ER

S

Multiplier Detector

Quadrupole

Choeper Skimmer

Jil * 10 mbar ho'zmbarl

Pfeiffer TMU 521

(550 I/s)
1 L
Molecular lonisation
Beam

Deflector .
Pfeiffer TMU 1001 2x Osaka TS 440
(950 I/s) (880 I/s)

Front nozzle

Release of Inorganic Trace Elements from High-Temperature
Gasification of Coal

Marc Blasing

o
&
©
<
(5}
@
E=
[}
£
o
<Q
N
=
<]
=
=
[}
T
)
°
=]
2
o0
=
=

#) 0LICH

FORSCHUNGSZENTRUM




Schriften des Forschungszentrums Jilich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 131







Forschungszentrum Jilich GmbH
Institute for Energy and Climate Research (IEK)
Microstructure and Properties of Materials (IEK-2)

Release of Inorganic Trace Elements from
High-Temperature Gasification of Coal

Marc Blasing

Schriften des Forschungszentrums Jilich
Reihe Energie & Umwelt / Energy & Environment Band / Volume 131

ISSN 1866-1793 ISBN 978-3-89336-772-6



Bibliographic information published by the Deutsche Nationalbibliothek.
The Deutsche Nationalbibliothek lists this publication in the Deutsche
Nationalbibliografie; detailed bibliographic data are available in the
Internet at http://dnb.d-nb.de.

Publisher and Forschungszentrum Jilich GmbH
Distributor: Zentralbibliothek
52425 Jilich

Phone +49 (0) 24 61 61-53 68 - Fax +49 (0) 24 61 61-61 03
e-mail: zb-publikation@fz-juelich.de
Internet: http://www.fz-juelich.de /zb

Cover Design: Grafische Medien, Forschungszentrum Julich GmbH
Printer: Grafische Medien, Forschungszentrum Julich GmbH
Copyright: Forschungszentrum Jilich 2012

Schriften des Forschungszentrums Jiilich
Reihe Energie & Umwelt / Energy & Environment  Band / Volume 131

D 82 (Diss., RWTH Aachen University, 2011)

ISSN 1866-1793
ISBN 978-3-89336-772-6

The complete volume is freely available on the Internet on the Jilicher Open Access Server (JUWEL) at
http://www.fz-juelich.de/zb/juwel

Neither this book nor any part of it may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopying, microfilming, and recording, or by any
information storage and retrieval system, without permission in writing from the publisher.



1

»In the structure of the earth the element carbon is hardly more than a trace ele-
ment, its share in the total bulk being as small as 0.04 per cent. ... Yet, carbon may be
called the most important element; not only is it an indispensable necessity of life, but

also the main source of energy.”

Clarke and Washington, 1924; Van Krevelen,1993
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ABSTRACT VII

Abstract

The development of cleaner, more efficient techniques in next-generation coal
power plants is becoming increasingly important, especially regarding to the discussion
of the influence of CO, emissions on global warming. A promising coal utilisation proc-
ess is the integrated gasification combined cycle process. The direct use of the raw gas
requires gas clean-up to prevent downstream parts of the gasifier from several prob-
lems. An increased efficiency and a decreased amount of harmful species can be
achieved through hot fuel gas cleaning. This clean-up technique requires a comprehen-
sive knowledge of the release characteristics of inorganic coal constituents. The aim of
this thesis was to provide enhanced knowledge of the effect of key process parameters
and of the chemical constitution of coal on the release of Na, K, S, and Cl species from
high-temperature coal gasification. The experimental setup consisted of atmospheric
flow tube furnaces and a pressurised furnace. In-situ analysis of the product gas was
carried out using molecular beam mass spectrometry. A broad spectrum of different
coals with assumed qualitative and quantitative differences in the release characteris-
tics was investigated. Additionally, experiments with model substances were per-
formed. The results of the experimental investigation were compared with thermody-
namic calculations. Finally, recommendations, for the operation of a high-temperature
gasifier are formulated.
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ZUSAMMENFASSUNG IX

Zusammenfassung

Die Entwicklung hocheffizienter Techniken zur energetischen Nutzung von Kohle
gewinnt zunehmend an Bedeutung, u.a. aufgrund der Diskussion um den Beitrag der
anthropogenen CO,-Emission zum Klimawandel. Ein aussichtsreicher Prozess ist die
integrierte Vergasung von Kohle und die Nutzung des Produktgases in einem GuD-
Kraftwerk. Um nachfolgende Anlagenteile vor Schiaden zu schiitzen, muss das Produkt-
gas gereinigt werden. Der Einsatz einer Hochtemperaturreinigungsstufe kann sowohl
die Effizienz des Gesamtprozesses erhohen als auch die Menge an schédlichen Verbin-
dungen im Gas reduzieren. Notwendige Voraussetzung fiir die Entwicklung der Hoch-
temperaturgasreinigung ist ein umfassendes Verstindnis des Freisetzungsverhaltens
anorganischer Kohlenbestandteile. Ziel dieser Arbeit war es eine Wissensbasis bezlig-
lich des Einflusses verschiedener Prozessparameter und der Zusammensetzung der
Kohle auf das Freisetzungsverhalten von Na-, K-, Cl- und S-haltigen Verbindungen zu
schaffen. Bei den Freisetzungsversuchen wurden Kohlen verschiedenen Ranges in ei-
nem atmospharischen Rohrofen bzw. in einem Druckofen umgesetzt. Das Produktgas
wurde mittels Molekularstrahl-Massenspektrometer analysiert. Zusatzlich wurden Ver-
suche mit Modellsubstanzen und thermodynamische Rechnungen durchgefiihrt. Ab-
schlieBend wurden Empfehlungen fiir den Betrieb eines Hochtemperaturvergasers
formuliert.
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I INTRODUCTION I

1 Introduction

1.1 Background

The world’s energy demand is on the rise. In the reference scenario of the ‘World
Energy Outlook 2009, The International Energy Agency predicted a 76% increase in the
demand for electricity in the period from 2007 to 2030, requiring 4800 gigawatts of
additional capacity [IEA, 2009]. Furthermore, they report the ongoing dominant role of
fossil fuels in worldwide energy production, with coal as one of the major fossil fuels,
holding a 44% share of global power generation in 2030. However, the use of coal as a
fuel leads to a relatively high emission of CO, in comparison with other fossil fuels, e.g.
crude oil and especially natural gas [Wolk et al., 1992; Inaba et al., 1995]. The relation
of CO, to climate change has recently been discussed. The consensus of the interna-
tional community—e.g. the Kyoto protocol in 1997—is that CO, emissions must be
reduced. The emission of the greenhouse gas CO, is a matter of growing public con-
cern. Clean and more efficient energy production technologies are required to address
both the rising demand for energy and environmental issues.

Advantage in the field of energy technology is related to several technical, eco-
nomical, and ecological factors. The fossil fuels coal, crude oil, and natural gas have
been central in supplying reliable, low-cost energy worldwide for more than a century.
Despite efforts to substitute fossil fuel in the energy production sector with regenera-
tive energies, fossil fuels are expected to play a major role in energy production over
the mid-term future also in Germany. The expected worldwide demand will undoubt-
edly place increasing pressure on exploration and mining. However, in the short term,
the world is not running out of coal, crude oil, and natural gas, as shown in Figure 1.
On the basis of the demand for primary energy in the year 2007, the hard coal reserves
can satisfy demand for 130 years, the lignite reserves for 265 years (German lignite for
227 years), the natural gas reserves for 60 years, and the crude oil reserves for 40
years. The amount of the resources is overwhelming—e.g. the unconventional oil re-
sources can satisfy the actual demand for about 370 years. However, this data is ex-
trapolated based on data from the year 2007 and is therefore static. It does not take
into account a growing demand, the use of power generation techniques that are
more efficient, or advances in the substitution of fossil energy resources. But the trend
is clear: a significant shortage of fossil fuels will play an important role for the global
energy supply in the short-to-mid—term future.
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Figure 1. Statistical range of fossil fuels related to reserves and demand for the year
2007. German lignite is related to the German reserves and demand [BGR, 2009].

It is assumed that the attraction of coal for energy generation will increase in the
coming decades because of its diverse locations and vast reserves compared with
crude oil and natural gas. The price of imported energy resources in Germany is de-
picted in Figure 2.
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Figure 2. Development of the prices of crude oil, natural gas, and hard coal from 1973
to 2008. Taxes and duties are excluded. [Adapted from BGR, 2009].

Regarding its price, coal will remain one of the most attractive fossil fuels for the
generation of electrical energy in Germany. The price increase of coal has been more
moderate than the price increases of crude oil and natural gas over the last 35 years.
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The change of the import price is not a direct result of a decrease of the fossil energy
resources, as mentioned above. Rather, the change depends on the ratio of supply and
demand. The demand, especially of emerging nations such as China and India, is as-
sumed to increase exponentially in comparison with the demand of North American or
European countries [BGR, 2009]. As a result, the pressure on the price and the de-
pendence of Germany on crude oil, natural gas, and hard coal-exporting countries is
increasing as well.

The role of coal in Germany’s energy resource mix is significant, as shown in Figure
3 for electrical energy generation. The abundance and the low mining cost of low-rank
coal in Germany make it a competitive fuel, especially for electricity production.

Total production+

Lignite

Nuclear power -
Hard coal
Renewable energies A
Natural gas

Others

Crude oil

|

0 100 200 300 400 500 600 700
in billion KWh

Figure 3. Electrical energy generation by energy source in Germany in 2010 [AG Ener-
giebilanzen, 2010].

However, the vast coal reserves must be used in an environmentally acceptable
way [Beer, 2007; Lior, 2008]. Research, development, demonstration, and commer-
cialisation programmes will be critical in ensuring that coal technologies meet or ex-
ceed both economic and ecological requirements and that they are available for timely
deployment.

The development of cleaner, more efficient techniques in next-generation coal
power plants is becoming increasingly important. Recently, coal-based combined-cycle
power generation systems (e.g. Integrated Gasification Combined Cycle) have been
developed or are under development with the primary goal of increasing efficiency
[Wolk et al., 1992; Higman and Van der Burgt, 2008]. A promising coal utilisation proc-
ess is the integrated coal gasification combined cycle (IGCC), which is able to use a
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wide variety of solid, carbogeneous fuels with high efficiency [Mondol et al., 2009].
The IGCC has a design that can facilitate CO; capture, making the technique more envi-
ronmentally friendly [Newcomer and Jay, 2007; Beer, 2007; Wall, 2007]. Inaba et al.
[1995] recommended the use of low-rank coal for advanced gasification technologies
with CO; capture. This could allow the vast lignite reserves in Germany to be used in an
economically and ecologically acceptable way.

During high-temperature coal gasification, a complex mixture of solid, liquid, and
gaseous phases is formed. Of special interest are vapour species that contain Na, K, S,
and Cl, which are highly volatile under the given conditions and can lead to problems
when they reach cooler parts of the plant, where they form sticky and corrosive layers.
This can cause several problems in the gasifier and the downstream plant components
[Bakker et al., 2004]. Both an increase in efficiency and a decrease in the amount of
harmful species can be achieved through hot gas cleaning, which is currently under
development [Miiller et al., 2009]. This clean-up strategy depends on a comprehensive
knowledge of the release and hot gas chemistry of inorganic compounds. Despite re-
search efforts during the last few decades, there are many open questions regarding
the release and the underlying release mechanisms, especially for Na, K, S, and Cl spe-
cies. Further investigations on the release under the conditions of the IGCC process
need to be carried out.
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1.2 Aim of the thesis

The aim of this thesis was to provide enhanced knowledge of the qualitative and
guantitative release of several inorganic species as well as of the underlying release
mechanisms under gasification conditions. The focus was on Na, K, S, and Cl species
because they can cause several problems—e.g. deposition and corrosion—in down-
stream parts of the gasifier. The development of hot gas cleaning will benefit from a
detailed knowledge of the release as well as the capture reactions of gaseous species
with the remaining mineral matter. To better understand and eventually to predict the
release behaviour, systematic measurements for a variety of conditions and coals are
needed. Therefore, experiments were carried out under well-defined conditions, and
they focused on the influence of the conditions of high-temperature coal gasification,
e.g. the IGCC process, on the release. This included the oxygen partial pressure, the
temperature, the steam content, the absolute pressure, and the coal rank. The setup
for the batch-scale experiments consisted of atmospheric flow tube furnaces and a
pressure furnace, as well as a molecular beam mass spectrometer.

Online analysis of the high-temperature product gas was carried out by molecular
beam mass spectrometry. A broad range of different coals was investigated. The rank
of the coals reached from lignite to anthracite and covered a wide spectrum of differ-
ent fuels with release characteristics that are assumed to be qualitatively and quantita-
tively different. Additionally, experiments with model substances were performed in
order to obtain more detailed information on the release mechanisms. The results of
the experimental investigation were compared with thermodynamic calculations. The
results of the thermodynamic calculations can support the discussion.
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2 Fundamentals

2.1 Coal

2.1.1 Origin and nature of coal

Coal is ‘organic rock’ [Van Krevelen, 1993] that is generated over millions of years
through a process commonly known as coalification. Plant matter was deposited, her-
metically sealed, and placed under pressure and increasing temperature resulting from
a growing sediment layer. Therefore, coal is ‘aged biomass’ [Van Krevelen, 1993] that
underwent transformation and decomposition over aeons. This process includes bio-
chemical degradation by microorganisms and fungi under the exclusion of oxygen and
geochemical degradation by the heat and pressure caused by a growing sediment
layer. Coal is a heterogeneous material, and it contains inorganic and organic fractions
in varying proportions. Despite the differences caused by variations in the nature of
the original plant material, the heterogeneity of coal is increased by the process of
coalification and by the intrusion of several types of matter that are present according
to the sedimentation area, e.g. ground water, sea water, or clay. Usually, coal is classi-
fied by the coal rank, which expresses the degree of coalification. Common classifica-
tions are lignite, bituminous coal, and anthracite. Lignite is a low-rank coal, and an-
thracite is a high-rank coal. There are also coals that do not fit into this classification
[Oader, 1985]. However, all coals contain three components: organic matter, mineral
matter, and moisture. Organic matter refers to the organic coal substance, which by
definition consists of five elements: C, H, O, N, and S [Van Krevelen, 1993]. The amount
of organic matter varies widely, usually ranging from 50 to 90 mass%. Mineral matter
can have two modes of occurrence in coal. First, mineral matter can be present as dis-
crete particles that are relatively easy to remove. Second, mineral matter can be finely
divided in the coal matter, with a particle size smaller than 0.1 mm. Inherent mineral
matter usually makes up less than 10 mass% [Merrick, 1984]. Moisture can be divided
into free and inherent moisture. The latter cannot be removed by drying. Usually, the
inherent moisture content decreases with increasing coal rank [Van Krevelen, 1993].
The amount of inherent moisture is generally less than 10 mass% [Merrick, 1984].
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2.1.2 Mode of occurrence of mineral matter in coal

The release of inorganic compounds during thermal coal conversion is a complex
process that is influenced by the conversion environment as well as the concentration
and mode of occurrence of the inorganic matter in the coal. Owing to the importance
of these compounds, their concentration and chemical forms in coals of different rank
have been extensively investigated. Therefore, a summary of the mode of occurrence
of mineral matter in coal is given below. The focus is on minerals that are strong corre-
lated with the release and capture of Na, K, S, and Cl.

