 keV | 100 eV

wavelength A 1A 1A 0.05 A 1A
extinction length d; 10° A 101 A 102 —10° A 5A
absorption length 1 /g 10% A 10° A 10° —10*A | 10A
1/Ap | >10%A [30-10°A | 3-(10° —10Y) A | 10A

Table 1: Basic parameters for the diffraction of neutrons, electrons, X-rays and in the case
low-energy electron diffraction (LEED).

tion 4.1.1. We note, that the absorption length is essentially larger than the extinction length
for neutrons and X-rays, while among all types of radiation neutrons are basically not absorbed
at all by the medium. Finally, we give values for the absorption length in the case when the
Bragg reflection is excited (1/Apu, where Ay = pg + pg, depending on the relative sign of g
and g, see section 4.1.1). This situation corresponds to the case of the so-called anomalous
transmission, discussed in detail in section 4.1.1. We can observe from the Table I, that for the
case of Bragg diffraction the absorption of the X-rays is reduced by a very large factor, known
as the Borrmann effect, whereas the absorption of electrons is only slightly reduced.

2 Scattering of an electronic wave by a periodic perturba-
tion: a preamble

We start with a simple picture of a wave of electrons, which is to be scattered, and which we
can write as ¢’“o!~kor) where K is the propagation vector and r = (z,y, z) is the coordinate
in real space. The wave which will do the scattering in a crystal we represent in a very simple
way as e ‘C*, where G is some reciprocal vector of our crystal lattice. For simplicity, we
assume in this section that the periodicity of the crystal is obeyed only along one direction,
which is perpendicular to the surface of the crystal, onto which the wave ¢*“°*~¥o%) is incoming.
Thus, G = (0,0,G). This is a typical setup of the Bragg diffraction experiment, see Fig. 1.
Generally speaking, the solution to this scattering experiment, that is, the decomposition of the
total wavefunction in space into incident, scattered and the wavefunction inside the crystal can
be obtained by finding a solution of the Schrédinger equation in R3, which satisfies certain
boundary conditions. This solution must correspond to a constant energy £ = hwg, meaning,
that the wave inside the crystal, as well as incident and scattered waves have the same frequency.
Let us first find the solution to the Schrodinger equation inside the crystal:
2

—zh—mv% + Vi cos(Gr)yp = ih%—i}. (1)
Owing to the Bloch’s theorem, valid inside periodic crystals, every solution of this equation can
be characterized by a certain wave vector k from the Brillouin zone of the crystal (reciprocal
space) [12], and the solution itself can be represented as:

400
w(r’t) _ Z Anefi[wot*(kJrnG)l‘]. )

n=—oo
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Fig. 1: A setup of a simple diffraction experiment. An incoming wave with wave vector kg and
energy hwy is scattered at a semi-infinite crystal, periodic along the z-direction. The wave on
the left represents the case of X-ray radiation. In case of the Bragg scattering, the incoming
wave is completely scattered into the reflected wave of the same energy and wave vector ko + G,
where G is the reciprocal vector corresponding to the periodicity of the lattice.

Substituting the Bloch wave into Eq. (1), we obtain a system of equations for the amplitudes
A,

B2 , Vi

—(k+nG)* — hwy| A+ — (A1 + Apir) = 0. 3)

2m 2
The system of equations above is completely identical to the system of equations for the coeffi-
cients of the wavefunction 1/ expanded in the complete and orthonormal basis of quantum states
{¥n}: v =5, Apiby,. Then, if the components of the Hamiltonian matrix H,,, = ({,|H [¢n,),
wavefunction v solves the Schrédinger equation with energy £ when the following system of
equations is satisfied [13]:

m#n

As follows from Eq. (3), in our case, the H,,,, matrix elements are given by % (k+ nG)2 — hwo,
while the off-diagonal H,, ,1; matrix elements assume the values of V; /2.

In general, the system of equations Eqgs. (3) and (4) has solutions only for certain values of £
(or wy), if the Bloch vector k is given, which establishes the so-called dispersion relation wy(k)
in a crystal. The wavefunction (2) with the vector k is the solution of the Schrodinger equation
at energy E if the det(H,,,,, — Ed,m) = 0. From this condition both E'(k) = fiwy(k) and the set
of {A,,} can be determined. The solution for { A,,} for all n can be easily performed iteratively
following Eq. (3) if, for example, A, and A, are pre-given. Effectively, the choice of Aj and A,
corresponds to the choice of the value of the wavefunction and its derivative when solving the
second-order differential Schrodinger equation. It is known that generally, if arbitrary Ay and
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Fig. 2: (a) Energy hwy as a function of z component of the k-vector for an electron wave inside
the crystal. (b) The z component of the wave vector outside the crystal (k,g) as a function of the
z component of the wave vector inside the crystal (k). Taken from [9].

Ay are specified, the value of the wavefunction can be unbounded at infinity, however, upon an
appropriate choice of wy and A; /Ay ratio, the series (3) can be converged to provide a bounded
wavefunction. Such frequencies wy specify the energy spectrum of our system at k.

