001     21110
005     20180208223401.0
024 7 _ |a 10.1063/1.3631026
|2 DOI
024 7 _ |a WOS:000294968600072
|2 WOS
024 7 _ |a 2128/7461
|2 Handle
037 _ _ |a PreJuSER-21110
041 _ _ |a eng
082 _ _ |a 530
084 _ _ |2 WoS
|a Physics, Applied
100 1 _ |a Wirths, S.
|b 0
|u FZJ
|0 P:(DE-Juel1)VDB95114
245 _ _ |a Effect of Si-doping on InAs nanowire transport and morphology
260 _ _ |a Melville, NY
|b American Institute of Physics
|c 2011
300 _ _ |a 053709
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Journal of Applied Physics
|x 0021-8979
|0 3051
|y 5
|v 110
500 _ _ |3 POF3_Assignment on 2016-02-29
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a The effect of Si-doping on the morphology, structure, and transport properties of nanowires was investigated. The nanowires were deposited by selective-area metal organic vapor phase epitaxy in an N-2 ambient. It is observed that doping systematically affects the nanowire morphology but not the structure of the nanowires. However, the transport properties of the wires are greatly affected. Room-temperature four-terminal measurements show that with an increasing dopant supply the conductivity monotonously increases. For the highest doping level the conductivity is higher by a factor of 25 compared to only intrinsically doped reference nanowires. By means of back-gate field-effect transistor measurements it was confirmed that the doping results in an increased carrier concentration. Temperature dependent resistance measurements reveal, for lower doping concentrations, a thermally activated semiconductor-type increase of the conductivity. In contrast, the nanowires with the highest doping concentration show a metal-type decrease of the resistivity with decreasing temperature. (C) 2011 American Institute of Physics. [doi: 10.1063/1.3631026]
536 _ _ |a Grundlagen für zukünftige Informationstechnologien
|c P42
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK412
|x 0
588 _ _ |a Dataset connected to Web of Science
650 _ 7 |a J
|2 WoSType
700 1 _ |a Weis, K.
|b 1
|u FZJ
|0 P:(DE-Juel1)128645
700 1 _ |a Winden, A.
|b 2
|u FZJ
|0 P:(DE-Juel1)VDB97315
700 1 _ |a Sladek, K.
|b 3
|u FZJ
|0 P:(DE-Juel1)VDB86963
700 1 _ |a Volk, C.
|b 4
|u FZJ
|0 P:(DE-Juel1)VDB71976
700 1 _ |a Alagha, S.
|b 5
|u FZJ
|0 P:(DE-Juel1)VDB87736
700 1 _ |a Weirich, T.E.
|b 6
|0 P:(DE-HGF)0
700 1 _ |a von der Ahe, M.
|b 7
|u FZJ
|0 P:(DE-Juel1)VDB5718
700 1 _ |a Hardtdegen, H.
|b 8
|u FZJ
|0 P:(DE-Juel1)125593
700 1 _ |a Lüth, H.
|b 9
|u FZJ
|0 P:(DE-Juel1)VDB975
700 1 _ |a Demarina, N.
|b 10
|u FZJ
|0 P:(DE-Juel1)VDB87737
700 1 _ |a Grützmacher, D.
|b 11
|u FZJ
|0 P:(DE-Juel1)125588
700 1 _ |a Schäpers, Th.
|b 12
|u FZJ
|0 P:(DE-Juel1)128634
773 _ _ |a 10.1063/1.3631026
|g Vol. 110, p. 053709
|p 053709
|q 110<053709
|0 PERI:(DE-600)1476463-5
|t Journal of applied physics
|v 110
|y 2011
|x 0021-8979
856 7 _ |u http://dx.doi.org/10.1063/1.3631026
856 4 _ |u https://juser.fz-juelich.de/record/21110/files/FZJ-21110.pdf
|y Published under German "Allianz" Licensing conditions on 2011-09-12. Available in OpenAccess from 2011-09-12
|z Published final document.
856 4 _ |u https://juser.fz-juelich.de/record/21110/files/FZJ-21110.jpg?subformat=icon-1440
|x icon-1440
856 4 _ |u https://juser.fz-juelich.de/record/21110/files/FZJ-21110.jpg?subformat=icon-180
|x icon-180
856 4 _ |u https://juser.fz-juelich.de/record/21110/files/FZJ-21110.jpg?subformat=icon-640
|x icon-640
909 C O |o oai:juser.fz-juelich.de:21110
|p openaire
|p open_access
|p driver
|p VDB
|p dnbdelivery
913 1 _ |k P42
|v Grundlagen für zukünftige Informationstechnologien
|l Grundlagen für zukünftige Informationstechnologien (FIT)
|b Schlüsseltechnologien
|0 G:(DE-Juel1)FUEK412
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Future Information Technology - Fundamentals, Novel Concepts and Energy Efficiency (FIT)
|1 G:(DE-HGF)POF3-520
|0 G:(DE-HGF)POF3-529H
|2 G:(DE-HGF)POF3-500
|v Addenda
|x 0
914 1 _ |y 2011
915 _ _ |0 StatID:(DE-HGF)0010
|a JCR/ISI refereed
915 _ _ |a OpenAccess
|0 StatID:(DE-HGF)0510
|2 StatID
915 _ _ |a Allianz-OA
|0 StatID:(DE-HGF)0520
|2 StatID
920 1 _ |0 I:(DE-82)080009_20140620
|k JARA-FIT
|l Jülich-Aachen Research Alliance - Fundamentals of Future Information Technology
|g JARA
|x 1
920 1 _ |0 I:(DE-Juel1)PGI-9-20110106
|k PGI-9
|l Halbleiter-Nanoelektronik
|g PGI
|x 0
970 _ _ |a VDB:(DE-Juel1)136944
980 1 _ |a FullTexts
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-82)080009_20140620
980 _ _ |a I:(DE-Juel1)PGI-9-20110106
980 _ _ |a UNRESTRICTED
980 _ _ |a JUWEL
980 _ _ |a FullTexts
981 _ _ |a I:(DE-Juel1)PGI-9-20110106
981 _ _ |a I:(DE-Juel1)VDB881


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21