Raask [1985] reported that aluminosilicates and quartz are the main coal minerals.
Clay minerals account on average for 60-80% of the mineral matter in coal [Groen et
al., 1994]. Common species of clay minerals are illite-sericite (K-aluminosilicates), kao-
linite (aluminosilicate), and mixed-layer illite-montmorillonite of variable composition.
The second most abundant coal mineral is quartz. Sulphide minerals are the third most
abundant mineral group in coals. Within the sulphide group, iron sulphide (pyrite) is by
far the most common compound. Carbonate minerals are usually the fourth most
abundant minerals found in coal. Coal can contain significant amounts of carbonate.
The most common carbonates in coal are, in decreasing order of their fraction of the
total carbonate content, CaCOz (54 mass%), MgCOs (24 mass%), FeCOs; (20 mass%),
and MnCOs (2 mass%). Additionally, Skipsey [cited in Raask, 1985] reported CaCl; as an
important Ca-bearing mineral.

In addition to the major minerals, coal contains minor and trace elements in vari-
ous chemical forms. Heavy metals are commonly found in coal in trace amounts. Little
is known regarding the release and capture of heavy elements. However, keeping in
mind that a single power-generating unit handles, on average, 1000 t of coal per day,
even trace elements can become a significant problem.

On account of their relation to deposition and corrosion, the amount and the mode
of Na, K, Cl, and S compounds were comprehensively investigated.

The mode of occurrence of the alkali metals Na and K is of a different nature. In
general, in high-rank coal, a significant amount of Na was found in the form of soluble
inorganic salts. Manzoori and Argwal [cited in Nykdnen, 2002] reported that about 42%
of the total Na was present as NaCl dissolved in pore water, and 30% was organically
fixed (acid soluble). Only small parts were found to be weakly bound to the coal sur-
face. The fraction of carboxylic-bound Na is limited because of the small amount of
these functional groups in high-rank coals as compared to low-rank coals.
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The dominant alkali metal in low-rank coals is Na. Usually, much of the Na in low-
rank coal is found to be surface-bound to the coal matrix. The major fraction of Na in
low-rank coals is assumed to occur in the form of cations bound to functional groups,
e.g. carboxylate groups [cited in Nykanen, 2002; Howarth et al. 1987]. Smaller
amounts can be found associated with Cl, and usually only small amounts exist as Na
silicates such as Na,0O*Al,05*6Si0, [Raask, 1985; Yudovich et al., 2006]. In addition, the
authors highlighted the correlation between the Na and Cl content of coal. In general,
the Cl content is an indicator of the NaCl content of the coal. This organically bound Na
is finely dispersed throughout the coal [Shah et al., 1995].

K present in coal minerals is almost exclusively fixed in aluminosilicates and is
therefore a common mineral in both high- and low-rank coals [Raask, 1982; Raask,
1985]. lllite is a primary K-bearing aluminosilicate. Usually, the mode of occurrence is
in the form of finely divided minerals [Spiro et al., 1986]. Furthermore, Spiro et al.
[1986] reported that the mode of occurrence of K in coal is dependent on the coal
rank. Anthracite exhibited a fixation of K in muscovite, and lignite showed K also in the
form of organic sorbates.

Tillman et al. [2009] and Yudovich et al. [2006] have recently given a comprehen-
sive review on the topic of Cl in coal. Cl compounds are common parts of coal minerals.
Yudovich et al. [2006] highlighted two broad modes of occurrence of Cl in coal. The
main parts can be found to be inorganically bound in the form of discrete minerals, e.g.
salt-like Cl (NaCl as a common Cl-bearing mineral, which might also be dissolved in
pore water), and organic-bound Cl adsorbed to the functional groups of the organic
coal matter. Also, small parts may be found in the form of Cl-containing silicates. Yu-
dovich et al. [2006] pointed out that the majority of Cl in coal seems to be organically
bound. Similar statements about the relation of Cl to the organic coal matter have
been made by Shet et al. [cited in Tillman, 2009]. Tillman et al. [2009] reported that
the mode of occurrence of Cl is very complex. They emphasised that the majority of Cl
occurs in water soluble and ion-exchangeable forms. This amount is highly mo-
bile/volatile and is therefore very significant for thermal coal utilisation processes.

S can be found in the form of inherent mineral matter, mainly in the form of FeS,,
or as organically bound S fixed in the coal matrix [Osborn, 1992; Maes et al., 1997].
Attar [1978] mentioned that the ratio of inorganic to organic S is in the range of 1:1 to
3:1. The inorganic forms of S are typically sulphides. Pyrite is the major inorganic S con-
taminant in most coals [Calkins, 1994]. The organic S structures are part of the macro-
molecular structure of coal [Calkins, 1994], and they can be divided into aliphatic and
aromatic or heterocyclic structures. The heterocyclic S structures vary from single-ring
to multi-ring structures, and they may also contain nitrogen and/or oxygen heteroa-
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toms [Calkins, 1994]. However, there is a strong correlation between the mode of oc-
currence of organic S and the coal rank [Raask, 1982]. High-rank coals contain rela-
tively small amounts of aromatic sulphides and disulphides as compared with hetero-
cyclic S compounds [Calkins, 1994]. Based on an investigation of nine coals (anthracite
to lignite), Maes et al. [1997] reported a decreasing amount of sulphide and an increas-
ing amount of thiophenes in high-rank coals and a higher amount of sulphide-fixed S in
low-rank coals. Additionally, they reported that thiophenes constitute the main S-
containing group for high-rank coals. However, the authors also mentioned that the S
structures can vary widely, even for coals of the same rank.

The correlation between the mode of occurrence of several coal minerals and the
coal rank was studied by Vassilev et al. [1996]. They reported that low-rank coal ash is
commonly rich in basic oxides (e.g. MgO, Ca0), whereas high-rank coal ash is usually
rich in acid oxides (e.g. SiO,, Al,03). The amount of organically fixed inorganic elements
commonly decreases with increasing coal rank. This can be partially explained by the
decreasing amount of functional groups (e.g. Rorg"COOH) and the decreasing porosity
with increasing rank. Weakly fixed, easily exchangeable ions can be removed and can
form more stable compounds (e.g. ion-exchangeable fixed Ca can form calcite or water
soluble alkali, and alkali earth compounds can even be leached by ground water). The
extent of alteration due to various environmental influences was expressed by Groen
et al. [1994]. They reported that relatively small contributions from originally carried
elements other than S remain in coal during the stages of development from low rank
to high rank. Additionally, Sakanishi et al. [2002] reported that organically bound Si, Al,
Fe, and Ca are present in Chinese and Indonesian coals. Furthermore, they highlighted
the increasing amount of organically associated minerals with decreasing coal rank.
Huffman and Huggins [1984] and Huffman et al. [1989] have shown that Ca in lignites
and sub-bituminous coals occurs in organically fixed form and not exclusively in the
form of discrete minerals, e.g. CaCOs.
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2.2 Gasification

2.2.1 Principles of coal gasification

The gasification of coal is the transformation of solid matter into gaseous fuels us-
ing O,, H,0, H; or CO,, and heat. The product of the gasification process is a mixture
consisting mainly of CO, H,, CO,, H,0, CH4, and small amounts of minor compounds,
e.g. H,S and COS. The composition of the product gas depends on the gasification con-
ditions and the feedstock, e.g. the product gas from entrained-flow gasification con-
sists mainly of CO and H, without significant amounts of CH,.

Coal gasification is carried out at temperatures of 700—-1600 °C and at pressures up
to 70 bar [Oader, 1985]. Several parallel and consecutive reactions take place during
the gasification process. An overview of coal gasification reactions is given in Table 1.
The aim of gasification is the complete conversion of the organic coal matter into
gaseous products. The mineral matter of coal undergoes decomposition and secondary
reactions to form ash or slag, depending on the temperature. The reactions of the
mineral matter are outlined in Section 2.3.

Table 1. Reactions relevant for coal gasification [Merrick, 1984; Oader, 1985].

Reaction Reaction Kinetics AH in
kJ/mol
Devolatilisation Coal —> CO+CO,+H;+ Fast Endo-
CH4 + H,0 + tar therm
Combustion (C) C+0, —> CO, Fast -394
Combustion (H) H,+0.50, — H,0 Fast -242
Partial combustion C+050, — CO Fast -111
Water—gas reaction C+ H,0 <> CO+H, Moderate +134
Boudouard reaction C+ CO, <> 2CO Rather +173
slow
Shift reaction CO+H,0 <«> CO,+H; Moderate -41
Methanation reac- C+2H, —> CH4 Slow -75
tion

In principle, the gasification of a coal particle can be divided into three phases: de-
volatilisation, char reactions, and ash reactions. When coal is heated to about 300 °C,
devolatilisation begins. The devolatilisation temperature of coal is in the range of 300
to 800 °C [Merrick, 1984]. Devolatilisation corresponds to the decomposition and vola-
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tilisation of coal matter, resulting in the formation of char, and it gives rise to liquid
and gaseous products, e.g. hydrocarbons, H,, CO,, CO, and H,0. CO, and CO are
formed mainly from the decomposition of carboxyl, carbonyl, and ethereal groups.
Hydrocarbons are formed through the dealkylation of alkyl groups. H; is the product of
the dehydrogenation of naphthenic ring structures and the decomposition of aro-
mates. The remaining char undergoes gasification and combustion reactions. The in-
tensity and kinetic of devolatilisation increase with increasing temperature. The de-
volatilisation is instantaneous above 700 °C. Devolatilisation occurs as a result of the
distillation of low-boiling compounds in coal and the cracking of macromolecular struc-
tures. The low-boiling compounds of coal leave the coal matter without the breaking
of chemical bonds. As a result of cracking, reactive fragments are formed, e.g. radicals
and intermediate species. Several decomposition reactions and composition reactions,
e.g. polymerisation, take place. In addition, several physical changes occur: the char
becomes more porous and therefore experiences an increase in its internal surface
area. However, caking coal can undergo softening and the pore system can collapse
[Oader, 1985] which significantly retards the mass transfer. The results of devolatilisa-
tion are a hydrogen-deficient char and hydrocarbons. The hydrocarbons are cracked
and primarily converted into CO and H, depending on the amount of oxygen which is
provided during the gasification process. The remaining char is converted into gaseous
products as well. After conversion of the organic coal matter, only non-volatile mineral
matter—which also underwent several transformations during the gasification proc-

ess—remains.
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2.2.2 Advanced coal energy conversion technique—the IGCC

Gasification is probably the most versatile of the thermal coal conversion proc-
esses. Several coal gasification technologies were invented to handle different coals
effectively and to satisfy almost every sector of energy demand. The techniques cover
the production of low—caloric value gas or medium—caloric value gas for industrial in-
stallations and power generation systems. Furthermore, medium—caloric value gas can
be converted into liquid fuels and chemicals [Merrick, 1984]. Finally, high—caloric value
gas is cost-competitive and transportable and is, therefore, suitable as a substitute for
natural gas. For further details, the reader is referred to Merrick [1984], Oader [1985],
and Higman and Van der Burgt [2008].

The objective of advanced coal conversion technology is to provide power genera-
tion that is highly efficient, reliable, cost-competitive, and environmentally friendly in
comparison to conventional coal-fuelled power generation technology [Newby and
Bannister, 1994]. One auspicious gasification process is the integrated gasification
combined cycle (IGCC) process with an entrained-flow gasifier. As a result of conti-
nuous research and development, this coal-based combined cycle power generation
process has made significant improvements in efficiency during the last few decades
[Joshi and Sunggyu, 1996]. Demonstration plants in the Netherlands, Spain, and the
United States are proving the reliability of the technique in commercial-scale applica-
tions. Some important advantages of IGCC are summarised in Table 2.

Table 2. Summary of the advantages of the IGCC process, adapted from Joshi and
Sunggyu [1996] and Mondol et al. [2009].