Usually, in the theory of the X-ray diffraction and electron diffraction one of the main approxi-
mations which is made is the smallness of the V; (or its equivalent for X-rays, see last section).
This allows to use approximations which are equivalent to the perturbation theory expressions.
In the drastic case of V; = 0 (free space) the solution is trivial: Ay = 1, A, = 0,n > 1,
and 1%k?/2m = hwy = h*ke?/2m. When V] is sufficiently small we can derive approximate
expression for the energy:

’k? W 1 1
2m 4 - (k+G)? —hwy 5 (k—G)? — hwy
and the only surviving coefficients in the first order with respect to V; are:
Vi 1
Ap = -5 A (©)

27V E (k£ G)? - hwyg

While for most of the energies Ay > A4, in the particular case of the Bragg scattering, when
(k+G)? = ko2, Egs. (3) and (5) have no definite value. In this case, the degenerate perturbation
theory should be used. Note that in our interpretation of the equations (3) the Bragg condition
means the equality of the diagonal elements of the Hamiltonian matrix forn =0 andn = 1. In
this case, employing the degenerate perturbation theory we can show that at the point where the
Bragg condition, k = +£G /2, is met, exactly two energy solutions are possible:
h? Vi
hwy = —Kk* + — 7

0 m 2 9 ( )
while there are two major participants in the Bloch wave: Ay/A; = 1. The solution fw, as a
function of k for the both considered above cases of the Bragg scattering and away from it, is
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shown in Fig. 2(a). We have to remark that without assuming that there are only two waves in
the crystal in the vicinity of the Bragg point (as we shall see in the following, it is called the
two-beam approximation), we can recover analogously the opening of the gaps in the spectrum
at points £1G /2, with the magnitude of the gap proportional to V|*. Thus, if V] is small, then
the two-beam approximation is justified.

Lets try to interpret now the appearance of the gap in the energy spectrum of a perfect periodic
crystal (through V; and G) from the point of view of a simple diffraction experiment, depicted
in Fig. 1. In this experiment a wave of electrons (X-rays etc.) of a certain energy hw, and
wavelength kg, is sent toward the (possibly even finite) film, while the intensities of the reflected
(or even transmitted to the other side of the film) waves are measured. Theoretical treatment of
this experiment lies in finding the solutions to the Schrodinger equation in the vacuum and in the
film, which can be very complicated owing to the dynamical nature of scattering. Two necessary
conditions have to be satisfied in order to uniquely solve the problem: (i) the solution of the
Schodinger equation in each part of space is sought at an energy /wy, and (ii) the wavefunction
and its normal space derivative have to be continuous at the boundaries of the crystal.

In our simple case, the boundary conditions, owing to the fact that we have periodicity in the
crystal only along the z-axis, lead to an observation that the in-plane components of the wave
vector have to be continuous: k, = ko, k, = ko, where kg = (kos, koy, ko) and the wave
vector of the wave inside the crystal k = (k,, k,, k.). The z-components of the both wave
vectors do not have to be the same however, and they are indeed different in the vicinity of
+G/2. This discrepancy is obvious looking at the energy dispersion in Fig. 2(a), in which the
energy of the electrons inside the crystal as a function of k, is given with the thick line, while
the thin line stands for the energy of electrons as a function of kg, in the vacuum. As we can
see, in the vicinity of =G/2 the constant energy line will cross the two energy profiles at two
different k-points. The correspondence between the two k-vectors at a constant energy is given
in Fig. 2(b).

If the energy of an incoming wave lies in the gap of the energy solutions in the crystal, the
reflection of the incoming wave will be very large. In this case the waves inside the crystal
will be decaying with the distance from the surface of the film, since the Bloch waves cannot
be matched to the wave outside the crystal. When the energy is in the middle of the gap,
which occurs exactly at the Bragg angle of the incoming wave of 65, see Fig. 1, the reflection
is complete. The range of the angles of the incident wave, 6, for which the transmission is
unfavorable can be found easily:

1/2
Vi } . (8)

sinf = [sin2 0p + T

On the other hand, when the experiment operates away from the Bragg condition, the matching
of the incoming wave to the Bloch wave inside the crystal can be perfectly done, and, as a result,
the amplitude of the reflected beam is very small.

3 Scattering of electrons in a crystal: general case

In this section we elaborate in more detail how the dynamical scattering can be studied in a way
suggested in the previous section.
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Fig. 3: (a) Ewald sphere around the Bloch vector k of the radius corresponding to an incoming
wave ko. The origin of the sphere is sometimes called the Laue point. (b) Dispersion surface
for the two-beam case. Taken from [11].

The motion of an electron in a solid is described by the Schrodinger equation Eq. (1):

1Y =~ (e + V) = Buce) ©)

In an infinite periodic crystal the potential V' (r) is periodic with respect to translations by lattice
vectors R. The crystal potential can be split into contributions from different unit cells:

V(r)=) v(r-R) (10)
R
where v(r) is the potential of the Wigner-Seitz cell:
VA 2 2 !
o) = — 2% +/ dr' < p(r/) (11)
T Ve o r—1|

Here, the first term represents the attractive interaction with the nucleus of charge Z = fVc dr’ p(r'),
and the second one is the repulsive interaction with the electron density p in the unit cell of the
volume V. The crystal potential can be decomposed into Fourier series:

V(r) =) Vge'Sr (12)
G
where the set { G} is the reciprocal lattice. The expression for the G-components of V' reads:
1 , 1 .
Va=— [ e “V(r)dr=— [ e u(r)dr (13)
V(j Vo VC R3
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Using expression Eq. (11) we come to:

dre? 7 — fq
Vg = — 1< 14
G TANe? (14)
with
fG:/ e_iGrp(r) dr (15)
Ve

The quantity fg is known as atomic scattering factor, and it is normally smaller or equal than
Z, ensuring that all the Fourier components of the potential are negative. For small G’s the
V’s approach a constant, while for higher harmonics the interaction with the nucleus becomes
increasingly important.

