000021135 001__ 21135
000021135 005__ 20240712101050.0
000021135 0247_ $$2DOI$$a10.1029/2011JD017134
000021135 0247_ $$2WOS$$aWOS:000302876800002
000021135 0247_ $$2ISSN$$a0141-8637
000021135 0247_ $$2Handle$$a2128/20903
000021135 0247_ $$2altmetric$$aaltmetric:701505
000021135 037__ $$aPreJuSER-21135
000021135 041__ $$aeng
000021135 082__ $$a550
000021135 084__ $$2WoS$$aMeteorology & Atmospheric Sciences
000021135 1001_ $$0P:(DE-HGF)0$$aFry, M.M.$$b0
000021135 245__ $$aThe influence of ozone precursor emissions from four world regions on tropospheric composition and radiative climate forcing
000021135 260__ $$aWashington, DC$$bUnion$$c2012
000021135 300__ $$a1 - 16
000021135 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021135 3367_ $$2DataCite$$aOutput Types/Journal article
000021135 3367_ $$00$$2EndNote$$aJournal Article
000021135 3367_ $$2BibTeX$$aARTICLE
000021135 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021135 3367_ $$2DRIVER$$aarticle
000021135 440_0 $$06393$$aJournal of Geophysical Research D: Atmospheres$$v117$$x0148-0227$$yD07306
000021135 500__ $$3POF3_Assignment on 2016-02-29
000021135 500__ $$aThe research described in this paper has been funded wholly or in part by the United States Environmental Protection Agency (EPA) under the Science to Achieve Results (STAR) Graduate Fellowship Program (to M. M. Fry), by the EPA Office of Air Quality Planning and Standards, and by a UNC Junior Faculty Development award (to J.J. West). EPA has not officially endorsed this publication, and the views expressed herein may not reflect the views of the EPA. W.J. Collins was supported by the Joint DECC/Defra Met Office Hadley Centre Climate Programme (GA01101) and Defra contract AQ0902. We thank those involved in the CTM simulations performed under the UN ECE Task Force on Hemispheric Transport of Air Pollution. The NOAA Geophysical Fluid Dynamics Laboratory provided the necessary computational resources.
000021135 520__ $$aOzone (O-3) precursor emissions influence regional and global climate and air quality through changes in tropospheric O-3 and oxidants, which also influence methane (CH4) and sulfate aerosols (SO42-). We examine changes in the tropospheric composition of O-3, CH4, SO42- and global net radiative forcing (RF) for 20% reductions in global CH4 burden and in anthropogenic O-3 precursor emissions (NOx, NMVOC, and CO) from four regions (East Asia, Europe and Northern Africa, North America, and South Asia) using the Task Force on Hemispheric Transport of Air Pollution Source-Receptor global chemical transport model (CTM) simulations, assessing uncertainty (mean +/- 1 standard deviation) across multiple CTMs. We evaluate steady state O-3 responses, including long-term feedbacks via CH4. With a radiative transfer model that includes greenhouse gases and the aerosol direct effect, we find that regional NOx reductions produce global, annually averaged positive net RFs (0.2 +/- 0.6 to 1.7 +/- 2 mWm(-2)/TgN yr(-1)), with some variation among models. Negative net RFs result from reductions in global CH4 (-162.6 +/- 2 mWm(-2) for a change from 1760 to 1408 ppbv CH4) and regional NMVOC (-0.4 +/- 0.2 to -0.7 +/- 0.2 mWm(-2)/Tg C yr(-1)) and CO emissions (-0.13 +/- 0.02 to -0.15 +/- 0.02 mWm(-2)/Tg CO yr(-1)). Including the effect of O-3 on CO2 uptake by vegetation likely makes these net RFs more negative by -1.9 to -5.2 mWm(-2)/Tg N yr(-1), -0.2 to -0.7 mWm(-2)/Tg C yr(-1), and -0.02 to -0.05 mWm(-2)/Tg CO yr(-1). Net RF impacts reflect the distribution of concentration changes, where RF is affected locally by changes in SO42-, regionally to hemispherically by O-3, and globally by CH4. Global annual average SO42- responses to oxidant changes range from 0.4 +/- 2.6 to -1.9 +/- 1.3 Gg for NOx reductions, 0.1 +/- 1.2 to -0.9 +/- 0.8 Gg for NMVOC reductions, and -0.09 +/- 0.5 to -0.9 +/- 0.8 Gg for CO reductions, suggesting additional research is needed. The 100-year global warming potentials (GWP(100)) are calculated for the global CH4 reduction (20.9 +/- 3.7 without stratospheric O-3 or water vapor, 24.2 +/- 4.2 including those components), and for the regional NOx, NMVOC, and CO reductions (-18.7 +/- 25.9 to -1.9 +/- 8.7 for NOx, 4.8 +/- 1.7 to 8.3 +/- 1.9 for NMVOC, and 1.5 +/- 0.4 to 1.7 +/- 0.5 for CO). Variation in GWP(100) for NOx, NMVOC, and CO suggests that regionally specific GWPs may be necessary and could support the inclusion
