000020897 001__ 20897
000020897 005__ 20200702121619.0
000020897 0247_ $$2DOI$$a10.1016/j.geoderma.2012.02.016
000020897 0247_ $$2WOS$$aWOS:000303958500010
000020897 0247_ $$2Handle$$a2128/7453
000020897 037__ $$aPreJuSER-20897
000020897 041__ $$aeng
000020897 082__ $$a550
000020897 084__ $$2WoS$$aSoil Science
000020897 1001_ $$0P:(DE-Juel1)129461$$aGraf, A.$$b0$$uFZJ
000020897 245__ $$aAnalyzing spatiotemporal variability of heterotrophic soil respiration at the field scale using orthogonal functions
000020897 260__ $$aAmsterdam [u.a.]$$bElsevier Science$$c2012
000020897 300__ $$a91 - 101
000020897 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020897 3367_ $$2DataCite$$aOutput Types/Journal article
000020897 3367_ $$00$$2EndNote$$aJournal Article
000020897 3367_ $$2BibTeX$$aARTICLE
000020897 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020897 3367_ $$2DRIVER$$aarticle
000020897 440_0 $$08464$$aGeoderma$$v181-182$$x0016-7061
000020897 500__ $$3POF3_Assignment on 2016-02-29
000020897 500__ $$aA. Graf gratefully acknowledges financial support by the DFG (Deutsche Forschungsgemeinschaft) project "Links between local scale and catchment scale measurements and modelling of gas exchange processes over land surfaces" (GR2687/3-1). Instrument funding was provided by the Helmholtz project FLOWatch. M. Herbst, L Bornemann, W. Amelung and H. Vereecken would like to thank the DFG for funding in the framework of the Transregional Collaborative Research Centre SFB/TR32. We would like to thank Rainer Harms, Christina Ganz, and Martin Hank for additional help with the manual chamber measurements; Axel Knaps for providing climate information, the ZCH personnel for a part of the chemical analysis and Budiman Minasny (University of Sydney) for providing helpful code for semivariogram analysis. We would also like to thank two anonymous reviewers for suggestions that improved the clarity of the manuscript.
000020897 520__ $$aSoil CO2 efflux was measured with a closed chamber system along a 180 m transect on a bare soil field characterized by a gentle slope and a gradient in soil properties at 28 days within a year. Principal component analysis (PCA) was used to extract the most important patterns (empirical orthogonal functions, EOFs) of the underlying spatiotemporal variability in CO2 efflux. These patterns were analyzed with respect to their geostatistical properties, their relation to soil parameters obtained from laboratory analysis, and the relation of their loading time series to temporal variability of soil temperature and moisture. A particular focus was set on the analysis of the overfitting behaviour of two statistical models describing the spatiotemporal efflux variability: i) a multiple regression model using the k first EOFs of soil properties to predict the n first EOFs of efflux, which were then used to obtain a prediction of efflux on all days and points: and ii) a modified multiple regression model based on re-sorting of the EOFs based on their expected predictive power. It was demonstrated that PCA helped to separate meaningful spatial correlation patterns and unexplained variability in datasets of soil CO2 efflux measurements. The two PCA analyses suggested that only about half of the total variance of efflux could be related to field-scale spatial variability of soil properties, while the other half was "noise" attributed to temporal fluctuations on the minute time scale and short-range spatial heterogeneity on the decimetre scale. The most important spatial pattern in CO2 efflux was clearly related to soil moisture and the driving soil physical properties. Temperature, on the other hand, was the most important factor controlling the temporal variability of the spatial average of soil respiration. (C) 2012 Elsevier B.V. All rights reserved.
000020897 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000020897 588__ $$aDataset connected to Web of Science
000020897 65320 $$2Author$$aClosed chamber
000020897 65320 $$2Author$$aEmpirical orthogonal functions
000020897 65320 $$2Author$$aPrincipal component analysis
000020897 65320 $$2Author$$aSemivariogram
000020897 65320 $$2Author$$aSoil CO2 efflux
000020897 650_7 $$2WoSType$$aJ
000020897 7001_ $$0P:(DE-Juel1)129469$$aHerbst, M.$$b1$$uFZJ
000020897 7001_ $$0P:(DE-Juel1)VDB17057$$aWeihermüller, L.$$b2$$uFZJ
000020897 7001_ $$0P:(DE-Juel1)129472$$aHuisman, J.A.$$b3$$uFZJ
000020897 7001_ $$0P:(DE-Juel1)VDB72509$$aProlingheuer, N.$$b4$$uFZJ
000020897 7001_ $$0P:(DE-HGF)0$$aBornemann, L.$$b5
000020897 7001_ $$0P:(DE-Juel1)129549$$aVereecken, H.$$b6$$uFZJ
000020897 773__ $$0PERI:(DE-600)2001729-7$$a10.1016/j.geoderma.2012.02.016$$gVol. 181-182, p. 91 - 101$$p91 - 101$$q181-182<91 - 101$$tGeoderma$$v181-182$$x0016-7061$$y2012
000020897 8567_ $$uhttp://dx.doi.org/10.1016/j.geoderma.2012.02.016
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.pdf$$yOpenAccess
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.ps.gz$$yOpenAccess
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.gif?subformat=icon$$xicon$$yOpenAccess
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.gif?subformat=icon-700$$xicon-700$$yOpenAccess
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000020897 8564_ $$uhttps://juser.fz-juelich.de/record/20897/files/Graf.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000020897 909CO $$ooai:juser.fz-juelich.de:20897$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire$$pdnbdelivery
000020897 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000020897 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000020897 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000020897 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000020897 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000020897 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000020897 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000020897 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000020897 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000020897 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000020897 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000020897 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000020897 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000020897 9141_ $$y2012
000020897 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000020897 9132_ $$0G:(DE-HGF)POF3-259H$$1G:(DE-HGF)POF3-250$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lTerrestrische Umwelt$$vAddenda$$x0
000020897 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000020897 970__ $$aVDB:(DE-Juel1)136656
000020897 980__ $$aVDB
000020897 980__ $$aConvertedRecord
000020897 980__ $$ajournal
000020897 980__ $$aI:(DE-Juel1)IBG-3-20101118
000020897 980__ $$aUNRESTRICTED
000020897 980__ $$aFullTexts
000020897 9801_ $$aFullTexts