According to the Bloch’s theorem valid in periodic crystals, the solution of the Schrodinger
equation with a wave vector k can be represented as:

Y(r) = ZAG et G (16)

where uy(r) is a lattice-periodic function. The coefficients Ag(k) can be found by substitut-
ing the Bloch wave into the Schrédinger equation, leading thus to an infinite system of linear
homogeneous equations:

2
{Ek - kta } =3 Ve cdolk (17)

By solving this system, for each k we can find a set of solutions Ag (k) which determine the
Bloch wave, and the set of energies Ey, with the latter one being commonly referred to as the
band structure. This system has a solution only if the dispersion equation is satisfied:

2
det |:{Ek — ;—m(k + G)} 5G,G’ - VG—G’:| =0 (18)

The effect of the absorption for electrons in crystals can be phenomenologically included by
considering complex potential V' (r), complex k-vectors and complex energies Fj.

As already mentioned, for electron and X-ray diffraction the calculation of the Bloch waves and
the band structures can be very much simplified since the energy is much larger than the poten-
tial, and, analogously to the previous section, we can apply the perturbation theory. Assuming
first that V' (r) = 0, we get the following system of equations:

{k — (k+G)*} Ac =0, (19)

where the energy F is given by an incoming wave with kqy: Fy = %kg. For given energy and
given k the expression in brackets will in general not vanish for all G and there are no allowed
waves. Nevertheless, for a certain k it may happen that k3 = (k + G)? for one G, for example
G = 0. Then Ag = dg 0 and the wave e’* is allowed. For V' # 0 the system of equations (18)
comes to:
{K2 k + G }AG = Z UG_G/A(;/, (20)
G'#G
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Fig. 4: Left: Dispersion surface near the Bragg spot k. Right: Bandstructure for the case on
the right, for the direction of the Bloch vector along y. Taken from [11].

tangential planes

with vg = (2m/h?) Vg, and K2 = k% — vy = (2m/h?)(Eyx — V). It can be shown that for small
ve the secondary waves Ag for G # 0 are small and we have only one strong beam 1) = %~
with a slightly renormalized k-value.

However, if the condition k2 ~ (k + G)? is fulfilled not only for the primary wave G = 0
but also for other secondary waves G # 0, then these waves may also become strong and the
perturbation theory breaks down. This condition means that for certain G the vector k + G lies
near or at the so-called Ewald sphere, see Fig. 3. Because the energies %kQ and %(k + G)?
are close in this case, the degenerate perturbation theory has to be applied, which takes into
account on an equal basis all the excited waves. Here, we restrict ourselves to the so-called
two-beam case, for which only two waves are prominent in the crystal: at k and k + G. This
approximation allows to obtain main conclusions of the dynamical scattering theory in a simple
way, yet without loosing generality. We also used the two-beam approximation in the previous
section. For two beams, the equations for the amplitudes of the waves read:

(K — kA =v_cde, (Kj—(k+G)*)Ae =vad, 21
while the dispersion equation reads:
K-k (Ki— (k+G)?*) =vg-v_g. (22)

From the dispersion equation it is clear that in the absence of the crystal potential for a given
by K2 energy the allowed k-vectors lie on a dispersion surface consisting of two intersecting
spheres centered around the origin, and G, both with the radius K2, see Fig. 4. Non-zero G-
component of the potential, on the other hand, forces the intersection surface between the two
spheres, at which the Bragg condition k* = (k + G)? is fulfilled, to split into two surfaces, of
which the outer branch 2 completely surrounds the inner branch 1. While at the Bragg point
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k = kg, by setting k = kp + dk around the intersection, we find:
4(kp - 0k)((kp + G) - k) = vg - v_g, (23)

if we neglect the 3rd and 4th orders in 0k. For convenience, we decompose the dk into = and y
components, see Fig. 4. Using the condition that K sinp = G/2 we find:

lvg|?

— . 24
4K cos? Op @4)

5k2 — 51{:5 tan®fp =
In this approximation, the dispersion surfaces are hyperbolas, the asymptotes of which are the
tangential planes of the spheres, see Fig. 4. The smallest separation between the two branches
is

Ak = 1%

— = 25
KycosfOp 25)

The distance d.,; = %, over which the two Bloch waves from the opposite branches get a
phase difference 2, is called the extinction length.
From the dispersion equation we get the energy as a function of k as follows:

%E(k) —vg = K§ = %(kQ +(k+ G)* & %\/(kQ — (k+G)2)2 +4Jvg|,  (26)

showing that for k* = (k + G)? there is a band gap of the width AE = 2V, as in the previous
section. We have plotted the bandstructure according to the relation above along the direction
of G in Fig. 4. When the energy F is below the gap, we get four allowed k-values. For the
energy in the gap E5 we obtain only two allowed k-values, while we restore the situation for £
when we go above the band gap (Fj3).