Advantages
Reduced emissions from power generation: S species, NO,, Hg, particulate matter

Possibility of producing synthetic fuels, chemicals, and marketable by-products
Possibility of cost-effective capture and storage of CO; in the future

Possibility of upgrading simple cycle plants (powered by gas turbines) to com-
bined cycle plants by integrating a coal gasification unit and a steam cycle 2>
stepwise upgrade with increasing competitiveness of coal in comparison with

natural gas

Possibility of handling nearly all kinds of carbogeneous fuel
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Many different configurations of an IGCC with integrated CO, removal are possible.
However, all setups work under the basic principles of an IGCC. The gasification unit is
an entrained-flow reactor that works in the temperature range of 1400 to 1600 °C and
at pressures up to 70 atm [Merrick, 1984; Higman and Van der Burgt, 2008]. Finely
ground coal with particle size less than 0.1 mm is injected with the reactant gases
(0,/H,0) into the reaction chamber. The gasification reactions take place in a flame
similar to that of a pulverised coal combustion chamber. The coal particles are heated
up at about 1000 °C/s [Higman and Van der Burgt, 2008]. The residence time of the
coal particle is a few seconds. The carbon is almost completely converted into gaseous
products; mainly CO (about 60 mol%) and H, (about 30 mol%) are formed [Higman and
Van der Burgt, 2008]. High-temperature gasification melts nearly all of the original
mineral phases and destroys all metal-organic bonds within the coal matter, leading to
exhaustive volatilisation of weakly bound species. Released Na, K, S, and Cl compounds
usually end up in the form of chlorides, hydroxides, sulphides, and silicates. To protect
the combustion turbines and environment from emissions generated during coal con-
version, a gas clean-up system must be used [Scandrett, 1984; Newby and Bannister,
1994]. For use in a gas turbine, the raw gas from any coal gasification process must be
cleaned of both particulate matter and S gases in order to prevent downstream sur-
faces from experiencing several problems, e.g. erosion, fouling, or corrosion of the gas
turbine blades [Brown, 1982]. However, performance data for gasifiers are not avai-
lable, and this makes specification of gas cleaning equipment difficult. Furthermore,
there is still no common standard for gas cleaning requirements to protect advanced
gas turbines in temperatures above 1000 °C. Because of a lack of data and experience
in this field, problems in advanced gas turbines are anticipated based on the know-
ledge of gas turbines fired by residual fuel oil. Scandrett [1984] summarised several
studies, and, in general, the amount of gas-phase Na and K in the flue gas entering the
gas turbine should be less than 20 ppbw. In the state-of-the-art IGCC process, the
clean-up involves cooling of the gasifier product gas. A heat recovery unit produces
steam, which drives a steam turbine. The clean gas is heated again and combusted in a
gas turbine, which generates electricity. The exhaust gas from the turbine still contains
significant heat, which is used in a boiler to produce steam for a steam turbine; the
steam drives generators.

The efficiency of conventional IGCC plants without CO, capture is reported to be
41-46% LHV (lower or net heating value), and for advanced new technologies the effi-
ciency can even reach 55% LHV [Beer, 2007; Christou et al., 2008; GTW, 2006]. Various
studies have shown that the efficiency of conventional and advanced IGCC plants with
CO; capture is in the range of 32 to 43% [Descamps et al., 2008; Kanniche and Boual-
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lou, 2007]. However, IGCC plants must reach efficiencies of 50% to produce electricity
at a competitive price and to reach commercial breakthrough [Christou et al., 2008].
Furthermore, CO, sequestration must be commercially viable [Beer, 2007].

It follows that the IGCC process represents a promising approach to cleaner and
more efficient use of coal for power generation. Advances in IGCC technology continue
to increase efficiency and decrease emissions of CO, [FAA, 2006]. Further improve-
ment requires several additional approaches. First, the gas turbine inlet temperature
should be increased, but this increase requires the development of super-alloys or
cooling techniques that allow continued operation at increased inlet temperature.
Second, higher efficiency could be attained by replacing cold gas cleaning with hot gas
cleaning; this technique was mentioned by Wolk et al. as early as 1992. Third, deve-
lopment of H, and CO, membranes can help the process to reach higher efficiencies.

Many low-temperature gas cleaning processes are currently available. State-of-the-
art gas cleaning facilities employ particle separation—achieved through the use of a
candle filter unit. Furthermore, a scrubber, COS-hydrolysis, and wet S removal unit are
employed—to provide a gas that fits the requirements of gas turbine manufacturers.
Also, the gas can be cleaned of CO, through the use of a CO-shift and CO, separation.
The state of the art in CO; separation is the rectisol scrubber. However, it causes a sig-
nificant loss in efficiency because the gas is cooled down to -70 °C and afterwards
heated up again for the following processes. Advanced CO, removal could employ a
membrane separation technique. Depending on the type of membrane, hot S removal
may be necessary to prevent poisoning or corrosion of the membrane material [Miiller
et al., 2009].

A schematic of an advanced IGCC power plant that includes hot gas cleaning and
CO, removal is presented in Figure 4. The IGCC concept with integrated hot gas clean-
ing and CO, removal consists of the following units: air separation unit, liquid slag
separator, alkali removal, heat recovery, S removal, catalytic (shift) membrane, com-
bustion chamber, gas turbine, heat recovery steam generator, steam turbine, and ge-
nerator [Miiller et al. 2009].

Hot gas cleaning reduces the efficiency loss caused by ordinary cleaning systems,
such as the wet scrubber. The energy benefit to a combined cycle plant obtained
through the use of a high-temperature gas cleaning process is variously reported be-
tween 2 and 8% [Brown, 1982]. Hot gas cleaning under gasification conditions is cur-
rently under development, and it will allow for the clean-up of the raw gas without
significantly cooling it to below the temperature of the next process step. Released
alkali metals can be effectively trapped by getter materials in the ash/slag, e.g. silica
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[Mdiller et al., 2004; Willenborg and Miiller, 2006]. Therefore, using the clean-up po-
tential of the slag would be beneficial for the overall efficiency. Qualitative and quanti-
tative data of the released species, as well as a more comprehensive knowledge of the
release mechanisms, are needed to develop adequate hot gas cleaning facilities [Scan-
drett, 1984].
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Figure 4. Schematic of an IGCC power plant, adapted from Miiller et al. [2009].

Air separation unit (ASU), liquid slag separator (LSS), alkali removal (AR), heat recovery
(HR), S removal (SR), catalytic (shift) membrane (S/M), combustion chamber (CC), gas
turbine (GT), heat recovery steam generator (HRSG), steam turbine (ST), and generator
(G).
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2.3 Release of Na, K, S, and Cl species from coal

gasification

A review of the literature on the release of Na, K, S, and Cl species is given for
thermal utilisation, covering reducing and oxidising conditions, experimental investiga-
tions, and thermodynamic predictions. The release of trace elements depends on
chemical reactions with other compounds present in the coal and the surrounding gas,
the conversion conditions, and the conversion environment (temperature, pressure,
gasification agent, temperature gradient in the coal particle, etc.). Coal is a highly
complex fuel, as discussed in Section 2.1. The variability of the mineral and organic
content of coal increases the diversity of the reactions that can occur during the ther-
mal conversion of coal. Because of the complexity of the reactions, only an outline of
reactions involving Na, K, S, and Cl species will be provided. Additionally, a summary
will be given on parts of the mineral matter (e.g. SiO,, aluminosilicate) that are closely
related to the release due to several reaction mechanisms, e.g. capture reactions.

Investigations of the release of Na, K, Cl, and S species during thermal treatment of
coal and coal ashes were performed by multiple groups using several different experi-
mental approaches, as well as by thermodynamic modelling. Experiments were per-
formed from the lab scale to the pilot-plant scale. Most of the works focused on the
guantitative analysis of the release of S, Cl, and N species, but alkali metals and heavy
metals were also investigated. A limited number of investigations to discover the re-
lease mechanisms have been performed to date. Classical, off-line collective sampling
techniques have been frequently used. These methods are commonly available, but
they require relatively long sampling/analysis times (usually longer than 30 min). Fur-
thermore, transient release behaviour, for example, cannot be detected in this way. To
overcome the limitations of off-line measurement methods, significant efforts have
been made to develop and improve online measurement methods. Monkhouse [2002;
2011] has reviewed the state of the art of online diagnostics for metal species, e.g. the
excimer laser—induced fluorescence (ELIF) method, which can be used for online analy-
sis of gaseous alkali metal species [Schirmann et al., 2001]. Other online measurement
techniques are surface ionisation and molecular beam mass spectrometry. Surface
ionisation offers the possibility of detecting gaseous alkali metal species and particles
[Davidsson et al., 2002; Kowalski et al., 2007]. Molecular beam mass spectrometry is
well established and is able to differentiate a fair number of key gaseous chemical spe-
cies; it has already delivered a large body of useful data in the area of thermal utilisa-
tion of biomass and coal, regarding both the release and capture of inorganic species



18 2 FUNDAMENTALS

[Milne and Soltys, 1983a and 1983b; Krishnan, 1991; French et al., 1994; Wolf, 2003;
Oleschko, 2007; Porbatzki, 2008; Stemmler, 2010].

The fate of S during thermal coal utilisation was the object of comprehensive re-
search. Hodges and Richards [1989] identified S as a highly volatile species. Most of the
S is released in the early stage of the combustion process. Attar [1978] has given a re-
view of the release of S in coal—gas reactions. Important variables for the release of S
species are temperature, pressure, composition of coal and ash, type of reactor, gas
composition, and particle size. Most of the S is converted to gaseous forms, e.g. H,S,
COS, SO,, and CS,, and only minor amounts can be found in the ash.

The release occurs from inorganic- and organic-bound S as well. The release of in-
organic S is closely related to the thermally induced decomposition of sulphides, e.g.
pyrite (FeS,). Halstead and Raask [1969] reported that the decomposition of FeS, and
the formation of gaseous S and FeS occur in a residence time of approximately 1-5 s
during lab-scale experiments under the conditions of pulverised coal-fired boilers. In
addition, Raask [1982] reported that pyrite is readily decomposed during devolatilisa-
tion in the coal flame. The kinetic of the decomposition of FeS, is fast even at moder-
ate temperatures (550-600 °C) [Halstead and Raask, 1969].

S, was reported to be the main gaseous S species; it subsequently oxidises to SO; in
a combustion atmosphere [Halstead and Raask, 1969]. However, a significant fraction
of S can remain in unreacted char, and it is released only with the progression of char
conversion. It is possible for H,S to react with the remaining char to form stable thio-
phenic structures. Indication for the correctness of this assumption was given by the
work of Czaplicki and Smolka [1998], which investigated the distribution of total S in
products of autothermal pyrolysis in a circulating fluidised bed reactor. They reported
that the increase of the coal-to-air ratio results in an increase of S remaining in the
char and in a decrease of gaseous S compounds.

The rate of capture is limited by the rate of the mass transfer of gaseous S to the
char surface, the diffusivity of S into the char particle, and the rate of the reaction. It is
assumed that increasing pressure increases all of these factors; it also increases the
residence time, resulting in an enhanced capture.

Attar [1978] reported that the reaction of FeS, and H, and the formation of H,S are
important and fast reactions at 500 °C, whereas the reaction of FeS and H, is rather
slow. Xu and Kumagai [2003] investigated the S transformation during rapid hydrode-
volatilisation of three coals using a continuous free-fall pyrolyser at 650-850 °C and 50
bar H,. They found that the decomposition of pyrite is only affected by the tempera-
ture. The H, pressure had no significant influence.
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The dependence on the temperature and the mode of occurrence of the release of
S species was investigated by Cernic-Semic [1961]. He used a radioactive marker (*°S)
to obtain information on the release mechanisms. He found that the release of or-
ganic-fixed S began at temperatures below 500 °C, e.g. the decomposition of diethyl-
sulphide begins at 450 °C [Khan, 1989]. The release of inorganic S begins at tempera-
tures above 500 °C. Ibarra et al. reported that the release of H,S as a function of tem-
perature passes through two peaks between 500-560 °C and 630-700 °C. The release
was related to the decomposition of organic and pyritic S. Khan [1989] studied the dis-
tribution of S in products during pyrolysis and gasification of a series of coals at 500 °C
in a fixed-bed reactor in an inert atmosphere. He reported that an increase in pyrolysis
temperature increases the total gaseous S yield at the expense of char S. Nichols et al.
[1989] summarised several observations concerning the effects of pressure on the fate
of S during entrained gasification. He reported that the amount of S remaining in un-
converted char increases and the amount of gaseous S compounds decreases with
increasing pressure.

According to Schmidt [1966], the formation of H,S depends mainly on the occur-
rence of H, and/or H,0 in the gasification atmosphere. The release of S is enhanced by
the presence of H, [Gryglewicz, 1996]. Additionally, hydrocarbons released during de-
volatilisation have a significant influence on the release of H,S. Hydrocarbons are able
to undergo reactions with FeS, and form highly volatile H,S [Cernic-Simic, 1961; Attar,
1978]. In agreement with these results, Ibarra et al. reported that the organic matter
significantly influences the decomposition of pyrite and the release of H,S; they high-
lighted similar trends for COS and H,S.

The release of COS is influenced by the steam content. Cernic-Simic highlighted the
role of the water—gas reaction in this context. Water can react with hydrocarbons and
form CO and H (nascendi). CO can undergo secondary reactions and form COS. The
formation of H,S is preferred in H,-rich atmospheres and at high temperatures [Attar,
1978]. In addition, he pointed out that the reaction of FeS, and CO occurs slowly at
temperatures below 800 °C. Experimental studies of the transformation of pyrite in a
drop tube furnace under pulverised combustion conditions at 1227 °C were carried out
by Srinivasachar et al. [1990a]. They found that the pyrite decomposition took about
575 ms for particles of 75—-90 um.

More recently, Yan et al. [2005] reported that S bound to aliphatic and aromatic
carbon was released in the form of *SH radicals [Yan et al., 2005]. The *SH radical can
undergo several secondary reactions with the remaining char to form H,S, COS, SO,,
and S structures in the char [Yan et al., 2005]. The release of H,S, COS, and SO, from
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the model substances (e.g. benzyl sulphide) started at the same time and at moderate
temperatures (215-280 °C). The order of the amount of formed substances was H,S,
S0,, and COS. S compounds, which do not form the *SH radical, decompose and form
S species. The formation of H,S, but not of COS, was found during model studies in
which FeS, and FeS were mixed with char and heated to 850 °C under hydrogen. The
formation of H,S was found to begin at 420 °C for FeS, and at 480 °C for FeS.

The release of S depends on coal rank. Consequently, the correlation between the
coal rank and the release of S species has been the subject of several research groups.
Cernic-Semic [1961] stated that, with decreasing rank, more S is released at tempera-
tures below 500 °C. Khan [1989] pointed out that the amount of volatile matter in low-
rank coals is usually significantly higher than that in high-rank coals. This leads to sig-
nificantly higher amounts of S released during devolatilisation because a smaller
amount of remaining char results in a lower S capture capability. Attar [1978] reported
that the reactivity of S is strongly correlated with the coal rank, as mentioned in Sec-
tion 2.1. Furthermore, he reported the following order of the reactivity of S (starting
with the highest reactivity): thiole and alkyl > aryl.

