000021090 001__ 21090
000021090 005__ 20240610121009.0
000021090 0247_ $$2pmid$$apmid:22241107
000021090 0247_ $$2DOI$$a10.1002/bip.22023
000021090 0247_ $$2WOS$$aWOS:000300679200007
000021090 0247_ $$2ISSN$$a0006-3525
000021090 037__ $$aPreJuSER-21090
000021090 041__ $$aeng
000021090 082__ $$a570
000021090 084__ $$2WoS$$aBiochemistry & Molecular Biology
000021090 084__ $$2WoS$$aBiophysics
000021090 1001_ $$0P:(DE-Juel1)VDB97674$$aCherstvy, A.G.$$b0$$uFZJ
000021090 245__ $$aCritical Polyelectrolyte Adsorption under Confinement: Planar Slit, Cylindrical Pore, and Spherical Cavity
000021090 260__ $$aNew York, NY$$bWiley$$c2012
000021090 300__ $$a311 - 317
000021090 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021090 3367_ $$2DataCite$$aOutput Types/Journal article
000021090 3367_ $$00$$2EndNote$$aJournal Article
000021090 3367_ $$2BibTeX$$aARTICLE
000021090 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021090 3367_ $$2DRIVER$$aarticle
000021090 440_0 $$011661$$aBiopolymers$$v97$$x0006-3525$$y5
000021090 500__ $$aContract grant sponsor: Deutsche Forschungsgemeinschaft (DFG)Contract grant number: CH 707/5-1
000021090 520__ $$aWe explore the properties of adsorption of flexible polyelectrolyte chains in confined spaces between the oppositely charged surfaces in three basic geometries. A method of approximate uniformly valid solutions for the Green function equation for the eigenfunctions of polymer density distributions is developed to rationalize the critical adsorption conditions. The same approach was implemented in our recent study for the "inverse" problem of polyelectrolyte adsorption onto a planar surface, and on the outer surface of rod-like and spherical obstacles. For the three adsorption geometries investigated, the theory yields simple scaling relations for the minimal surface charge density that triggers the chain adsorption, as a function of the Debye screening length and surface curvature. The encapsulation of polyelectrolytes is governed by interplay of the electrostatic attraction energy toward the adsorbing surface and entropic repulsion of the chain squeezed into a thin slit or small cavities. Under the conditions of surface-mediated confinement, substantially larger polymer linear charge densities are required to adsorb a polyelectrolyte inside a charged spherical cavity, relative to a cylindrical pore and to a planar slit (at the same interfacial surface charge density). Possible biological implications are discussed briefly in the end.
000021090 536__ $$0G:(DE-Juel1)FUEK505$$2G:(DE-HGF)$$aBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$cP45$$x0
000021090 588__ $$aDataset connected to Web of Science, Pubmed
000021090 65320 $$2Author$$apolymers
000021090 65320 $$2Author$$aadsorption
000021090 65320 $$2Author$$aelectrostatics
000021090 65320 $$2Author$$aconfinement
000021090 650_2 $$2MeSH$$aAdsorption
000021090 650_2 $$2MeSH$$aComputer Simulation
000021090 650_2 $$2MeSH$$aElectrolytes: chemistry
000021090 650_2 $$2MeSH$$aPolymers: chemistry
000021090 650_2 $$2MeSH$$aSurface Properties
000021090 650_7 $$00$$2NLM Chemicals$$aElectrolytes
000021090 650_7 $$00$$2NLM Chemicals$$aPolymers
000021090 650_7 $$2WoSType$$aJ
000021090 773__ $$0PERI:(DE-600)1480801-8$$0PERI:(DE-600)1480801-8$$a10.1002/bip.22023$$gVol. 97, p. 311 - 317$$p311 - 317$$q97<311 - 317$$tBiopolymers$$v97$$x0006-3525$$y2012
000021090 8567_ $$uhttp://dx.doi.org/10.1002/bip.22023
000021090 909CO $$ooai:juser.fz-juelich.de:21090$$pVDB
000021090 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021090 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021090 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021090 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021090 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021090 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021090 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021090 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021090 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000021090 915__ $$0StatID:(DE-HGF)0420$$2StatID$$aNationallizenz
000021090 915__ $$0StatID:(DE-HGF)1030$$2StatID$$aDBCoverage$$bCurrent Contents - Life Sciences
000021090 915__ $$0StatID:(DE-HGF)1050$$2StatID$$aDBCoverage$$bBIOSIS Previews
000021090 9141_ $$y2012
000021090 9131_ $$0G:(DE-Juel1)FUEK505$$1G:(DE-HGF)POF2-450$$2G:(DE-HGF)POF2-400$$aDE-HGF$$bSchlüsseltechnologien$$kP45$$lBiologische Informationsverarbeitung$$vBioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung$$x0
000021090 9132_ $$0G:(DE-HGF)POF3-551$$1G:(DE-HGF)POF3-550$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lBioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences$$vFunctional Macromolecules and Complexes$$x0
000021090 9201_ $$0I:(DE-Juel1)ICS-2-20110106$$gICS$$kICS-2$$lTheorie der weichen Materie und Biophysik$$x0
000021090 970__ $$aVDB:(DE-Juel1)136926
000021090 980__ $$aVDB
000021090 980__ $$aConvertedRecord
000021090 980__ $$ajournal
000021090 980__ $$aI:(DE-Juel1)ICS-2-20110106
000021090 980__ $$aUNRESTRICTED
000021090 981__ $$aI:(DE-Juel1)IBI-5-20200312
000021090 981__ $$aI:(DE-Juel1)IAS-2-20090406