From the previous formulas also the expressions for the amplitudes of the waves in the crystal
can be derived:

1 w 1 w
Ag= —|1 F ——, Ag = *si —y 1 27
0 \/5 :F m? G Slgn(UG)ﬁ W) ( )

where an important parameter 11/, which measures the deviation from the Bragg angle, 65 (see
Fig. 4), is given by:

k-G
lva|
The limiting case of |WW| — oo corresponds to the situation away from the Bragg spot.
For the case of exact Bragg condition W = 0 the two Bloch waves are:

(28)

w[(r) — \/§ei(k+%)r . COS (%) ’ ’l/JII(I') — _i\/ﬁei(k+%)l‘ . sin (%) (29)

In case of electron diffraction, the Fourier components of the potential are negative, and the 1)’
will be positioned on the outer branch, while ¢!/ lies at the inner branch. This situation will be
reversed for X-ray diffraction, in which case vg is positive. Characteristic for both branches are
the cosine and sine modulation functions. Owing to these modulation functions, ¢! is always
maximal at the atomic positions of the reflecting planes (situated along ), while it is small in
between the planes, see Fig. 5. The situation is reversed for /!, which is maximal between the
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Fig. 5: (a) Modulation factors of ! and {*'. (b) Absorption for Bloch wave " and ' at
pe = 3/4po. Taken from [11].

atomic planes, while it almost does not interact with atomic potential. Both waves, of course,
have the same energy, however, the Bloch vector of v is larger than that of 1)!!, since the
solutions are positioned on different branches. This manifests the larger kinetic energy of the
first wave, which is compensated by larger but negative energy coming from interaction with
the atoms.

For an absorbing crystal it is clear that the absorption will be very much different for ¢/’ and
y)!!. The absorption of wave 1)’ will be higher than normal since an electron in the Bloch wave
spends more time on the atoms, while wave 1)/ manages to avoid the atoms and has therefore a
smaller than average absorption, resulting in a so-called anomalous transmission (or anomalous
absorption).

4 Transmission and reflection from crystal slabs

In order to find the intensities of the reflected and transmitted waves, we have to rigorously
consider the scattering on the incident wave by a finite crystal of volume 2. The potential in the
whole space in a plausible approximation can be written as V (r) = 0q(r)V,(r), where 0 (r)
is the step function equal to 1 in the crystal and O outside of it, while V., (r) is the potential of
the infinite crystal. Since the solutions of the Schrodinger equation in the vacuum and in the
crystal are plane waves and Bloch waves, respectively, the wavefunction in the vacuum can be
represented as:

Y(r) = e™or 4+ " R (30)

while in the crystal

U(r) = Zijkj<r>, (31)
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with the energy F = %kg = %Kf = FE(k;). How many waves in the vacuum and in the
crystal are excited by an incident wave depends very much on the shape of the crystal, and the
coefficients R; and P; have to be determined via imposing the boundary conditions. Namely,
the wavefunction has to be continuous across the surface between the vacuum and the crystal,

Ypac(T) = erys(r), and the same applies to the current through the surface, n(r)M =

dr
n(r) dd’%ﬁj(r), where n(r) is the surface normal. In order to take the evanescent states into
consideration, we have to rely on the fact that the wave vectors in the vacuum and in the crystal
can be in general complex.
The solution of the problem can be found by employing the integral equation for ¢)(r) in terms

of the Green’s function:

wlr) = [ Gofr = 1)V (), ()
R3
where G(r — r’) is the Green’s function given by:
om 6ik0|r7r/|
Gor—-1v)=-""—— | 33
o(r — 1) h? 4m|r — /| (33)

Owing to the specific shape of our potential, as can be seen from (32) the wave in the vacuum
consists of the incident wave and the sum of the spherical waves with the energy [, outgoing
from the crystal. On the other hand, in the crystal, the spherical waves completely suppress
the e™** wave (so-called extinction theorem), while forming at the same time the Bloch solu-
tions [11].

Equation (32) allows for a simple interpretation. The incident plane wave e’* is compensated
by spherical waves emitted from scattering at position r’ in the crystal. The intensity of these
scattered waves is proportional to the interaction potential V' (r’) and the amplitude of the total
wave field ¢(r’) at that point. Note that the wavefunction v/ appears both on the right and
left hand side of Eq. (32). In kinematical theory of diffraction, the 1) on the right hand side
of Eq. (32) is replaced by the incident wave e’*oF itself, which corresponds to so-called first
Born approximation. The physics behind the 15 Born approximation is the assumption that the
incoming wave scatters only once on the crystal potential before forming the scattered wave
', In most of the cases, especially for neutron scattering, the kinematic approximation works
very well. On the other hand, for X-ray and especially electron scattering the kinematic theory
very often does not provide good results. In this case using the theory which goes beyond the
15" Born approximation, namely, dynamical scattering theory, is necessary. This can be done,
for example, by iteratively using the solution of the (n — 1) Born approximation in order to
construct the solution of the next interaction via solving Eq. (32). This procedure corresponds
to converging the so-called Born series. For more details, see the manuscript of Prof. Stefan
Bliigel in this book [1].

Let us now consider the case of a finite crystal slab, which fills the space between 0 < z < d,
see Fig. 6 for setup. The potential in the crystal is thus periodic in the  — y plane, with the
reciprocal two-dimensional lattice {G}. Correspondingly, each wavefunction in the crystal can
be identified with a certain in-plane Bloch vector k, and can be expanded in R? as (r is the
coordinate in-plane):

Yu(r,z) = Y Tg(z)e®For (34)
G

Owing to the boundary conditions, the Bloch vector is determined by the in-plane component
of the incident wave ko = (k, k}) By substituting this equation into the Schrodinger equation
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Fig. 6: Incident wave ko and reflected wave ko, + G for the Laue and Bragg case. Taken
from [11].

we obtain a set of equations for ['q(z):

(02 + (kg — (k+6)*)] Te(2) = > ve—e(2)Te(2). (35)

From this equation we can conclude that for each G the energy is split up into the energy for mo-
tion in-plane, %(k + G)2, and the remaining of the energy %/{;8 for motion in the z-direction.
Since G can be arbitrarily large, the energy along z can be negative, which corresponds to the
bound modes decaying into the vacuum.