Gryglewicz [1996] investigated the release and retention behaviour of S of 20 coals
in relation to the coal rank during devolatilisation at 723 °C. During the thermal treat-
ment of coal, S-containing structures go through the decomposition processes in a way
that depends on the conditions, the coal rank, and the mineral content. Portions of the
S remain in the coal matter after devolatilisation. During coalification, part of the thiole
is converted to thiophene and sulphide. With increasing temperature, the stability of S
structures increases in the following order: aliphatic thiole, disulphide < aromatic thi-
ole and sulphide < thiophene. Aliphatic S is thermally less stable, forms H,S upon heat-
ing or devolatilisation, and is converted, at least in part, to the more stable heterocyc-
lic structures, as mentioned above [Calkins, 1994]. Thiophenes are reported to be very
stable up to 1000 °C. In conclusion, primarily aromatic S remains in the coal matter
after devolatilisation, and both aliphatic S and inorganic S are released during devola-
tilisation. Ca-bearing minerals in coal react with released H,S and form CaS, which re-
mains in the non-volatile coal matter. As mentioned above, acidic slags are capable of
capturing large amounts of alkali metal and alkali earth metal oxides. This results in a
reduction of volatile alkali metal and alkali earth metal compounds in the gas phase,
which reduces the capability of S capture in the gas phase. The influence is significant:
Raask [1985] reported that a fraction between 30 and 45% of the alkali metal elements
are converted to the alkali metal sulphates under combustion conditions. The remain-
ing amount of alkali metals is dissolved in the surface layer of silicate ash particles.
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Sheth and Rasnake [1992] investigated the release of S and K from coal at tempera-
tures up to 1725 °C under combustion conditions. They reported that K can effectively
capture S. Also, the capture of S by Ca and Mg is well known [Attar, 1978] and is used
in coal combustion power plants to reduce the amount of S in the flue gas.

Cl is a highly volatile species that is usually quantitatively released during thermal
coal conversion [Hodges and Richards, 1989]. The fate of Cl during devolatilisation
(300-1000 °C) and water steam gasification (1100 °C) of coal was investigated by Gyo
et al. [2006]. They found that Cl was almost completely released at moderate devola-
tilisation temperatures (300-600 °C). In addition, they observed two phases of release.
The first phase occurred at 350-750 °C, and the second phase occurred above 850 °C.
The two-step release is explained by the mode of occurrence of Cl in the coal. The first-
phase release is mainly related to organic-bound Cl, whereas the second-phase release
is mainly related to the volatilisation of inorganic Cl species. The second-phase release
is enhanced by the presence of char. They also highlighted the decreasing amount of
released Cl with increasing pressure. In principle, the release of Cl increases with in-
creasing temperature and decreases with increasing pressure. In the presence of water
vapour, the release of HCl increased. This is explained by a shift in the equilibrium to
the product side, as shown in Eqg. 1 and Eq. 2. However, the contribution of these reac-
tions to the total amount of released HCl is rather small owing to the small amount of
CaCl, mineral in the coal.

CaCl, + H,O <> Ca0+2HCl Eq. 1

CaCl, +Si0, + H,0 <> CaSiO3 + 2 HCl Eq.2

The influence of steam on the release of Cl was investigated by Brinsmead and
Kear [1956], who fired coal pellets with steam. The main result was that the release of
HCl increased under the influence of steam, whereas the amount of gaseous NaCl de-
creased. This is explained by the hydrolysis of NaCl and the formation of NaOH and
HCI, as mentioned above. Furthermore, they reported that about 95% of the total
amount of Cl was already released at 700 °C. They observed significant differences in
the release of Na and Cl, and they assumed that Na and Cl are released through inde-
pendent release mechanisms. They concluded that vaporisation is not the main
mechanism of NaCl release. In addition, they found that kaolin is able to capture Na,
whereas the release of Cl is unaffected by the presence of kaolin.

Herod et al. [1983] made a mass spectrometric study of the release of HCl and
other volatile species from six coals in a He atmosphere at 300 °C. They found that 40—
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60% of the Cl content was released during heating at 300 °C over 24 hours. No other Cl
species were observed. The release of HCl is not correlated with the amount of Cl in
the coal. In addition, they reported that the release of HCl is controlled by the first-
order kinetic. The presence of H is important for the formation of HCI.

The release of the alkali metal species Na and K has been the object of comprehen-
sive research. However, the focus was often on biomass, so the results are not always
directly transferable to coal; this is especially true for K, which usually occurs in organi-
cally fixed form or as KCl in biomass and in non-volatile forms in coal.

Osborn [1992] reported that atomic Na is the main gaseous specie in the condi-
tions of pulverised coal combustion due to high temperature, and especially in the
highly reducing environment of the first milliseconds of the combustion process. The
atomic Na is oxidised to NaO or NaOH after transportation out of the pyrolysis-like
atmosphere around the coal particle. Atomic Na can be formed by a reaction with H
(Eq. 3). However, atomic Na is very reactive and will immediately undergo further reac-
tions and form Na,SO,4, Na-aluminosilicate, and other Na species, as shown by way of
example in Eq. 4 and Eq. 5 [Raask, 1985].

NaCl + [H] —>  Na+HCl Eq. 3
2 NaCl + SiO, + H,0 —> Na,0*Si0, + 2 HCI Eq. 4
2NaOH+S0,+050, —> Na,SO4 + H,0 Eq.5

Accordingly, Nykdnen [2002] reported that NaOH and Na are the main Na species
that escape the flame region. At temperatures below 1000-1200 °C, reconversion of
NaOH occurs, and the dominant gaseous Na species is NaCl in a pulverised coal com-
bustion atmosphere [Haldstead and Raask, 1969].

Glazer et al. [2005] investigated the release of gaseous alkali metal species during
combustion and co-combustion of coal and biomass at 700-900 °C using ELIF. They
found that the release of K depends on the K/Cl and K/Si ratios of the fuel. Additional-
ly, Gottwald et al. [2002] measured the alkali metal concentration during coal combus-
tion using ELIF.

Molecular beam mass spectrometry was used by Krishnan et al. [1991] and, more
recently, by Oleschko et al. [2007]. Oleschko investigated the release of NaCl and KCl
during combustion of hard coal at temperatures of 800—1200 °C and absolute pres-
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sures of 1, 3, and 9 bar. One result was that Na and K were mainly released as chloride,
although NaOH could not be taken into account because of experimental limitations,
as discussed in more detail in Chapter 5. They reported that the amount of gaseous
NaCl and KCl decreased with increasing pressure for both the hard coals and the
lignites under investigation.

The fate of Na during pulverised coal combustion was investigated by Neville and
Sarofim [1985]. They reported that the volatility of Na depends on its mode of occur-
rence in coal. Na dispersed atomically in the organic matter (i.e., ion-exchangeable
organically bound) or present in the form of NaCl is readily volatised, whereas silica-
bound Na remains in the ash.

Takarada et al. [1995] investigated the volatilisation of alkali metals during devola-
tilisation and gasification of coal using leaching experiments and model substances
(NaCl, Na,COs, Na,SiOs, Kaolin, and SiO;). They found the following order of release at
840 °C (starting with the highest release amount): NaCl >> Na,CO3 > Na,SiOs.

The influence of oxygen on the release of Na species was investigated by Steffin
[1999]. He found that an increased availability of O, leads to an enhanced fixation of
Na in non-volatile forms. In addition, he reported that a higher O, partial pressure
leads to an enhanced coal conversion and a higher temperature, resulting in a shorter
residence time of the alkali metal species in the remaining char. Therefore, the alkali
metal release outweighs the enhanced binding. The result is a moderate increase of
gaseous alkali metal compounds.

Gottwald et al. [2001] reported the disproportionately high increase in alkali metal
release in experiments with Cl-doped coals under combustion conditions. Clay miner-
als were found to suppress the release of alkali metals as a result of the formation of
non-volatile alkali metal alumina silicate, e.g. K-alumina silicate. Despite the low tem-
perature and the low residence time in their fluidised bed system (920 °C bed temper-
ature and 7 bar pressure), the capture of alkali metals by aluminosilicates was found to
be very effective. The authors suggested that the capture reactions occur before the
alkali metals are completely released.

Schiirmann et al. [2007] studied the effect of steam, temperature, Cl, and oxygen
content on the release of and capture of alkali metal species under pulverised coal
combustion conditions (hard coal, 1000-1300 °C, residence time 3-5 s, air/fuel ratio
1.15-1.5). They reported an increased release of K with increasing temperature. Fur-
thermore, they reported that the amount of gaseous K was an order of magnitude
higher than the amount of Na; this was assumed to reflect the higher amount of K in
the coal.
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Similarly, Shet et al. [1992] reported an increasing amount of gaseous metallic K
with increasing temperature.

Wei et al. [2008] investigated the transformation of alkali metals during devolatili-
sation and gasification of lignite. They found that the amount of soluble (H,O,
NH4CHsCOOH, HCl) Na and insoluble K decreased during devolatilisation, whereas the
amount of insoluble Na increased.

Helble et al. [1992] published data of measurements and modelling of vapour-
phase NaCl formed during pulverised coal combustion. During experiments with coals
of different rank, they found a linear correlation between the formation of NaCl and
the Cl content of the coal. The experimental findings have been confirmed by thermo-
dynamic calculations performed using Solgasmix. In addition, the authors reported
that NaCl reached equilibrium in hydrogen flames within 10 ms, which is common for
gas—gas reactions. Halstead and Raask [1969] performed basic research on the release
of Na and Cl species during combustion. They reported on the reaction of NaCl with
SiO; and on the importance of the formation of HCl and Na-silicate. Additionally, they
discussed the hydrolysis of NaCl. They reported that 10% of the NaCl was hydrolysed at
1200 °C, whereas only 4% was hydrolysed at 1000 °C. The hydrolysis of NaCl was also
studied by Brinsmead and Kear [1956].

According to Halstead and Raask [1969] and Hodges and Richards [1989], only
trace amounts of NaCl are fixed in the slag, indicating that NaCl is a highly volatile spe-
cies. Hodges and Richards [1989] researched the fate of Cl, S, Na, K, Ca, and Mg during
the fluidised bed combustion of coal using off-line analysis equipment. The main find-
ing of their work was that most of the K remains in the ash (especially in the clay min-
eral fraction). Ca and Mg also remain in the ash.

Wibberley and Wall [1982a and 1982b] researched the thermodynamics of SiO,,
Na, S, and Cl in pulverised coal-fired boilers. They reported that NaCl and NaOH are the
main Na species above 1223 °C. A significant increase in atomic Na was found at tem-
peratures above 1423 °C. The formation of Na,SO,4 occurs mainly as a result of the re-
action of NaCl with SO; in the presence of O, and steam, as shown in Eq. 6. Silica and
aluminosilicates are effective getter for Na, as shown by way of example in Eq. 7 and 8.
Alkali-silicates have low melting points in the range of 1023 to 1577 °C. This can lead to
problems in fluidised bed combustion system resulting from agglomeration of the bed
material.

2 NaCl + SO, + H,0 + 0.5 O, —> Na,SO,4 + 2 HCl Eq. 6
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Na,S04 + 3 SiO, —> Na,0*3 SiO, + SO, + 0.5 O, Eq.7

NaCl + H,0 + xAlSi,0, —> Na-aluminosilicates + HCI Eq. 8

Release and capture reactions occur simultaneously during the thermal conversion
of coal particles. Thus, a summary will be given on capture reactions with a focus on
the capture of Na, K, S, and Cl species. During entrained-flow gasification, most of the
original mineral matter melts, and all metal-organic complexes within the fuel are de-
stroyed [Groen et al., 1994]. Therefore, not only highly volatile Na, K, S, and Cl species
are released. Several investigations were made regarding the transformation of non-
volatile mineral matter during coal combustion [Raask et al., 1965; Tomeczek et al.,
2002]. Raask et al. [1965] reported significant volatilisation of silica above 1800 °C. The
release mechanism was described as the volatilisation of SiO after reduction of SiO, by
carbon under highly reducing conditions. Neville and Sarofim [1985] reported that
volatised refractory substances (e.g. silica) can form sub-micrometer fume with a high
surface area that is capable of effectively capturing alkali metal species. The incorpora-
tion of Na and K into silica-rich glasses is well known [Cernic-Simic, 1961; Halstead and
Raask, 1969; Groen et al., 1994]. More recently, Wolf [2003] and Stemmler [2010]
have confirmed the capture of K and Na by kaolin during laboratory-scale coal combus-
tion and biomass gasification experiments and through thermodynamic calculations.

After and during the release process in the coal particle, the gaseous Na com-
pounds must diffuse through a mineral-rich char matrix, and a significant fraction of
the Na can react with silica [Huffman et al., 1989]. The same results were reported by
Swift et al. [1979, cited by Nykdnen, 2002] during experiments at 900 °C and by Neville
and Sarofim [1985] and Takarada et al. [1995]. The suppression becomes increasingly
significant at kaolinite (Al,03*2Si0,*2H,0)/Na molar ratios greater than 1.5 for a de-
volatilisation temperature of 1220 °C. The results of several research groups proved
that in-situ capture of alkali metals in gasifiers is possible through the addition of kao-
linite. A low release of Na species has been found for coals with high cross-correlation
coefficients between Na and silica/aluminium for combustion and gasification of coal
at 850 °C [Murakami, 1999; Murakami and Naruse, 2001]. Tran et al. [2005] studied
the kinetics of gaseous alkali metal capture by kaolin using surface ionisation. Kaolin
was found to be a very efficient getter for gaseous alkali species at fluidised bed tem-
peratures. Even though mainly gas—solid reactions occur, the kinetic is already fast at
temperatures of about 850 °C.

