000020942 001__ 20942
000020942 005__ 20240709094403.0
000020942 037__ $$aPreJuSER-20942
000020942 082__ $$a540
000020942 1001_ $$0P:(DE-Juel1)129617$$aIvanova, M.$$b0$$uFZJ
000020942 245__ $$aInfluence of the La6W2O15 Phase on the Properties and Integrity of La6-xWO12-delta-Based Membranes
000020942 260__ $$aNew York, NY$$bInternational Institute for Science, Technology and Education (IISTE)$$c2012
000020942 300__ $$a56 - 81
000020942 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000020942 3367_ $$2DataCite$$aOutput Types/Journal article
000020942 3367_ $$00$$2EndNote$$aJournal Article
000020942 3367_ $$2BibTeX$$aARTICLE
000020942 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000020942 3367_ $$2DRIVER$$aarticle
000020942 440_0 $$025803$$aChemistry and Materials Research$$v2$$y1
000020942 500__ $$aRecord converted from VDB: 12.11.2012
000020942 520__ $$aThe aim of the present work is to evaluate the influence of La6W2O15 secondary phase on the properties and integrity of La6-xWO12-?–based membranes. Structural, microstructural and thermo–chemical study was carried out evidencing significant crystallographic and thermal expansion anisotropy: the reason for poor thermo–mechanical stability of La6W2O15. Conductivity of La6W2O15 was one to two orders of magnitude lower compared to the phase pure La6-xWO12-? in the range of 300 to 900 °C. The relaxation study showed that the hydration process was faster for the La6W2O15 compared to the LWO phase, due to the higher electronic contribution to the total conductivity. Short–term stability tests in H2 at 900 °C and in a mixture of CO2 and CH4 at 750 °C were conducted and material remained stable. Remarkable reactivity with NiO and YSZ at elevated temperatures was further evidenced compared to the relative inert behavior towards MgO and CGO.
000020942 536__ $$0G:(DE-Juel1)FUEK402$$2G:(DE-HGF)$$aRationelle Energieumwandlung$$cP12$$x0
000020942 7001_ $$0P:(DE-Juel1)128526$$aSeeger, J.$$b1$$uFZJ
000020942 7001_ $$0P:(DE-HGF)0$$aSerra, J.M.$$b2
000020942 7001_ $$0P:(DE-HGF)0$$aSolis, C.$$b3
000020942 7001_ $$0P:(DE-Juel1)129637$$aMeulenberg, W.A.$$b4$$uFZJ
000020942 7001_ $$0P:(DE-Juel1)130459$$aFischer, W.$$b5$$uFZJ
000020942 7001_ $$0P:(DE-HGF)0$$aRoitsch, St.$$b6
000020942 7001_ $$0P:(DE-Juel1)129594$$aBuchkremer, H.P.$$b7$$uFZJ
000020942 773__ $$0PERI:(DE-600)2648008-6$$gVol. 2, p. 56 - 81$$n1$$p56 - 81$$q2<56 - 81$$tChemistry and Materials Research$$v2$$x2225-0956$$y2012
000020942 909CO $$ooai:juser.fz-juelich.de:20942$$pVDB
000020942 9131_ $$0G:(DE-Juel1)FUEK402$$1G:(DE-HGF)POF2-120$$2G:(DE-HGF)POF2-100$$bEnergie$$kP12$$lRationelle Energieumwandlung$$vRationelle Energieumwandlung$$x0
000020942 9132_ $$0G:(DE-HGF)POF3-113$$1G:(DE-HGF)POF3-110$$2G:(DE-HGF)POF3-100$$aDE-HGF$$bForschungsbereich Energie$$lEnergieeffizienz, Materialien und Ressourcen$$vMethods and Concepts for Material Development$$x0
000020942 9141_ $$y2012
000020942 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer Review unknown
000020942 9201_ $$0I:(DE-Juel1)IEK-1-20101013$$gIEK$$kIEK-1$$lWerkstoffsynthese und Herstellverfahren$$x0
000020942 9201_ $$0I:(DE-Juel1)IEK-2-20101013$$gIEK$$kIEK-2$$lWerkstoffstruktur und -eigenschaften$$x1
000020942 970__ $$aVDB:(DE-Juel1)136704
000020942 980__ $$aVDB
000020942 980__ $$aConvertedRecord
000020942 980__ $$ajournal
000020942 980__ $$aI:(DE-Juel1)IEK-1-20101013
000020942 980__ $$aI:(DE-Juel1)IEK-2-20101013
000020942 980__ $$aUNRESTRICTED
000020942 981__ $$aI:(DE-Juel1)IMD-1-20101013
000020942 981__ $$aI:(DE-Juel1)IMD-2-20101013
000020942 981__ $$aI:(DE-Juel1)IEK-2-20101013