Equation (32) can be used to find the wavefunctions, and written for I'¢(z) functions it reads:
1Kglz—2'

- |
To(2) = dgp €™ + / 42— D vo-e()To (), (36)

G/

Ke=/k} — (k+0G)2 if KZ2>0  Kg=ikrg, kg >0, if K2 <0 (37)

In the vacuum for z < 0 we get

where

To(2) = Go '™ + Rge™"* (38)
with
1 ¢ ! +iKez! / /
R; = QiKc/o dz e ;vc_cf(z (), (39)

and analogously for z > d:
Dg(z) = g €0 + Ty et2he (40)
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with

d
Te = Qi-li(c /0 dz e e gvc_g(z’)FG/(z’). (41)
Coefficients R; and T are called the reflection and transmission coefficients, respectively.
Only in the case when K = k} — (k+G)* > 0 do we get a reflected plane wave with
K; = (k+G,—K;) and a transmitted plane wave K§ = (k+ G, +K;). The waves with
complex K decrease exponentially into the vacuum. It is clear, that whereas we have only a
finite number of reflected and transmitted waves, the number of decaying waves is infinite. A
graphical construction of the waves KZ is shown in Fig. 8, in which all vectors KZ lie on the
sphere of radius ky. Assuming that the vector G lies in the plane of k, and surface normal, the
only four allowed real vectors K& and K3, are shown.

The kinematical scattering theory is constructed based on the substitution of e instead of
[ (2') in the right hand side of Eq. (36). The intensities of the waves obtained within the kine-
matical theory can very much deviate from the predictions of the dynamical theory, especially
for the case of Bragg reflection £ + K¢ + g = 0, where g is the projection of G on the z-axis,
see Fig. 6.

Inside the crystal, only those Bloch waves k; with energy E'(k;) = %k@, are allowed. More-
over the in-plane component of the Bloch vector can differ from k only by an in-plane reciprocal
vector G. Since the energy of the Bloch states are periodic in reciprocal space, we can assume
that k; = (k, k;,), where k;, are determined from the energy conservation. The P; coefficients
in Eq. (31) can be also determined by matching the waves inside and outside the crystal at both
vacuum boundaries.

s 1.z
i2"k§

4.1 Symmetric Laue case

Let us consider now the case when only one Bragg reflection G is excited, see Fig. 6. In this
case we can apply the two-beam approximation. In principle, for an incident from —oo wave
there are two situations to consider: when the crystal-reflected k, + G wave propagates forward
(Laue case) or backwards (Bragg case), see Fig. 6. In this subsection we discuss the so-called
symmetric Laue case, for which G lies in-plane, and can be thus represented as G = (G, 0). In
this case the reflecting atomic planes are perpendicular to the surface of the slab.

For symmetric Laue case the setup of the problem is presented in Fig. 7 in the reciprocal space.
We have the following waves in the vacuum. For z > d: the transmitted wave ko = K =
(k, k) (given by vector AO) and the Bragg reflected wave K§ = (k + G, K) (given by vector
BH). For z < 0 we have the incident wave ko, the surface reflected wave K, = (k, —k¢)
(given by vector DO) and the surface reflected wave of the forward propagating K{ wave,
K; = (k+G,—Kjg) (given by vector CH). In the crystal, we get four Bloch waves k; =
(k, k;.), where the k;, are determined from the dispersion relation:

(K2 — %% — k;f.z)(Kg — (k+G)* — k;f.z) = |ug|%. (42)

The dispersion surface in the vacuum (thin lines) and in the crystal (thick lines) is shown to-
gether with vectors ki, ko, k3, ks (numbers) in Fig. 7. Characteristically for electrons the radius
Ko = \/k3 — vg is larger than kg (opposite for X-rays). However, the difference (Ko—kq)/ko ~
—vp/(2k3) is extremely small or high energy electrons. For example, if we have F = 100 eV
and —vy = 10 eV one gets for the latter ratio a value of 5 - 10~5. Therefore vectors kg, ki, ko in
Fig. 7 are basically the same.
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X
Laue case fl_c.:gsta_n"_ 1
F 4 |

Bragg case

Fig. 7: Dispersion surface in the crystal and in the vacuum for symmetric Laue case and sym-
metric Bragg case. Thin lines stand for the dispersion surface in the crystal, while thick lines
stand for the dispersion surface in the crystal. Taken from [11].