Usually, K can be found in non-volatile form in coal, as mentioned in Section 2.1.
Hodges and Richards [1989] reported that K—as well as the alkaline earth metals Mg
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and Ca—remains in the ash. K will remain non-volatile in the fused silicate particles in
the boiler flame unless there is an exchange reaction with volatilised Na. Na can un-
dergo reactions with SiO, and Al,03, or it can be incorporated into K-aluminosilicates
through ion-exchange reactions, as shown by way of example in Eq. 9. However, the
amount of exchange is limited by the temperature. The ion-exchange occurs at signifi-
cant rates only above the melting point of K-aluminosilicates as a result of the kinetic
limitations of the process in the solid state. However, the reaction kinetic benefits sig-
nificantly from the formation of eutectics of several multicomponent silicates and alu-
minosilicates [Schairer, 1957; Schairer and Yoder, 1960; Burnham, 1981; Wu et al.,
1993; Ota et al., 1995; Richet et al., 2006]. For example, the melting point of the Na,0—
SiO, system was reported by Rys [2007] to be about 861 + 9 °C between 78 and 80
mol% Na,O under coal combustion—like conditions. In conclusion, the kinetic of ion-
exchange reactions is significantly enhanced at moderate devolatilisation tempera-
tures, and this can result in an enhanced retention of Na and release of K.

The release of K by ion-exchange reactions has also been reported by Miiller et al.
[2006] and other authors. There is a small temperature window of retention that de-
pends on the volatility and the melting point of aluminosilicate [Osborn, 1992]. A high
temperature can lead to very fast release, and therefore there may not be sufficient
time for retention. On the other hand, a temperature that is too low leads to a re-
tarded kinetic.

mK,0 * xSiO; * yAl,03 + 2 NaCl —> (m-1)K,0*Na,0*xSi0,*yAl,03 + 2 KCl Eq.9

Gibb and Angus [1983] studied different coals in a bomb combustor. They reported
that the fraction of released K was, on average, about 12% (3-28%) of the total
amount of K. Furthermore, they concluded that the release of K depends on the
amount of K, the amount of Cl, and the composition of the ash, especially the acidity
(SiO, + Al,O3 + Fe,03) / (CaO + MgO) ratio. With decreasing acidity, the release of K is
enhanced.

Kihn and Plogman [1983] and Formella et al. [1986] studied reactions of K and coal
mineral matter in coal gasification. They reported that K compounds (K,COs; and KOH)
reacted with the aluminosilicates illite and kaolinite to form K-aluminosilicates, as
shown in Eqg. 10. However, the actual reaction is more complex as it includes the hy-
drolysis of K,CO3 by steam as well as the dehydration of kaolinite. Formella et al. sug-
gested that the reaction is completed when the coal reaches 600-800 °C. During com-
bustion of K ion—exchanged lignite at 1500 °C under 7% O,, it was found that the reac-
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tion of the ion-exchanged, carboxyl-bound K is comparable, to a significant extent, to
the reaction of carboxyl-bound Na in the original coal [Shah et al., 1995]. A possible
reaction is shown in Eq. 10.

A|203*S|02*2H20 + K,CO3 — KzO*A|203*2 SiO, + 2 H,0 + CO, Eq 10

Bruno et al. [1986] studied the behaviour of 8 coals at 700 °C and 36 bar. They postu-
lated that, in addition to K-aluminosilicates, other insoluble compounds—especially S
and Fe compounds—were formed. In agreement with the results involving alkali met-
als, the capture of alkaline earth metals was demonstrated by Matsuoka et al. [2008].
They pyrolysed two sub-bituminous coals at 1500 °C in a drop tube furnace; after-
wards, the chars were gasified in CO,. It was found that dispersed Ca is converted into
fine ash particles, and these particles undergo reactions with clay minerals and form
complex aluminosilicates.

Other relevant studies on the capture of Na and K were performed by Willenborg
et al. [2006] and Miller et al. [2004]. They found that network formers (e.g. SiO,, TiO,,
Fe,03) lead to a lower Na concentration in the gas phase due to an increasing poly-
merisation of the aluminosilicate network. Furthermore, FeO is a weak network modi-
fier. Increasing amounts of FeO can lead to depolymerisation of the network. As a re-
sult, the Na retention of the slag decreases under gasification conditions. This leads to
a higher amount of Na in the gas phase. In addition, the acidity of the slag is important
for the capture. The ash of a common bituminous coal forms an acidic slag that is ca-
pable of absorbing large amounts of basic oxides (e.g. Na,O and CaO) at high tempera-
ture [Raask, 1985].

Adsorption processes of HCl, alkali metal, and alkaline earth metal species were re-
cently investigated by several groups. Sonoyama et al. [2006] found that alkali metal
and alkaline earth metal species volatilise from the surface of char mainly as elemental
species. Furthermore, they pointed out that the dissociation of carboxylic-bound metal
species is enhanced in an atmosphere that is rich in H radicals. Therefore, the release
of this species is likely to be enhanced during the gasification of coal and biomass. Par-
tanen et al. [2005] and Shemwell et al. [2001] investigated the capture of HCl by Ca-
sorbents. Partanen et al. [2005] made systematic experimental investigations of the
effect of temperature, gas atmosphere, and sorbent quality during adsorption of HCI
by limestone. They reported two temperature ranges for the concurring reactions of
chlorination and recarbonisation. In the presence of CO,, recarbonisation and chlorina-
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tion occur simultaneously at 650 °C, and the chlorination is unaffected by the presence
of CO; at 850 °C.

The capture of S by Ca is well known and is already a common industrial process.
Reactions of gaseous S compounds with basic alkali metal minerals are discussed by
Strohbeen [1981]. A possible reaction is shown in Eq. 11. The reaction becomes ther-
modynamically favoured above 650 °C, and the reaction rate increases at somewhat
higher temperatures [Strohbeen, 1981].

Na,CO3; +H,S —> Na,S+H,0 +CO, Eq. 11

The given review of the literature indicates that comprehensive research on the re-
lease and capture of inorganic species from coal utilisation has already been per-
formed. However, it also reveals that there are many open questions, especially re-
garding the process conditions of high-temperature coal gasification.
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3 Methods and experiments

3.1 Thermodynamic prediction

One method of studying the release of Na, K, S, and Cl species under coal gasifica-
tion conditions is the use of equilibrium calculations. Chemical thermodynamics have
been proven to be helpful in explaining the release and capture of Na, K, and S species
as well as the release of Cl species [Blander and Sinha, 1988; Wibberly and Wall, 1982;
Scandrett, 1984]. Thermodynamic calculations involve determining the equilibrium
composition of the investigated system under predefined conditions. Only the elemen-
tal composition of the initial system is relevant to the determination of the equilibrium
composition. Knowledge of the mode of occurrence is not needed because equilibrium
calculations assume that the starting material is completely converted to the most
thermodynamically stable reaction products. In other words, only the composition of
the system in equilibrium is important and not the way to equilibrium. However, this
approach suffers from some limitations, as summarised by Hansen et al. [1998]:

Disregarding all kinetic limitations, the primary limitation in the GEA analysis is that the system
is considered as being in global equilibrium, i.e., no gradients in temperature, pressure and
composition are considered. In a real combustion system, the mixing is far from being perfect.
Thus, in a real combustion system gradients in temperature, pressure and composition do ex-
ist, causing e.g. different redox conditions in different parts of the system.

The reactor is regarded as zero-dimensional, i.e., there are no spatial variations in
temperature or composition. Neither is there any change over time because all for-
ward and reverse reactions are assumed to reach chemical equilibrium. In real equip-
ment, temperature and composition gradients are present along the main flow path.

Additionally, the thermodynamically predicted stable compounds can reach equi-
librium only if the temperature is high enough. Otherwise, the system may not be able
to reach equilibrium because of the limited residence time of the reaction partners.
Also, physical processes—e.g. particle nucleation, agglomeration, and adsorption—are
not considered in thermodynamic equilibrium calculations [Wang et al., 2004]. Also, it
is possible that kinetic limitations occur such that chemical equilibrium is not reached.
Nonetheless, thermodynamic calculations in combination with experimental data are
useful in discovering the non-equilibrium effects and kinetic constraints that occur dur-
ing thermal utilisation of coal and other carbogeneous fuels. Furthermore, the use of
calculations can reduce the number of measurements needed to understand the re-



30 3 METHODS AND EXPERIMENTS

lease mechanisms, especially for conditions that are difficult to provide [Thompson
and Argent, 1999]. Kuramochi et al. [2005] attributed overestimation of calculated
data compared to experimental results to the lack of kinetic limitations, e.g. mass
transfer. Li et al. [2004] presented a calculation model that includes kinetic limitations
through empirical modification of the calculations. The results of these advanced cal-
culations were found to be more accurate. A comprehensive kinetic database is
needed for this approach, but such data is rarely found; therefore, the best solution for
the time being is to compare the calculations to empirical data in order to avoid pre-
dictions that are overestimates.

Consequently, chemical equilibrium calculations were performed to support the in-
terpretation of the experimental results. Through comparison with the calculated re-
sults, the experimental results were confirmed qualitatively. From a quantitative point
of view, it is possible to confirm the release trends. The calculations were performed
by FactSage 5.4.1, a common program that uses the principle of the Gibbs free energy
minimisation. This program, which is based on ChemSage, is able to calculate the equi-
librium in complex multi-component, multiphase systems [Eriksson and Hack, 1990].
The thermodynamic database included in the FACT software package includes about
5000 species and is based on the JANAF thermochemical database [Wang et al., 2004].

Gas phase species were handled as ideal gases based on the dilution of the product
gas in the helium carrier gas, which can be handled as ideal [Lindner et al., 2006]. The
initial system composition was based on the data given by coal analysis (Tables 4 and
5) and was related to 100 g of coal. C, H, S, O, Na, K, Mg, Ca, Cl, Al, Si, and Fe were in-
cluded in the computation. The atmosphere of He and O, was modelled using an oxy-
gen-to-fuel ratio of A = 0.5 with respect to the partial pressure of oxygen during the
gasification process and of A = 1 with respect to the combustion process. This value
was corrected according to the value of oxygen bound in the lignite because a signifi-
cant portion of the carbon is already partially oxidised. Gaseous, liquid, and solid com-
pounds were included in the computation.
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3.2 Hot gas analysis by molecular beam mass spec-

trometry

3.2.1 Basic principles of mass spectrometry

Mass spectrometry is used for real-time, online determination of gaseous ionised
species based on their mass-to-charge ratios (m/z) in an electromagnetic field. A
schematic of the basic principles is provided in Figure 5. A mass spectrometer consists
of four basic modules: sample inlet, ionisation unit, mass analyser, and detector. A
typical MS procedure consists of the following steps: The sample is introduced into the
mass spectrometer by a sample inlet system. Solid or liquid matter must be vaporised
before the next analysing steps. The gas is ionised by one of a variety of methods, e.g.
electron impact or chemical ionisation. The ions are accelerated by an electric field in
the direction of the mass analyser, usually a quadrupole or a sector field, where they
are separated in an electromagnetic field according to their mass-to-charge ratios. The
separated ions are collected by a detector, e.g. a faraday cup or an electron multiplier,
which converts the ion flux into proportional electrical current. The current is usually
recorded by an automated computer running a specialised software package.
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Figure 5. Schematic of the basic principles of mass spectrometry.
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3.2.2 Application of molecular beam mass spectrometry

Drowart and Goldfinger [1967] gave a detailed overview of an apparatus intended
for the generation and analysis of molecular beams. Hastie et al. [1984 and 2000] were
pioneers in the field of high-temperature application of molecular beam mass spec-
trometry. A comprehensive description of the experimental setup, and especially of
the molecular beam mass spectrometer, was given by Wolf [2003]. Molecular beam
mass spectrometry is a reliable method for analysing gases under high temperatures
and pressures [Wolf, 2003; Oleschko, 2007; Porbatzki, 2008]. The main advantage of
molecular beam mass spectrometry is that reactive, condensable species are effec-
tively quenched so that no further condensation and reaction are possible. Detailed
speciation can be performed by scanning a broad range of mass-to-charge ratios in a
guasi-simultaneous fashion. The released species are cooled to below room tempera-
ture in microseconds [Wolf, 2003]. Interaction with underground molecules is inhibited
by the high vacuum of the chamber system of the mass spectrometer and by the large
distance between the molecules in the so-called molecular beam [Wolf, 2003]. Mo-
lecular beam mass spectrometry enables gases in a broad range of different conditions
to be analysed. The temperature of the gas can be as high as 1700 °C. Pressurised gas
can be analysed up to 12 bar [Oleschko, 2007]. The detected limit is about 20 ppby,
[Wolf, 2003]. A schematic representation of the molecular beam mass spectrometer
(MBMS) is provided in Figure 6.

The MBMS consists of three differentially pumped chambers that are connected by
small orifices. A so-called skimmer divides the first stage from the second. Pressures of
10 mbar for stage 1, 10°® mbar for stage 2, and 10°® mbar for stage 3 are achieved
during the measurement. The first stage is evacuated by two Osaka Helical Groove
turbo molecular pumps, which must be fairly robust because a relatively large amount
of soot and other particles can enter this chamber [Wolf, 2003]. The second chamber is
necessary as a pressure stage to reach the high vacuum conditions in the third cham-
ber. The second and the third stages are connected to four Pfeiffer turbo molecular
pumps. The ionisation, the deflector, the quadrupole mass filter, and the multiplier are
placed in chamber three.

A stainless steel cone (35 mm in length with an interior angle of 108° and an orifice
diameter of 0.3 mm) is used for gas sampling under atmospheric pressure, and a rein-
forced cone with an orifice diameter of 0.1 mm is used for sampling under increased
pressure. The cone is fitted to a water-cooled stainless steel flange. This front nozzle is
connected to the atmospheric flow channel tube by moving the furnace towards the



3 METHODS AND EXPERIMENTS 33

MBMS. Because measurements occur under elevated pressure, the furnace and the
flange are non-switched and connected in an air-tight fashion.
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Figure 6. Schematic representation of the molecular beam mass spectrometer
[adapted from Porbatzki, 2007].