000021135 536__ $$0G:(DE-Juel1)FUEK491$$2G:(DE-HGF)$$aAtmosphäre und Klima$$cP23$$x0
000021135 588__ $$aDataset connected to Web of Science
000021135 650_7 $$2WoSType$$aJ
000021135 7001_ $$0P:(DE-HGF)0$$aNaik, V.$$b1
000021135 7001_ $$0P:(DE-HGF)0$$aWest, J.J.$$b2
000021135 7001_ $$0P:(DE-HGF)0$$aSchwarzkopf, M.D.$$b3
000021135 7001_ $$0P:(DE-HGF)0$$aFiore, A.M.$$b4
000021135 7001_ $$0P:(DE-HGF)0$$aCollins, W.J.$$b5
000021135 7001_ $$0P:(DE-HGF)0$$aDentener, F.J.$$b6
000021135 7001_ $$0P:(DE-HGF)0$$aShindell, D.T.$$b7
000021135 7001_ $$0P:(DE-HGF)0$$aAtherton, C.$$b8
000021135 7001_ $$0P:(DE-HGF)0$$aBergmann, D.$$b9
000021135 7001_ $$0P:(DE-HGF)0$$aDuncan, B.N.$$b10
000021135 7001_ $$0P:(DE-HGF)0$$aHess, P.$$b11
000021135 7001_ $$0P:(DE-HGF)0$$aMacKenzie, I.A.$$b12
000021135 7001_ $$0P:(DE-HGF)0$$aMarmer, E.$$b13
000021135 7001_ $$0P:(DE-Juel1)6952$$aSchultz, M.G.$$b14$$uFZJ
000021135 7001_ $$0P:(DE-HGF)0$$aSzopa, S.$$b15
000021135 7001_ $$0P:(DE-HGF)0$$aWild, O.$$b16
000021135 7001_ $$0P:(DE-HGF)0$$aZeng, G.$$b17
000021135 773__ $$0PERI:(DE-600)2016800-7$$a10.1029/2011JD017134$$gVol. 117, p. 1 - 16$$p1 - 16$$q117<1 - 16$$tJournal of geophysical research / Atmospheres$$tJournal of Geophysical Research$$v117$$x0148-0227$$y2012
000021135 8567_ $$uhttp://dx.doi.org/10.1029/2011JD017134
000021135 8564_ $$uhttps://juser.fz-juelich.de/record/21135/files/2011JD017134.pdf$$yOpenAccess
000021135 8564_ $$uhttps://juser.fz-juelich.de/record/21135/files/2011JD017134.pdf?subformat=pdfa$$xpdfa$$yOpenAccess
000021135 909CO $$ooai:juser.fz-juelich.de:21135$$pdnbdelivery$$pVDB$$pVDB:Earth_Environment$$pdriver$$popen_access$$popenaire
000021135 9141_ $$y2012
000021135 915__ $$0StatID:(DE-HGF)0150$$2StatID$$aDBCoverage$$bWeb of Science Core Collection
000021135 915__ $$0StatID:(DE-HGF)0100$$2StatID$$aJCR
000021135 915__ $$0StatID:(DE-HGF)0200$$2StatID$$aDBCoverage$$bSCOPUS
000021135 915__ $$0StatID:(DE-HGF)0110$$2StatID$$aWoS$$bScience Citation Index
000021135 915__ $$0StatID:(DE-HGF)0111$$2StatID$$aWoS$$bScience Citation Index Expanded
000021135 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000021135 915__ $$0StatID:(DE-HGF)0010$$2StatID$$aJCR/ISI refereed
000021135 915__ $$0StatID:(DE-HGF)0030$$2StatID$$aPeer review
000021135 915__ $$0StatID:(DE-HGF)1060$$2StatID$$aDBCoverage$$bCurrent Contents - Agriculture, Biology and Environmental Sciences
000021135 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000021135 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021135 915__ $$0StatID:(DE-HGF)1020$$2StatID$$aDBCoverage$$bCurrent Contents - Social and Behavioral Sciences
000021135 915__ $$0StatID:(DE-HGF)0199$$2StatID$$aDBCoverage$$bThomson Reuters Master Journal List
000021135 9131_ $$0G:(DE-Juel1)FUEK491$$1G:(DE-HGF)POF2-230$$2G:(DE-HGF)POF2-200$$aDE-HGF$$bErde und Umwelt$$kP23$$lAtmosphäre und Klima$$vAtmosphäre und Klima$$x0$$zvormals P22
000021135 9132_ $$0G:(DE-HGF)POF3-249H$$1G:(DE-HGF)POF3-240$$2G:(DE-HGF)POF3-200$$aDE-HGF$$bMarine, Küsten- und Polare Systeme$$lAtmosphäre und Klima$$vAddenda$$x0
000021135 9201_ $$0I:(DE-Juel1)IEK-8-20101013$$gIEK$$kIEK-8$$lTroposphäre$$x0
000021135 970__ $$aVDB:(DE-Juel1)136984
000021135 9801_ $$aFullTexts
000021135 980__ $$aVDB
000021135 980__ $$aConvertedRecord
000021135 980__ $$ajournal
000021135 980__ $$aI:(DE-Juel1)IEK-8-20101013
000021135 980__ $$aUNRESTRICTED
000021135 981__ $$aI:(DE-Juel1)ICE-3-20101013