It can be shown by solving equations for transmission, reflection and R; coefficients from the
beginning of this section, that for the symmetric Laue case with a high degree of accuracy there
are only two strong waves in the vacuum: ky and K¢, while in the crystal the only two Bloch
waves which can be considered are k; and k (see Fig. 8(b)). The intensity of the transmitted
waves can be calculated:

2 1 Akv1 2
To|* = — cos? [ RV WP : (43)
1+W?2 1+ W2 2
and
1 ) dAkV1 + W?2
|Te|? = e sin? (—2 ) , (44)
where W and Ak are given by Egs. (28) and (25). Exactly at the Bragg condition W = 0
dAk dAk
|To|? = cos* [ —— | , and  |Tg|* = sin? [ —— ) . (45)
2 2

These are the so-called Pendellosungen (pendulum solutions), manifesting the exchange of in-
tensity between the two transmitted beams as a function of the film thickness d, see Fig. 8. The
period of this oscillation is the extinction length d.,;. By writing the wave field inside the crystal
for the exact Bragg condition kg = (ky + ko) /2:

. A . A
Y(r) = B cos (%) + ietksTGIr gipy (%) ; (40)
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we observe again the pendulum solution with the thickness-dependent amplitude of the both
waves which constitute the crystal wave field, see Fig. 8.

Effect of absorption. In case of a crystal with absorption it is important to realize the the Bloch
waves k; and ks, are absorbed differently, since they lie on different branches of the dispersion
surface, as discussed in the previous section. It can be shown that as a function of 1 the
absorption coefficient which describes the exponential decay of the intensity of the beam for

both solutions is
1

VI

where (o and pi¢ are proportional to the corresponding parts of the Fourier components v
and vg of the complex crystal potential which describes the absorption process. Clearly,
corresponds to the average strength of the absorption of a single plane wave by an “averaged”
potential. An example of a behavior of the ratio u/*// (W) /g is given in Fig. 5(b). We can see
that the difference in the absorption of the solutions on both branches is particularly strong in
the vicinity of the Bragg condition. If the thickness of the crystal is rather large the wave lying
on the 1°¢ branch will be therefore almost completely absorbed. Since the pendulum solutions
arise due to the interference of the waves on both branches, in the limit of a semi-infinite crystal
the oscillations in the intensity of two transmitted beams are diminished.

In greater detail, if we consider the case of exact Bragg condition, W = 0, the intensities of
the transmitted waves as a function of the thickness of the crystal d can be decomposed into
“non-oscillating” (no) and “oscillating” (o) parts, which can be calculated to be:

pt (W) = po £ (47)

|T0 io ~ 6_(#0+#G)d + 6_(%_“)(17 |T0|g ~ @_“Od . cos2 (#) ’ (48)
dAk
|TG io ~ ¢~ (BotHe)d + 6—(110—#6)‘1’ |TG|¢2) ~ e M0 . gin? (T) . (49)

Typical measured curves for the intensities look therefore similar to the case of X-ray scattering
in silicon, see Fig. 10(a). What we observe from the above expressions is that on the non-
oscillating background intensity which decays as e~ (#ot#e)d 1 o=(to—re)d with (, there is an
oscillating term which decays proportionally to e=#°¢, It is important to realize that, away
from the Bragg condition there is no interference of waves I and /7, which leads to different
absorption and oscillatory term in above expressions. Thus, away from the Bragg spot, the
intensity of the transmitted waves is simply proportional to e~#°¢ owing to the “smearing” of
the wave inside the crystal over the unit cell.

Imagine now a situation in which the angle of incidence is varied and the intensity of the trans-
mitted beam (for certainty lets assume it is given by |75|?) is measured for a thick crystal with
thickness d. Away from 0 this intensity is proportional to e~#°¢, but once the angle of inci-
dence approaches 6, the dominant contribution to intensity becomes proportional to ¢~ (#0~#s)d
(lets say 0 < pg < pp). Thus, experimentally, we see a peak in the measured intensity at the
Bragg angle. This constitutes the essence of the Borrmann effect, observed first for X-rays. For
X-rays, the absorption process in highly localized since it comes mostly from the excitations of
electrons in inner atomic shells. Thus, the Fourier coefficients of the absorption function decay
very slowly, and the value of yg can be very close to 1, leading to a very pronounced peak in
the measured intensity of the transmitted wave. For electrons the effect is more modest, since
the absorption comes mostly from plasmon excitations.
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Fig. 8: (a) Plane waves K§ in the vacuum. (b) Wave fields in the symmetrical Laue case at
exact Bragg condition (W = 0). Taken from [11].

4.2 Symmetric Bragg case

In symmetric Bragg case the reflecting planes are parallel to the surface of the slab, i.e. G =
(0,0, —G@), see Fig. 7. Here for simplicity we consider only the case of a semi-infinite crystal,
which is exactly the case we considered in the first section.

The incident wave in the vacuum ko = (k, k§) is shown with vector AO in Fig. 7. All other
allowed waves in the vacuum have to lie on one of the two spheres with radius ky and have the
same in-plane component k. The wave with vector D is not a new wave since it is the same
vector as AO. Since BH = C'O we have only one new wave in the vacuum, K; = (k, —k¢) =
BH. In the crystal we can in principle get four Bloch waves k;, ko, k3 and k,, marked with
corresponding numbers in Fig. 7. However, ks and k4 do not lie in the first Brillouin zone,
thus, they do not have to be considered. Moreover, it can be shown that only k; has a positive
group velocity and it is the only wave which should be considered in the crystal. In a slab of
finite thickness both Bloch waves are allowed, leading to oscillations in the reflected intensity,
analogously to the Laue case.