Gas enters the first chamber of the MBMS through the front nozzle. The ratio of
the pressure before the nozzle to the pressure in the first chamber is higher than the
critical value, which results in a supersonic expansion [Wolf, 2003]. Therefore, the
sampled gas undergoes a free-jet expansion. Within the flow beyond the nozzle, the
Mach number is higher than one. The initial expansion is nearly adiabatic and isentrop-
ic; consequently, extreme collisional and internal energy state cooling occurs. With
transition to molecular flow, collisions between the molecules of the sample gas are
minimised. Furthermore, the hot gas is effectively cooled to far below room tempera-
ture, such that rotational and vibrational transitions are minimised. As a result, the
integrity of the sampled high-temperature gases is preserved and chemical reactions
are effectively quenched. The non-equilibrium nature of the free-jet expansion and the
subsequent formation of a molecular beam allow reactive and condensable species to
remain in the gas phase at temperatures far below their condensation point for time
periods that are long in comparison to reaction rates.
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About ten orifice diameters downstream from the front nozzle, the expansion at-
tains free molecular flow. The core of the expanded gas is extracted by a conical skim-
mer with a 1 mm—diameter orifice at the entrance of stage 2. The skimmer is moveable
along the axis of the molecular flow. The intensity of the molecular beam can be ad-
justed by the on-axis movement of the skimmer position. The continual expansion of
the gas reduces the density of the stream, resulting in increased mean free path. Also,
interaction with underground molecules is reduced. The mean free path (A) of the gas
particles is in the range of several hundred meters in the second chamber. In principle,
the second chamber acts as a pressure stage that allows for the very high vacuum in
the third chamber. The mass analyser requires an ultra-high vacuum with A > 1 km,
which is reached in the third chamber. The core of the expanding flow is unaffected by
the absolute pressure in the chamber. Outside of this zone, the molecular flow is ex-
tracted by a skimmer. Usually, skimmers serve as high-intensity, low-temperature
sources of molecular beams [Miller, 1984]. With a sufficiently low pressure in the first
vacuum chamber and with proper placement of the skimmer, the supersonic flow en-
ters the skimmer without shock formation. This is important, because it suppresses
several mass transfer effects (Figure 7) that would otherwise exert a significant influ-
ence on the molecular beam.

Mach disc barrel shock . 7]
supersonic flow

subsonic flow source

— Chamber

skimmer

stagnated gases

Figure 7. Schematic of the free-jet expansion [Oleschko, 2007].

The molecular beam enters the third chamber through a small aperture with a di-
ameter of 1.5 mm. The molecular beam passes through an annular ioniser where the
molecules are ionised by electron impact. Electrons are generated by a tungsten fila-
ment; heating the filament results in the thermionic emission of electrons (emission of
1 mA). The ionisation energy for the experiments was 50 eV. However, the energy is
continuously adjustable. The electrons are accelerated by a negative current and cross
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the molecular beam, where collision leads to the formation of ions. Electron ionisation
occurs when an electron abstracts an electron from a gas molecule. When the excess
energy in the ion exceeds the bond energies that hold the molecular ion A" together,
fragmentation occurs. One out of every 10% to 10* molecules is ionised. The cations are
attracted out of the ionisation zone by electrical fields with increasing negative cur-
rent. The accelerated cations are redirected into the mass analyser by a deflector. The
deflector consists of four poles placed in the angles of a square, with each set at the
same potential (from 30 to 70 V or from -150 to -250 V) [Questor Manual]. The ion
beam is deflected by 90°, focused by electrical lenses, and introduced into the quadru-
pole mass analyser. Uncharged molecules and anions are not deflected, which helps to
prevent contamination of the mass analyser and the detector.

The ions are filtered with an ABB Extrel quadrupole analyser. The quadrupole mass
analyser consists of an arrangement of four rods of preferably hyperbolic shape that
act as the poles of an electromagnetic field. The quadrupole filters the ions according
to their mass-to-charge ratio. AC and DC voltage and a radio frequency component
that is variable both in magnitude and frequency are imposed on the rods [Questor
Manual]. Opposite filter electrodes are connected. lons that enter the quadrupole are
kept in a straight trajectory by the direct current, and, meanwhile, the radio frequency
voltage forces them to jiggle. There is only one path for each mass-to-charge ratio val-
ue, depending on the voltage. Only ions of a certain mass-to-charge ratio will reach the
detector for a given voltage ratio. Other ions will have unstable trajectories and will
collide with the rods. The positive DC voltage is particularly important for stabilising
the trajectory of the heavy ions, while lighter ions swing so much that they collide with
the rods. On the other two rods, a positive AC voltage is superimposed on a negative
DC voltage. The heavier ions are destabilised by the negative voltage and they go out
of the rods, while the lighter ions’ paths are stabilised by the positive AC voltage. Since
mass selection is accomplished simply by varying voltages or frequencies, the
quadrupole analyser is able to scan very quickly and to switch rapidly, with negligible
dead time, between settings for a number of different ions.

The final element of the mass spectrometer is the detector. The ions are detected by
an off-axis Channeltron electron multiplier. A dynode converts incident ions into sec-
ondary electrons, which are then amplified in a number of stages. Electron multiplier
gains of 10* to 107 are routinely obtained. The ‘electron shower’ hits an anode, and the
current is recorded by the software and computer package. Control of the scanning
parameters and collection of the multiplier signal, as a function of time and mass-to-
charge ratio, are performed using ABB Extrel’s Merlin Automation Data System.
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3.2.3 Sensitivity test of the molecular beam mass spectrometer

To confirm the sensitivity of the MBMS, the amount of Kr in air was determined.
The tune-up of the MBMS is described in Table 3. The main isotopes—szKr, 8xr, Bkr,
and ¥Kr—were detected in air. The signal intensity of the isotopes was normalised to
the signal of the main isotope, 8Kr. The determined distribution of the isotopes is in
good agreement with the data in the literature, as shown in Figure 8. The variance is
related to pollution of the air in the laboratory and in the mass spectrometer [Wolf,
2003]. The content of Kr in dry air is 1.14 ppmy, [Earth fact sheet]. The fractions of the
main isotopes of Kr in air are shown in Figure 8.

In conclusion, the detection of species with a content as low as 0.1 to 0.2 ppmy, is
possible. With regard to the content of the species of interest (Na, K, Cl, and S species)
in the product gas, the resolution is sufficient. However, Wolf [2003] was able to de-
termine the main isotopes of Xe in air using an MBMS that was identical in construc-
tion; this indicates a detection limit of about 20 ppby,,.

Table 3. Tune-up of the molecular beam mass spectrometer.

Multiplier 1900 V
Sample rate 50 samples per mass
Scan time 1s
Electron emission 0.5 mA
Electron energy 50 eV
100 A T
° mmm Measurement
£ g0 =3 Literature
(0]
Qo
[e]
8
c 60 -
®
€
[0}
£ 40
ks
c
il
S 20 1
s
0 T T T T : "

82 83 84 85 86 87
Mass-to-charge ratio

Figure 8. Results of the sensitivity test of the MBMS.
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3.3 Sample preparation and analysis

Samples from 19 coals were collected and prepared for analysis. The low-rank coals
were mined in Germany. K3-1, -2, and -3 were mined in Lower Lusatia. K2-2, HKN-S-,
HKN-S+, HKS, and HKT are Rhenish lignites and K2-1 is a blend of different lignites. The
high-rank coals were mined in Germany (STD-x and K2-3), Columbia (K2-4), Spain (K2-
5), and Norway (STN-x). The coals were ground in a mill and air dried at room tempera-
ture. The coals were graded, and the particles that were smaller than 100 um were
stored under dry conditions at room temperature, as recommended by Speight [2005].

The ultimate analysis of the coals under investigation was performed by the central
division of analytical chemistry (ZCH) of the Forschungszentrum Jilich. The major ele-
ments of coal matter, including C, H, N, and S, were analysed by CHNS Analysator (sys-
tem LECO). As such, coal samples of 2 mg were burned in oxygen. The CO,, H,0, and
SO, were analysed by IR absorption. N, was analysed using heat conductivity, and Cl
was analysed using ion chromatography according to the Wickbold combustion meth-
od. Inorganic elements were analysed by inductively coupled plasma optical emission
spectrometry (ICP-OES). Sample preparation included the following steps: A sample of
100 mg was mixed with 0.5 g lithium borate and heated to about 1000 °C for about 30
min. The melt was dissolved with 50 ml of 3% HCl and filled up to 100 ml.

The results of the analysis are given in Tables 4 and 5. The relative variance of ICP-
OES was reported from the ZCH: for amounts >1%, +3%; for amounts 0.1-1%, +10%;
and for amounts <0.1%, +20%. The relative variance of Cl ion—chromatography was
reported to be +10%. The relative variance of CHNS was calculated from the analysis
report to be £0.2-5%. The coals represent a broad range of fuels. The elements Na, K,
S, Cl, Si, Al, and Ca as well as their elemental ratios, are especially significant to the
release during the conversion of coal and biomass [Oleschko and Miiller, 2007a,b; Mil-
ler et al., 2006; Dayton et al., 1999; Krishnan and Wood, 1991; French et al., 1994;
Milne and Soltys, 1983a and 1983b; Porbatzki, 2008].
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Table 4. Chemical composition of the high-rank coals (mass%).

K2-3 K2-4 K2-5 STD-1 STD-2 STD-3 STD-4 STD-5 STN-1 STN-2
794 655 316 8.6 8.3 784 652 598 788 748
276 472 260 422 472 498 367 414 554 452
105 219 343 6.26 847 1062 1638 2090 8.86 153
0.978 1241 073 172 165 168 136 141 161 125
0.9 049 098 075 077 089 0.77 094 064 125
I 0.127 0.011 0.032 0.116 0.156 0.185 0.136 0.237 0.015 0.009
Al 306 184 781 096 091 090 330 310 064 135
Fe 069 0.73 235 052 055 043 130 130 0.60 099
Ca 03 0.21 072 015 043 026 078 0.77 0.72 1.09
Mg 0.16 0.17 045 0.094 0.2 011 049 044 0.21 025
K 073 022 193 016 016 017 0.75 0.87 0.11 0.17
Na 03 0.32 019 0.053 0.088 0.072 0.16 0.19 0.25 0.0
Si 457 4.89 16.1 1.4 1.6 1.3 5.7 5.9 1.60 246
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Table 5. Chemical composition of the low-rank coals (mass%).

K2-1 K2-2 K3-1 K3-2 K3-3 HKN-S- HKN-S+ HKS HKT
54.8 569 51.0 555 54.6 65.8 65.8 62.0 57.3
5.604 5.563 5.134 4.861 5.03 481 4.98 4.89 4.18
33.8 332 376 376 37.2 28.1 26.6 28.0 275
0.574 0.585 0.5 0.577 0.636 0.78 0.84 0.69 0.75
0.24 0.3 135 0.28 0.31 0.205 0.508 0.365 0478
0.035 0.037 0.022 0.023 0.0207 0.01 0.025 0.023 0.011
0.069 0.042 0.27 0.051 0.06 0.034 0.034 0.12 1.5
Fe 058 049 13 0.8 0.66 0.25 0.25 0.48 0.28
Ca 139 126 101 1.03 0.89 1.0 1.2 1.4 13
Mg 037 051 026 036 0.28 0.37 0.44 0.48 0.47
K 0014 0.021 0.061 0.014 0.016 0.02 0.023 0.024 0.085
Na 0.16 039 0.008 0.017 0.017 0.22 0.22 0.22 0.23
Si 025 022 133 0.22 0.18 0.01 0.023 0.72 3.6

>2O0Ownwz20I0
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3.4 Experimental setup

The experiments were carried out in atmospheric and pressurised flow channel re-
actor furnaces. For the determination of the composition of the product gas, the elec-
trical heated flow channel reactors were coupled to an MBMS system. A summary of
the experimental conditions for all experimental runs is given in Table 6.

Table 6. Overview of the experimental conditions.

Experimental run Atmosphere Temperature Pressure Coals

Influence of the He/7.5v% O,/ 1400 °C 1 atm 9 Hard coals
coal rank 2.5 v% steam 8 Lignites

Influence of the He/7.5v% O,/ 1400 °C 1atm 6 Hard coals
steam content 2.5 v% steam 4 Lignites

3.4.1 Atmospheric flow channel furnace

The experimental setup is depicted in Figures 9 and 10. The setup mainly consisted
of a heated flow channel housed in a furnace with four independent heating zones. For
the channel, a high density alumina tube was used to prevent reaction of the tube
walls with the released species. The inner diameter of the tube was 25 mm, and the
total length of the tube was 820 mm. Helium was selected as the carrier gas because
its low atomic mass leads to the highest signal intensities in the MBMS [Wolf, 2003].
The gas flow was calibrated and confirmed using a DryCal Calibration Set. The gas
stream was controlled by BROOKS gas flow controllers. During the experiments involv-
ing the influence of steam and coal rank, a nebuliser was used to provide the gas with
a steady moisture content of 2.5 v%.
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All parts of the reactor downstream of the reaction zone were kept at a tempera-
ture above the condensation point of the Na, K, Cl, and S species of interest, making it
impossible for these species to condense in this region. The temperature profile of the
reactor is provided in Figure 10.

Electrical heated flow channel
Quadrupole reactor furnace

sample inlet

MBMS -
Control unit

Furnace - Control unit

Figure 9. Flow channel reactor: experimental setup.

High temperature furnace Platin sample boat

Gas inlet

1] gas mixture
=X HelO,
Corundum reactor  Al,O5-rod

1100C  1500°C 1100°C 1100°C 50°C
1100C  1500°C 1400°C 1400°C 50°C
1100°C  1500°C 1700°C 1400°C 50°C

Temperature profile

Figure 10. Flow channel reactor: schematic of the experimental setup.
A typical experimental run consisted of the following steps: At the start of the ex-

periment, a platinum sample boat loaded with 50 mg of coal was inserted into the air-
cooled end of the heated flow channel. The gas flow was switched on, and a back-
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ground spectrum was recorded for 20 s. The end of the alumina reactor was coupled
to the sampling orifice of the MBMS device to sample the high-temperature conver-
sion products. The orifice extended into the furnace to maintain an elevated tempera-
ture and thus prevent condensation of gas-phase species on the tip of the orifice (Fig-
ure 11). Then, using a horizontally displaceable corundum rod, the sample boat was
inserted into the reaction zone of the furnace, where the coal sample was gasified
(Figure 12). The gaseous reaction products flowed to the end of the reactor. All parts
downstream of the reaction zone were maintained over the condensation point of the
Na, K, S, and Cl species of interest. The reaction products entered the MBMS through a
nozzle with a diameter of 0.3 mm.

