001     21090
005     20240610121009.0
024 7 _ |2 pmid
|a pmid:22241107
024 7 _ |2 DOI
|a 10.1002/bip.22023
024 7 _ |2 WOS
|a WOS:000300679200007
024 7 _ |2 ISSN
|a 0006-3525
037 _ _ |a PreJuSER-21090
041 _ _ |a eng
082 _ _ |a 570
084 _ _ |2 WoS
|a Biochemistry & Molecular Biology
084 _ _ |2 WoS
|a Biophysics
100 1 _ |0 P:(DE-Juel1)VDB97674
|a Cherstvy, A.G.
|b 0
|u FZJ
245 _ _ |a Critical Polyelectrolyte Adsorption under Confinement: Planar Slit, Cylindrical Pore, and Spherical Cavity
260 _ _ |a New York, NY
|b Wiley
|c 2012
300 _ _ |a 311 - 317
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |0 11661
|a Biopolymers
|v 97
|x 0006-3525
|y 5
500 _ _ |a Contract grant sponsor: Deutsche Forschungsgemeinschaft (DFG)Contract grant number: CH 707/5-1
520 _ _ |a We explore the properties of adsorption of flexible polyelectrolyte chains in confined spaces between the oppositely charged surfaces in three basic geometries. A method of approximate uniformly valid solutions for the Green function equation for the eigenfunctions of polymer density distributions is developed to rationalize the critical adsorption conditions. The same approach was implemented in our recent study for the "inverse" problem of polyelectrolyte adsorption onto a planar surface, and on the outer surface of rod-like and spherical obstacles. For the three adsorption geometries investigated, the theory yields simple scaling relations for the minimal surface charge density that triggers the chain adsorption, as a function of the Debye screening length and surface curvature. The encapsulation of polyelectrolytes is governed by interplay of the electrostatic attraction energy toward the adsorbing surface and entropic repulsion of the chain squeezed into a thin slit or small cavities. Under the conditions of surface-mediated confinement, substantially larger polymer linear charge densities are required to adsorb a polyelectrolyte inside a charged spherical cavity, relative to a cylindrical pore and to a planar slit (at the same interfacial surface charge density). Possible biological implications are discussed briefly in the end.
536 _ _ |0 G:(DE-Juel1)FUEK505
|2 G:(DE-HGF)
|a BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|c P45
|x 0
588 _ _ |a Dataset connected to Web of Science, Pubmed
650 _ 2 |2 MeSH
|a Adsorption
650 _ 2 |2 MeSH
|a Computer Simulation
650 _ 2 |2 MeSH
|a Electrolytes: chemistry
650 _ 2 |2 MeSH
|a Polymers: chemistry
650 _ 2 |2 MeSH
|a Surface Properties
650 _ 7 |0 0
|2 NLM Chemicals
|a Electrolytes
650 _ 7 |0 0
|2 NLM Chemicals
|a Polymers
650 _ 7 |2 WoSType
|a J
653 2 0 |2 Author
|a polymers
653 2 0 |2 Author
|a adsorption
653 2 0 |2 Author
|a electrostatics
653 2 0 |2 Author
|a confinement
773 _ _ |0 PERI:(DE-600)1480801-8
|0 PERI:(DE-600)1480801-8
|a 10.1002/bip.22023
|g Vol. 97, p. 311 - 317
|p 311 - 317
|q 97<311 - 317
|t Biopolymers
|v 97
|x 0006-3525
|y 2012
856 7 _ |u http://dx.doi.org/10.1002/bip.22023
909 C O |o oai:juser.fz-juelich.de:21090
|p VDB
913 1 _ |0 G:(DE-Juel1)FUEK505
|1 G:(DE-HGF)POF2-450
|2 G:(DE-HGF)POF2-400
|a DE-HGF
|b Schlüsseltechnologien
|k P45
|l Biologische Informationsverarbeitung
|v BioSoft: Makromolekulare Systeme und biologische Informationsverarbeitung
|x 0
913 2 _ |0 G:(DE-HGF)POF3-551
|1 G:(DE-HGF)POF3-550
|2 G:(DE-HGF)POF3-500
|a DE-HGF
|b Key Technologies
|l BioSoft Fundamentals for future Technologies in the fields of Soft Matter and Life Sciences
|v Functional Macromolecules and Complexes
|x 0
914 1 _ |y 2012
915 _ _ |0 StatID:(DE-HGF)0010
|2 StatID
|a JCR/ISI refereed
915 _ _ |0 StatID:(DE-HGF)0100
|2 StatID
|a JCR
915 _ _ |0 StatID:(DE-HGF)0110
|2 StatID
|a WoS
|b Science Citation Index
915 _ _ |0 StatID:(DE-HGF)0111
|2 StatID
|a WoS
|b Science Citation Index Expanded
915 _ _ |0 StatID:(DE-HGF)0150
|2 StatID
|a DBCoverage
|b Web of Science Core Collection
915 _ _ |0 StatID:(DE-HGF)0199
|2 StatID
|a DBCoverage
|b Thomson Reuters Master Journal List
915 _ _ |0 StatID:(DE-HGF)0200
|2 StatID
|a DBCoverage
|b SCOPUS
915 _ _ |0 StatID:(DE-HGF)0300
|2 StatID
|a DBCoverage
|b Medline
915 _ _ |0 StatID:(DE-HGF)0310
|2 StatID
|a DBCoverage
|b NCBI Molecular Biology Database
915 _ _ |0 StatID:(DE-HGF)0420
|2 StatID
|a Nationallizenz
915 _ _ |0 StatID:(DE-HGF)1030
|2 StatID
|a DBCoverage
|b Current Contents - Life Sciences
915 _ _ |0 StatID:(DE-HGF)1050
|2 StatID
|a DBCoverage
|b BIOSIS Previews
920 1 _ |0 I:(DE-Juel1)ICS-2-20110106
|g ICS
|k ICS-2
|l Theorie der weichen Materie und Biophysik
|x 0
970 _ _ |a VDB:(DE-Juel1)136926
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)ICS-2-20110106
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)IBI-5-20200312
981 _ _ |a I:(DE-Juel1)IAS-2-20090406


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21