Upon decreasing the angle of incidence, or, equivalently, increasing the in-plane component k
the vector k; moves along the dispersion surface towards the neck between the two branches.
When further increasing k the line of constant k enters the gap between the two branches before
crossing the outer branch at the neck. Without absorption, the reflection coefficient can be
calculated to be:

2
1
Ro|* = : (50)
IRy ‘ —
where Ok 2K, - cosOp - Ok
T - COSUR * x
=2 = 20 51
V=25 oG] (63Y)
according to Egs. (24) and (25). In the last equation sign ”—"" refers to the inner branch while

”+” stands for the outer branch and the gap. For |y| < 1, i.e. inside the gap, the reflection
coefficient |Ry|?> = 1, while when the line k = const deviates from the gap, the reflection
coefficient decays very rapidly, see Fig. 9(a). The shape of R, as a function of the angle of
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Fig. 9: (a) Reflection coefficient | Ro|? in symmetric Bragg case without absorption. (b) Reflec-
tion coefficient |Ry|? in symmetric Bragg case with absorption with ©y = g (solid line) and
vg = 0 (dashed line). Taken from [11].

incidence is known as the Darwin profile. The width of the gap where |Ro|*> = 1, which is also
called the Darwin width, exactly corresponds to the range of angle of incidence we derived in
the first section, in which the perfect reflection is observed.

In case with absorption, it can be shown, that absorption is especially effective at the edges of
the two branches, as can be seen from Fig. 9(b). Overall, the deviation of |Ry|? from one is
inversely proportional to \/vT , Where vg = v +i0¢ is the Fourier component of the complex
crystal potential. It is clear that while the absorbing potential is uniform, that is, it is given
only by 7y, the waves on both dispersion branches are absorbed equivalently, as can be seen in
Fig. 9(b) (dashed line). On the other hand, when the absorbing potential assumes the crystal
structure, e.g. for vg = vy, the waves I and I/ which have different distribution with respect to
positions of the atoms, are absorbed differently, and an asymmetry in the reflection coefficient
as a function of 0k,, or, equivalently, the angle of incidence, is evident, see Fig. 9(b) (solid
line). An experimental example of such behavior can be clearly seen for instance in case of
X-ray scattering in GaAs, for which the rocking curve (reflected intensity as a function of the
angle of incidence) is shown in Fig. 10(b).

Physically, perfect reflection as that one in Fig. 9(a) is observed for neutrons scattered by thick
slabs, since for neutrons the absorption is negligible. For X-rays the photoelectric absorption
is concentrated mainly at the inner dispersion branch which results in anomalous transmission
effect, and asymmetrical curves of Fig. 9(b) can be seen experimentally.

S5 X-ray scattering

The theory of X-ray diffraction is quite analogous to the theory of electron diffraction with
the exception that the wave fields are vector fields in nature (see Fig. 1). The interaction of
X-rays with the medium arises via excitation of atomic electrons. The frequencies of motion
of electrons are of the order of wy ~ v./ap, where v, is the velocity of electron motion around
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Fig. 10: (a) Intensities of transmitted beams as a function of crystal thickness for 220 reflection
of silicon with CuK,, radiation, d.,; = 15.26 um. (b) Rocking curve (reflected intensity) for
a thick crystal of 400 reflection of GaAs with CuK,, radiation (solid curve) compared to a
theoretical calculation without absorption. Darwin width is 7.54 arcsec. Taken from [§].

the atom, and ap is Bohr’s radius. The wavelength of X-rays is comparable to ap while their
frequencies are of the order of 27¢/\ with ¢ as the speed of light, that is, much higher than
those of the electrons. Thus, electrons can be treated as free. This simplification leads to
the following formulation of the Maxwell’s equations, which have to be solved instead of the
Schrodinger equation for electrons (assuming harmonic time-dependence of the X-ray field with
the frequency w):

VxE=i2H, VxH=—i2D, (52)
c c
where the electric displacement field D = ¢E and ¢ is the dielectric function of the medium:
4rre?
e(ryw)=1-— mw2p(r), (53)
with p(r) as the electronic density. Additionally,
V-D=V-H=0, VxVxE=(w/c)’D. (54)

Deviation of ¢ from unity is actually very small for X-rays and the quantity x = € — 1 normally
varies between 10~% and 10~*. Thus, we can write that

1
E:gD%D—XD. (55)

This equation is a great simplification, which, substituted into previous equations leads to an
equation for D alone:

(V2 +k3)D(r) = =V x V x [x(r)D(r)] (56)

In an infinite periodic crystal the charge density as well as the dielectric function are periodic
and can be expanded in terms of the Fourier series in analogy to the potential for electrons
Eq. (12). Analogously to electrons, the solution to Eq. (56) can be sought in the shape of a
Bloch wave:

Dy(r) = Y Dge'*+or, (57)
G
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Fig. 11: (a) Direction of polarization vectors. Vectors e} = e& are normal to the plane of the
plot. (b) Dispersion surface for X and 11 polarizations. Taken from [11].

Since V - D = 0 the vectors D¢ are orthogonal to k + G: D¢ - (k + G) = 0. It can be shown
that the corresponding component H is orthogonal both to k + G and Dg, while E¢ lies in
the plane of D¢ and k + G, but the difference between Eg and D¢ is very small owing to the
smallness of .