Figure 11. Flow channel furnace coupled with the MBMS.

Figure 12. Sample inlet with moveable corundum rod.



42 3 METHODS AND EXPERIMENTS

A type S thermocouple was used to determine the heat-up rate of the coal sam-
ples. The sample boat was fixed at the tip of a corundum rod, and the tip of the ther-
mocouple was in contact with the coal sample. A representative heat-up profile is
shown in Figure 13. In general, the coal samples were heated up at about 350 °C/s. The
coal samples reached devolatilisation temperature in about 1 s.

The heat-up rate is lower than that reported in the literature, as mentioned in Sec-
tion 2.2.2. However, the rates are not directly comparable as a result of the different
methods used to determine the temperature.

1400
1200 A
1
= 1000 A
S 800 | x
©
0 600 x Temperature profile
IS HKN-S-
2 400 1 x 1400°C
200 - 7.5v%0,
% .
. X With steam
0 20 40 60
Time (s)

Figure 13. Heat-up profile of an experimental run with HKN-S- at 1400 °C and 7.5 v%
0,.

In preliminary measurements, mass spectra from 10 to 150 amu were scanned. In
order to enable monitoring of the gasification process with sufficient temporal resolu-
tion, 10 scans per second were acquired. Comparison of the spectra produced no sign
of the appearance of organic species, as reported by Dayton et al. [1995]. Due to the
high temperature (1400 °C), most of the volatile organic matter was effectively cracked
or reacted, despite the short residence time of 0.1-0.2 s. There was even no character-
istic mass peak at m/z = 78 (CgHs)", indicating a very stable aromatic hydrocarbon. Dur-
ing the measurements, *®NaCl*, but no ***Na,S0," and no “’NaOH*, could be observed
in the gas phase as Na-containing species. “°NaOH" is not easily detectable because it
has the same mass-to-charge ratio as “°Ar*, which causes the two peaks to overlap. Ar
is always present in the gas phase to a small extent because the oxygen that is used for
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the experiments is slightly contaminated with Ar resulting from the production pro-
cess. However, NaCl and NaOH are the most dominant gas-phase alkali metal species
for temperatures up to 1400 °C [Oleschko, 2007]; NaOH exceeds NaCl only above this
temperature. Therefore, the monitored species were 2Na*, 3*H,S*, **HCI*, *k*/**Nao",
Nacl*, ©°cos*/%°Nacl*, #*s0,*, and 7*KCI*. The isotope ratio of the species *°HCI* and
®BHcl" was in good agreement with the data in the literature [Burdo and Morrison].
The isotope ratio of the species H,S, K'/NaO*, KOH, NaCl, COS, and SO, was not
checked because only a limited number of different species can be detected simulta-
neously.

The qualitative information of the spectra was transformed into semi-quantitative
data by normalising the intensity of the **0," signal. Thus, the peak areas were calcu-
lated and divided by the peak area of the first 20 s of the 3*0," signal. The result is a
normalised peak area, which allows for further interpretation of the data by compari-
son of the different coals and for mathematical analysis using correlation analysis. The
averaged, normalised peak areas are based on six to ten experimental runs for each
coal. The peak areas were calculated for the devolatilisation phase only because most
of the species under investigation have a low signal-to-noise ratio during the char reac-
tions phase.

The mass spectrometer shows linear behaviour for the **0," signal intensity and
the oxygen concentration. For other species, the situation is more complex and lineari-
ty cannot be assumed [Wolf, 2003]. In conclusion, the signal intensity for Na, K, S, and
Cl species could not be directly compared for gasification and combustion experi-
ments, but it is still possible to make conclusions regarding trends. In addition to the
experimental results, the results of the thermochemical modelling will be presented.
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3.4.2 Pressurised flow channel furnace

The experimental setup is shown in Figures 14 and 15. The gasification reactor
mainly consisted of a heated flow channel housed in a pressurised vessel. The inner
diameter of the alumina flow channel was 25 mm, and the total length of the tube was
350 mm. The sample boat was carried in the cold part of the pressure furnace by a
horizontally displaceable corundum rod coupled to a stainless steel rod. The gas flow
was controlled by BROOKS gas flow controllers, and the pressure was controlled by a
BROOKS pressure controller. The reaction zone is heated by an SiC heating element.
The highest reachable temperature in this zone is 1325 °C at an absolute pressure of 6
bar. An additional heating element kept the connection between the pressure furnace
and the MBMS at temperatures above 825 °C, which inhibits condensation, as men-
tioned above. In general, the experimental run was similar to the atmospheric experi-
ments. A platinum sample boat loaded with 50 mg of coal was inserted into the cold
end of the heated flow channel (about 70 °C). A gas flow of 4 I/min He and 0.324 |/min
O,—corresponding to 92.5% He and 7.5% O,—was fed into the reactor to simulate a
gasification environment. When the absolute pressure reached the desired value of 2,
4, or 6 bar, the background signal was recorded, then the sample boat was placed in
the hot reaction zone. The hot reaction products flowed to the end of the reactor
where they entered the MBMS through a reinforced nozzle with a diameter of 0.1 mm.

Molecular Beam
Mass Spectrometer

Sample inlet

Gas inlet

Brooks Pressure )
Controller Water cooling

Figure 14. Experimental setup for measurements under elevated pressure.
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Figure 15. Schematic of the experimental setup for measurements under elevated

pressure.
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4 Results

4.1 Influence of gasification and combustion like

conditions

Qualitative: The experiments simulate the thermal conversion of coal under gasifi-
cation- and combustion-like conditions. Primarily fast gas—solid reactions and reactions
occurring during char gasification are relevant to the obtained results because the gas—
solid interaction times for the released species and the remaining non-volatile coal
matter are very short (0.1-0.2 s); these times are basically set by the batch nature of
the experimental run. Therefore, the results represent conditions in a pulverised coal
combustor [Miiller, 2006] or an entrained-flow gasifier. The main species detected
during gasification and combustion experiments were **H,S* (m/z = 34), *HCI" (m/z =
36), *®NaCl* (m/z = 58), ®*S0," (m/z = 64), "*KCI* (m/z = 74), ***Na,SO," (m/z = 142),
which were qualitatively investigated for both lignites and hard coals. Sample results of
the measurements from the MBMS are provided in Figures 16 to 25. In addition, two
phases of thermal conversion—devolatilisation and char reactions—could be observed

for the lignites and hard coals.
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Figure 16. Intensity—time profile of 340,*P4H,S" for the lignite HKN-S+ and a magnifica-
tion of the intensity—time profile at 1400 °C in He/20% O, and He/7.5% O,.
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Shortly after sample insertion, the sample reached the temperature necessary for
devolatilisation. The released volatile organic and inorganic matter immediately react-
ed with oxygen. This caused a lack of oxygen, as shown by the sharp drop-off of the
0,* signal intensity in Figures 16 and 17. After devolatilisation, the remaining non-
volatile coal matter reacted with oxygen, as can be seen in the **0," signal that is lower
than the base level.
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Figure 17. Intensity—time profile of 3*0,"/3*H,S* during thermal conversion of STD-5
and a maghnification of the intensity—time profile at 1400 °C in He/20% O, and He/7.5%
0,.

Under the reduced oxygen partial pressure during the gasification experiments, the
signal intensity of the specie with m/z = 34 exhibited a sharp increase during the
devolatilisation phase, as depicted in Figures 16 and 17. This increase in signal intensity
was considered to be caused by the formation of the S species H,S instead of SO,. The
occurrence of H,S leads to an overlapped spectra as a consequence of the overlapping
mass-to-charge ratio of 3,8t (m/z = 34) and %0, (m/z = 34). In contrast to that ob-
servation, the 3*0," signal was relatively stable after the sharp drop-off that occurred
when the sample was inserted during the combustion experiments. Because of its low
resolution, the quadrupole system used is not able to distinguish between **H,S" and
3%0,*. For higher resolution and determination of **H,S* and **0,", a sector field mass
spectrometer is needed.

Another detected S species was #*S0,". Typical release profiles are shown in Figures
18 and 19. %50," was released in two notable steps during the devolatilisation phase,
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with very high intensity over a short time period, and during the char reactions phase,
with low intensity over a long time period.

In comparison with the hard coals the lignites showed a more complex release be-
haviour, especially during devolatilisation phase. For the hard coals the signal intensity
of ®%s0," increased after sample insertion, reached a maximum and decreased again.
The signal of the lignites showed two maximums and a minimum shortly after sample
insertion. Of special interest is the overlapping of the maximum of the release of **H,S*
during gasification of the lignites with the minimum of the release of ®*S0," during gas-
ification experiments as can be seen by comparison of Figs. 16 and 18.

The second release step during char reactions phase lasted longer, during gasifica-
tion experiments for the lignites and hard coals. Even though the MBMS detected a
significant amount of 64SO{', which should enhance the formation of Na,S0O4, there
was no evidence for the release of **Na,S0,".
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Figure 18. Intensity—time profile of ®*S0,* during thermal conversion of HKN-S+ at
1400 °C in He/20% O, and He/7.5% O,. |—Devolatilisation phase; Il—Char reactions
phase.
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Figure 19. Intensity—time profile of **S0,* during thermal conversion of STD-5 at 1400
°Cin He/20% O, and He/7.5% O,. |—Devolatilisation phase; Il—Char reactions phase.

The release of **HCI* is shown in Figures 20 and 21. ®HCI* was released with high

signal intensity during devolatilisation for both gasification and combustion experi-

ments. The signal intensity was higher during gasification experiments for the lignites

and was steady for the hard coals. Additionally, a low-intensity release of **HCI* was

observed during the char reactions phase. However, the signal-to-noise ratio was too

low for further interpretation.
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Figure 20. Intensity—time profile of ®Her during thermal conversion of HKN-S+ at 1400
°Cin He/20% O, and He/7.5% O,.
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Figure 21. Intensity—time profile of **HCI* during thermal conversion of STD-5 at 1400
°Cin He/20% O, and He/7.5% O,.

Intensity—time profiles for the release of *¥NaCl* are shown in Figures 22 and 23.
*¥NaCl* was released with high intensity during the devolatilisation phase. Also, low-
intensity signals of *®NaCl" were observed during char reactions. The signal intensity
was slightly higher than the background noise. During the gasification experiments, the
signal intensity of *®NaCl* was higher than that from the combustion experiments for
the lignites and slightly higher than that from the combustion experiments for the hard
coals.
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Figure 22. Intensity—time profile of *®NaCl" during thermal conversion of HKN-S+ at
1400 °C in He/20% O, and He/7.5% O,.



52 4 RESULTS

7.0e+6
'
0 i
g 3.56+61 |‘\ Gasification experiments
g Al
) I
> 00 4+ —ea M PSRN
‘®
C
2
= 3.5e+6- . .
Combustion experiments
0'0 T T T T T
0 20 40 60 80
Time (s)

Figure 23. Intensity—time profile of *Nacl during thermal conversion of STD-5 at 1400
°Cin He/20% O, and He/7.5% O,.

74KCI* was detected with a reliable signal-to-noise ratio only for the hard coals (Fig-
ure 24). The signal for the lignites was not determinable. The signal-to-noise ratio was
very low as shown in Figure 25. Therefore, only the release of the hard coals is consid-
ered in the following. The release occurred in two steps, as shown in Figure 24. The
first release step occurred during devolatilisation with high intensity in only about 5 s
for STD-5. The second release step occurred with very low intensity over a long time
period during the char reactions phase. However, on account of the low signal-to-noise
ratio, further interpretation must be undertaken with care.
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Figure 24. Intensity—time profile of “*KCI* during thermal conversion of STD-5 at 1400
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Quantitative results for the German hard coals: The averaged, normalised peak
areas of 3*H,S", *®HCI*, *®NaCl, ®*s0,", and 7*KCI* are depicted in Figure 26. The release
of 3*H,S* was only observed during the gasification experiments. The release of >*H,S"
was highest for STD-3 (peak area of about 0.055) and lowest for STD-4, with a release
that was lower by an order of magnitude. In contrast, the order of the released
amount of ®*S0," was STD-5 > STD-3 > STD-4 > STD-1 > STD-2. In general, the peak are-
as of ®%50," were found to be smaller for the gasification experiments. The release of
3HCI" was higher during the combustion experiments by an average factor of 1.5. The
order of the released amount of *°*HCI* was similar for both conditions. The release of
*NaCl" was considerably higher for STD-1, STD-2, and STD-3 during gasification than it
was during the combustion experiments, and the release during gasification and during
combustion were similar for STD-4 and STD-5. The release of "*KCI* during gasification
experiments was slightly higher than during combustion experiments for the hard
coals STD-1, STD-2, and STD-3. The value of STD-5 exhibited no significant difference.
The amount of "*KCI* was higher during the combustion experiments. S-containing
species were the main gaseous species under combustion and gasification conditions.
HCl was the most abundant Cl species under combustion and gasification conditions.
The amount of NaCl was about one order of magnitude lower than the amount of S
species for both combustion and gasification experiments, and the amount of KCl was
two orders of magnitude lower. The order was the same for combustion and gasifica-
tion experiments.

Quantitative results for the German lignites: The results are depicted in Figure 27.
For the combustion experiments, the order of detected species, starting with the spe-
cies with the highest amount, was ®450," > *8NaCl*, *®HCI*. For the gasification experi-
ments, the order was 34H25+ > 58NaCI+, 3HCI*. As mentioned above, the release of
3H,S* was only observed during gasification experiments. HKN-S+ showed the highest
amount of 34HZSJ', with an averaged, normalised peak area of about 0.43, and HKS
showed the lowest amount, with a peak area of about 0.24. ®450,* was the main S spe-
cies during combustion experiments. HKN-S+ showed the highest release, with a peak
area of about 0.34, and HKN-S- showed the lowest release, with a peak area of about
0.1. The released amount of **HCI" during gasification experiments was about two
times higher than that during combustion experiments. The released amount of
*8NaCl" during gasification experiments was a factor of about two to three higher than
that during combustion experiments. The order of the released amount, expressed by
the peak areas of **HCI* and *NaCl*, was similar for both conditions.
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Figure 26. Averaged, normalised peak area of the hard coals for the gasification and
combustion experiments at 1400 °C.
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4.2 Influence of the temperature

57

The species **H,S", 3*HCI*, *°k*/**Na0", *°KOH*, *®Nacl*, ®°cos*/*°Nacl*, ®*s0,*, and
74KCl* were detected and qualitatively/semi-quantitatively investigated.

