000021110 001__ 21110
000021110 005__ 20180208223401.0
000021110 0247_ $$2DOI$$a10.1063/1.3631026
000021110 0247_ $$2WOS$$aWOS:000294968600072
000021110 0247_ $$2Handle$$a2128/7461
000021110 037__ $$aPreJuSER-21110
000021110 041__ $$aeng
000021110 082__ $$a530
000021110 084__ $$2WoS$$aPhysics, Applied
000021110 1001_ $$0P:(DE-Juel1)VDB95114$$aWirths, S.$$b0$$uFZJ
000021110 245__ $$aEffect of Si-doping on InAs nanowire transport and morphology
000021110 260__ $$aMelville, NY$$bAmerican Institute of Physics$$c2011
000021110 300__ $$a053709
000021110 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021110 3367_ $$2DataCite$$aOutput Types/Journal article
000021110 3367_ $$00$$2EndNote$$aJournal Article
000021110 3367_ $$2BibTeX$$aARTICLE
000021110 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021110 3367_ $$2DRIVER$$aarticle
000021110 440_0 $$03051$$aJournal of Applied Physics$$v110$$x0021-8979$$y5
000021110 500__ $$3POF3_Assignment on 2016-02-29
000021110 500__ $$aRecord converted from VDB: 12.11.2012
000021110 520__ $$aThe effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N-2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631026]
000021110 536__ $$0G:(DE-Juel1)FUEK412$$2G:(DE-HGF)$$aGrundlagen für zukünftige Informationstechnologien$$cP42$$x0
000021110 588__ $$aDataset connected to Web of Science
000021110 650_7 $$2WoSType$$aJ
000021110 7001_ $$0P:(DE-Juel1)128645$$aWeis, K.$$b1$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)VDB97315$$aWinden, A.$$b2$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)VDB86963$$aSladek, K.$$b3$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)VDB71976$$aVolk, C.$$b4$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)VDB87736$$aAlagha, S.$$b5$$uFZJ
000021110 7001_ $$0P:(DE-HGF)0$$aWeirich, T.E.$$b6
000021110 7001_ $$0P:(DE-Juel1)VDB5718$$avon der Ahe, M.$$b7$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)125593$$aHardtdegen, H.$$b8$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)VDB975$$aLüth, H.$$b9$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)VDB87737$$aDemarina, N.$$b10$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)125588$$aGrützmacher, D.$$b11$$uFZJ
000021110 7001_ $$0P:(DE-Juel1)128634$$aSchäpers, Th.$$b12$$uFZJ
000021110 773__ $$0PERI:(DE-600)1476463-5$$a10.1063/1.3631026$$gVol. 110, p. 053709$$p053709$$q110<053709$$tJournal of applied physics$$v110$$x0021-8979$$y2011
000021110 8567_ $$uhttp://dx.doi.org/10.1063/1.3631026
000021110 8564_ $$uhttps://juser.fz-juelich.de/record/21110/files/FZJ-21110.pdf$$yPublished under German "Allianz" Licensing conditions on 2011-09-12. Available in OpenAccess from 2011-09-12$$zPublished final document.
000021110 8564_ $$uhttps://juser.fz-juelich.de/record/21110/files/FZJ-21110.jpg?subformat=icon-1440$$xicon-1440
000021110 8564_ $$uhttps://juser.fz-juelich.de/record/21110/files/FZJ-21110.jpg?subformat=icon-180$$xicon-180
000021110 8564_ $$uhttps://juser.fz-juelich.de/record/21110/files/FZJ-21110.jpg?subformat=icon-640$$xicon-640
000021110 909CO $$ooai:juser.fz-juelich.de:21110$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000021110 9131_ $$0G:(DE-Juel1)FUEK412$$bSchlüsseltechnologien$$kP42$$lGrundlagen für zukünftige Informationstechnologien (FIT)$$vGrundlagen für zukünftige Informationstechnologien$$x0
000021110 9132_ $$0G:(DE-HGF)POF3-529H$$1G:(DE-HGF)POF3-520$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lFuture Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)$$vAddenda$$x0
000021110 9141_ $$y2011
000021110 915__ $$0StatID:(DE-HGF)0010$$aJCR/ISI refereed
000021110 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000021110 915__ $$0StatID:(DE-HGF)0520$$2StatID$$aAllianz-OA
000021110 9201_ $$0I:(DE-82)080009_20140620$$gJARA$$kJARA-FIT$$lJülich-Aachen Research Alliance - Fundamentals of Future Information Technology$$x1
000021110 9201_ $$0I:(DE-Juel1)PGI-9-20110106$$gPGI$$kPGI-9$$lHalbleiter-Nanoelektronik$$x0
000021110 970__ $$aVDB:(DE-Juel1)136944
000021110 9801_ $$aFullTexts
000021110 980__ $$aVDB
000021110 980__ $$aConvertedRecord
000021110 980__ $$ajournal
000021110 980__ $$aI:(DE-82)080009_20140620
000021110 980__ $$aI:(DE-Juel1)PGI-9-20110106
000021110 980__ $$aUNRESTRICTED
000021110 980__ $$aJUWEL
000021110 980__ $$aFullTexts
000021110 981__ $$aI:(DE-Juel1)PGI-9-20110106
000021110 981__ $$aI:(DE-Juel1)VDB881