For each Fourier component we can introduce two polarization vectors eZ - (k + G) = 0 and
e -eZ = 4./, where o and ¢’ are either ”1” or ”2”. Thus, we can write that Dg = >, D&eg.
Since x is very small, we can significantly simplify Eq. (56), arriving at the following system
of equations for the scalar Fourier components of D:

(K — (k+G)*) DG = Y »c-c' (el - €Z) DG, (58)
G’ .o’
where A
T
ng-a = —kixa-a = v fe—a (59)
C

with fg as the atomic scattering factor, Eq. (15), and r, as the classical electron radius of 2.82 x
10713 cm. Note that since eg - e‘é, is in general non-zero because G # G, the latter equations
couple both polarizations. Also note complete similarity between Eq. (58) and Eqgs. (17) and
(20) derived previously for the case of electron scattering in a crystal. Thus, »¢_ g’ is analogous
to the corresponding component of the crystal potential for electrons. The eigenenergies, or,
bands wy of X-ray Bloch states in a crystal are determined from the secular equation which is
very much the same as Eq. (18). Analogously to the case of electrons the effect of absorption lies
in complexity of the k-vectors, eigenenergies and Fourier components of the crystal ’potential”
.

For scattering of X-rays from a finite crystal, the boundary conditions have to be formulated.
Owing to the nature of Maxwell’s equations given in the beginning of the section, and smallness
of x, the boundary conditions are very simple: both normal and tangential components of D
have to be continuous across the boundary between the crystal and the vacuum. In general one
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writes the fields in the vacuum before the slab (see Fig. 6) as:

D(r) = De™ + ) "Ree™er, 2 <0, (60)
G

and after the slab: .
D(r) =Y T, 2> (61)
G

while in the crystal we seek the solution in terms of Bloch waves:

D(I‘) = Z Pjij (I’), (62)

where all the reflection (Rg), transmission (Tg) and P; coefficients are found by satisfying the
boundary conditions. It is noteworthy to remark, that, in analogy to electrons, the kinematic and
dynamical theory of X-ray scattering can be also developed starting from the integral equation
for the D-field, analogous to Eq. (32):

- -
ezko\r r'|

D(r) = De*" 4 V x V x /dr’ x(r')D(x'). (63)

A7t|r — 1|
In analogy to electrons, if the scattering occurs away from Bragg condition, we have only one
strong beam. If the Bragg reflection is excited, we have two strong beams k and k + G. In this
case there is a natural choice for polarization vectors: (i) X-polarization for o = 1: e} = eg
perpendicular to both k and k + G, and (ii) II-polarization for ¢ = 2: e2 = eZ in the plane of
k and k + G, see Fig. 11. Via this particular choice of polarization vectors we can decouple the
equations (58) for X and II waves:

(k§ — 360 — k*)Df = 3¢g P, D, (64)
(kg =50 — (k+ G)*) Dg = > Fo Df, (65)
where polarization factor P, = €] - e equals one for X-polarization, and cos 20p for 1I-

polarization. For each polarization the allowed k-vectors lie on the dispersion surface given
by:

(kg — 500 — k) (kg — 500 — (k + G)?) = PZ|sec]”. (66)
As we can see, far away from the Bragg condition the dispersion surfaces are spheres around
k = 0 and k = G with the radius \/k3 — ¢ for both polarizations. Near the Bragg condition

the degeneracy between both polarizations is lifted and the smallest separation between the
outer and inner branches becomes polarization-dependent:

Ak, = 2w Pxg

Aoyt kocosfp’ 67
see Figure 10. In this figure the dispersion surface in the vacuum, degenerate for both polariza-
tions, is shown with thin lines, while the dispersion surface in the crystal is shown with thicker
lines. The expressions for the coefficients Df and D¢, are exactly the same as those in Eq. (27),
with vg replaced by P,srg. The resulting >-fields are identical to those given by the Bloch
waves ¢! and 1! from the previous section. However, for II-polarization we do not get pure
sine and cosine waves but only a combination of both, since ej # eZ. Correspondingly, only
Y-waves show an anomalous transmission effect, while II-waves never vanish at the atomic
positions completely. Interestingly, for multi-beam cases, important for X-ray diffraction, the
situation complicates significantly, since both polarizations cannot be anymore decoupled.



A3.22 Yuriy Mokrousov

6 Acknowledgments

I am grateful to Phivos Mavropoulos and Prof. Peter Dederichs.

References

[1] S. Bliigel, Scattering Theory: Born Series, current book of manuscripts (A2)

[2] C. G. Darwin, Phil. Mag. 27, 315; 27, 675 (1914)

[3] P. P. Ewald, Ann. Physik 49, 1; 49, 117 (1916); 54, 519 (1917)

[4] M. v. Laue, Ergeb. Exact. Naturw. 10, 133 (1931)

[5] H. Bethe, Ann. Physik, 87, 55 (1928)

[6] W. H. Zachariasen, Theory of X-Ray Diffraction in Crystals (Dover Publications, 1945)
[7]1 J. M. Cowley, Diffraction Physics (Elsevier, 1995)

[8] A. Authier, Dynamical Theory of X-Ray Diffraction (Oxford University Press, 2001)

[9] J. C. Slater, Interaction of Waves in Crystals, Reviews of Modern Physics 30, 197 (1958)

[10] B. W. Batterman and H. Cole, Dynamical Diffraction of X Rays by Perfect Crystals, Re-
views of Modern Physics 36, 681 (1964)

[11] P. H. Dederichs, Dynamical Diffraction Theory, Berichte der Kernforschungsanlage
Jiilich, Nr. 797 (1971). Also published in Solid State Physics series, Vol. 27 (1972)

[12] N. W. Ashcroft and N. D. Mermin, Solid State Physics, (Brooks Cole, 1976)

[13] A.S. Davidov, Quantum Mechanics, (Pergamon Press, 1991)