Representative results of the MBMS measurements are provided in Figures 28 and

29. The depicted graphs show the intensity—time profiles of the species under investi-

gation during gasification experiments with the hard coal STD-5 and the lignite HKT.

Two phases of gasification can be observed in the spectra of >*0,": devolatilisation

(phase 1) and char reactions (phase Il), as mentioned in Section 4.1.
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In recent publications, m/z = 39 was related to P+ [Blasing and Miiller, 2010a,b].
However, the authors are sceptical about this exclusive relation because there has
been evidence that m/z = 39 is also occupied by other species. The release of the spe-
cies with m/z = 39 was detected with high intensity, occurring mainly during
devolatilisation and therefore at moderately high temperatures (Figure 30). Based on
the results of previous release experiments under combustion conditions at 800 °C and
1200 °C [Oleschko and Miiller, 2007a,b], *°K* originates primarily from the fragmenta-
tion of released KCl. Additionally, the fragmentation of KOH can lead to 9K, Experi-
ments with leached hard coals showed that K is mainly fixed in silicates [Oleschko,
2007] and, therefore, can be released in significant amounts only during secondary
reactions that occur at temperatures above the devolatilisation temperature, e.g. ion
exchange, as mentioned above. In conclusion, the high-intensity release of the species
with m/z = 39 at moderate devolatilisation temperatures cannot be related exclusively
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to K species. Therefore, the assumption was made that *’NaO* (a fragment of released
NaOH), organic species like 39¢3Hs*, or even un-cracked or unreacted double-ionised
benzol (78C5H52+) were formed. As a consequence of this assumption and in order to
obtain more information, further experiments with model substances in place of coal
were performed. The experimental conditions were the same as those for the experi-
ments with the hard coals. The model substances were sodium salicylate, which has a
coal-like structure despite the fact that it is not a macromolecule, and trisodium cit-
rate, which contains three carboxylic-bonded Na ions. Sodium salicylate is similar to
the hydroxyl acid sodium salts found in coal. Similarly, Strohbeen [1981] used sodium
gluconate and vanillic acid during model experiments on the release of alkali metals.
The results of the model experiments with sodium salicylate and trisodium citrate are
provided in Figure 30. The lack of oxygen is an indicator of reducing conditions during
the experiments. The release of 2>Na* during decomposition was observed for the ex-
periments with both sodium salicylate and trisodium citrate. The signal intensity of the
species with m/z = 39 and m/z = 41 increased during the experiments. However, there
was no signal for m/z = 78. Therefore, the occurrence of double-ionised benzol
(78C5H62+), which would lead to a signal at m/z = 39, is rather unlikely. It is concluded
that *Na0" and *'NaO" as fragments of formed NaOH were detected by the MBMS.
Transferring the results of the model experiments to the experiments with coal, it is
concluded that the signal of m/z = 39 is not exclusively related to *°K*. In addition to

3K*, ¥*Na0" is part of the signal of m/z = 39.
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The averaged, normalised peak areas of >*H,S"*, **HcI*, *®Nacl*, and %*s0," at 1100-
1700 °C are shown in Figures 31 to 39. The release of **KOH" and "*KCI" is not discussed
from a quantitative point of view on account of the low signal-to-noise ratio. Also, the
release of ®°COS*/**NaCl* was not quantified because of its overlapping spectra, as
mentioned above.

Lignites: The averaged, normalised peak areas of 34,5 are depicted in Figure 31.
With regard to the release trend, the four lignites can be divided into two groups. The
released amount increased slightly from 1100 to 1400 °C and strongly decreased from
1400 to 1700 °C for HKN-S- and HKN-S+. The released amount strongly decreased for
HKS (decrease of 26% from 1100 to 1400 °C and 77% from 1100 to 1700 °C) and slight-
ly decreased for HKT.
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Figure 31. Averaged, normalised peak area of *H,5" at 1100-1700 °C in He/7.5% O,.

The averaged, normalised peak areas of ®*S0,* are depicted in Figure 34. The re-
lease trend is the same for HKN-S- and HKN-S+. The amount decreased from 1100 to
1400 °C and increased from 1400 to 1700 °C. Within the variance of the measure-
ments, the released amount of HKS increases and the amount of HKT slightly decreas-
es.
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Figure 32. Averaged, normalised peak area of 450,* at 1100-1700 °C in He/7.5% O,.

The averaged, normalised peak areas of HCI* are depicted in Figure 33. The re-

lease trend is negative for the entire temperature range within the variance of the
measurements, e.g. HKS showed a 20% decrease from 1100 to 1400 °C and a 60% de-
crease from 1100 to 1700 °C. The averaged, normalised peak areas of *®NaCl* are de-

picted in Figure 34. The release of *®NaCl" increases within the temperature range of
1100-1700 °C for HKN-S- (slightly positive), HKN-S+ (strongly positive), and HKS
(strongly positive). The data for HKT are nearly constant.
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Figure 34. Averaged, normalised peak area of %8NaCl* at 1100-1700 °C in He/7.5% O,.

Hard coals: The averaged, normalised peak areas of **H,S" are depicted in Figure
35. The released amount strongly increased with increasing temperature, e.g. for STD-
5, the released amount was 5.1 times higher at 1400 °C than it was at 1100 °C and 58.9
times higher at 1700 °C than it was at 1100 °C.
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Figure 35. Averaged, normalised peak area of 34,5 at 1100-1700 °C in He/7.5% O,.
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The averaged, normalised peak areas of ®50," are depicted in Figure 36. In gen-
eral, the released amount decreased with increasing temperature, e.g. STN-2 showed a
decrease of 40% from 1100 to 1400 °C and a decrease of 70% from 1400 to 1700 °C.
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Figure 36. Averaged, normalised peak area of 64SOZ+ at 1100-1700 °Cin He/7.5% O,.

The averaged, normalised peak areas of **HCI" are depicted in Figure 37. The re-
leased amount of **HCI* increases from 1100 to 1400 °C and decreases from 1400 to
1700 °C. However, the differences are moderate in comparison with those of most of
the other species under investigation, e.g. STD-3 showed a 10% increase from 1100 to
1400 °C and a 30% decrease from 1400 to 1700 °C.
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Figure 37. Averaged, normalised peak area of 38HCI" at 1100-1700 °C in He/7.5% O,.
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The averaged, normalised peak area of *NaCl* is depicted in Figure 38. The release
of *®NaCl® increases within the temperature range of 1100-1700 °C for STD-1, STD-2,
STD-3, and STN-2. For STD-4 and STD-5, the release decreases from 1100 to 1400 °C
and strongly increases from 1400 to 1700 °C.
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Figure 38. Averaged, normalised peak area of *¥NaCl" at 1100-1700 °C in He/7.5% O,.

The averaged, normalised peak areas of "*KCI" are depicted in Figure 39. In general,
the released amount increased with increasing temperature—e.g. compared to the
released amount at 1100 °C, the release was 1.6 times higher at 1400 °C and 21.7
times higher at 1700 °C for STD-5. However, there are exceptions, e.g. STD-2 showed a
decrease of about 50% from 1100 to 1400 °C and an increase of about 400% from 1400
to 1700 °C. Compared to the other four hard coals, STD-4 and STD-5 showed a very
high increase at 1700 °C.
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4.3 Influence of the steam content

Results of the MBMS measurements are presented in Figures 40 and 41. The key
species detected by the MBMS were 2Na*, 3*H,S", *Hcl*, 3*K*/**Na0*, **kOH*, *®Nacl*,
#450,", and "*KCI". Takuwa and Naruse [2007] reported the release of metallic Na dur-
ing the combustion of coal. However, 2Na* detected by molecular beam mass spec-
trometry is most likely a product of the fragmentation of Na species—e.g. NaCl and
NaOH—during ionisation.
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Figure 40. Intensity—time profiles of the lignite HKN-S- at 1400 °C in He/7.5% O, with
and without water vapour.
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Figure 41. Intensity—time profiles of the hard coal STD-4 at 1400 °C in He/7.5% O, with
and without water vapour.

The majority of the release occurred during the devolatilisation phase with high in-
tensity. Therefore, quantification of the spectra was performed only for the devolatili-
sation phase. Quantification was performed through normalisation of the peak area
during the devolatilisation phase to the 3*0," signal of the first 20 s of the experimental
run, during which time the steady oxygen concentration led to a steady signal. The
averaged, normalised peak areas of the coals under investigation are depicted in Fig-
ures 42 and 43.
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Recent studies showed that a mass-to-charge ratio of 39 is occupied by **K*, most
likely a fragment of KCl and other K species, and by **NaO*, most likely a fragment of
NaOH [Blasing et al., 2010c]. The normalised peak areas of *°Kk*/**Na0O* strongly in-
creased for all lignites under investigation under the influence of steam. HKN-S- and
HKN-S+ increased by a factor of 5.2 to 36.9. HKS and HKT increased by a factor of 46.7
to 68.8. In contrast to the lignites, most of the hard coals increased by a moderate fac-
tor of 1.7 to 3.9. However, the hard coal STN-2 increased by a factor of 20.

The amount of *®NaCl" moderately increased during the experiments with steam
for all coals under investigation (a factor of 1.1 to 4.1). The amount of 2Na* moder-
ately increased for most of the hard coals and for the lignites HKN-S-, HKN-S+, and HKT
(a factor of 1.2 to 3.9). However, STN-2 and HKS showed a very high increase—a factor
of 12.9 and 8.2, respectively. *’KOH* was detected in significant quantities only during
experiments with steam. In the experiments with steam, the normalised peak areas of
5KOH"* increased by a factor of about 1.4 to 4.3 for the lignites and by a factor of about
13.8 to 646.5 for the hard coals. The 646.5 factor (STN-2) is noticeably high. However,
the signal-to-noise ratio was very low during the experiments without steam, espe-
cially during the experiments with hard coal. Therefore, the results should be handled
with some care. Under the influence of steam, the amount of "*KCI* increased by a
factor of about 1.05 to 3.6 for the lignites and by a factor of about 1.5 to 7.1 for the
hard coals. However, the variance is high as a result of the low signal-to-noise ratio.

All coals under investigation showed a decrease of **HCI" under the influence of
steam. The decrease was slight in most cases, e.g. -16% for HKT and -15% for STD-5,
but the value was constant for HKN-S-.

Key sulphur bearing species detected during the experiments with and without
steam were **H,S* and %S0,". The amount of 3*H,S" slightly increased under the influ-
ence of steam (by a factor of about 1.2 to 2.2) for the lignites and for the hard coals
STD-4 and STD-5. The hard coals STD-1, STD-2, STD-3, and STN-2 showed a moderate
decrease, e.g. 22% for STN-2. The amount of ®*S0O," slightly increased in the experi-
ments with steam for all coals under investigation, e.g. by a factor of about 1.5 for the
lignite HKS and the Norwegian hard coal STN-2.
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Figure 43. Averaged, normalised peak areas of Na*, 3*H,S*, 3*HCI*, **k*/*Na0*,
*5KOH*, *®NaCl*, ®*s0,", and "*KCI* detected during experiments with hard coals at 1400
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4.4 Influence of the coal rank

The main species detected by the MBMS were Na* (m/z = 23), >*H,S* (m/z = 34),
**HCI" (m/z = 36), *K'/*Na0" (m/z = 39), *°KOH" (m/z = 56), **NaCl' (m/z = 58),
9c0os*/*®NaCl* (m/z = 60), and "*KCI* (m/z = 74). The averaged, normalised peak areas
are shown in Figures 44 to 50 (bars — left axis). Additionally, the content of the ele-
ments of interest has been depicted (symbols — right axis). For the high-rank coals, the
detected species ordered by the size of the peak areas are *K*/**Na0* > **H,S*, *®HcI*
> 8Nacl*, °cos* > **KOH* > *KCI*. For the low-rank coals, the order is *K*/**Na0* >
BNacl*, °cos*, *HCI* > 3*H,5* > *°KOH* > "*KCI*. The Spanish hard coal K2-5 showed
the highest release of 3*H,S*, with a peak area of 8.32x10™% In comparison, the German
anthracite K2-3 showed the lowest peak area (2.44x107%).

The quantity of the released 3*H,S* was equal to that of the hard coals, as shown in
Figure 44. The S-rich lignite K3-1 showed the highest release, with a peak area of
7.04x10'2, and HKS showed the lowest release, with a peak area of 7.74x10°3. The low
rank coals showed a good correlation with the sulphur content (Figure 44). On the con-
trary, the released amount of 3H,S* was not correlated with the sulphur content of the
high rank coals.

The peak areas of ®°COS*/*°NaCl" (Figure 45) were one order of magnitude lower
than the peak areas of 34,S* for both hard coals and lignites, e.g. the peak area of m/z
= 60 was about 6x10 and the peak area of **H,S* was about 5.1x1072 for the Norwe-
gian hard coal STN-2.

The mass-to-charge ratio of 60 is occupied by ®°COS* and ®NaClI". It is not possible
to distinguish between the two species with the low-resolution quadrupole system of
the MBMS. However, calculations with 58NaCI+, the main NaCl isotope, were per-
formed to estimate its participation in the peak area of m/z = 60. The amount of
®NaCl* was calculated on the basis of the peak area of *8NaCl* and the ratio of
®c1/¥cl, and it is depicted together with the measured value of m/z = 60 in Figure 45.
For most of the hard coals under investigation, the fraction of ®NaCl* of the peak area
of m/z = 60 was significantly higher than the fraction of 9cos*. Notable exceptions
were the Colombian hard coal K2-4, the Spanish hard coal K2-5, and the Norwegian
hard coal STN-2, all of which showed a relatively large fraction of ®°COS*. The fraction
of ®Cc0s* was much higher than the fraction of ®*NaCl* for all the lignites.
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Figure 44. Averaged, normalised peak areas of **H,S* (bars) at 1400 °C in He/7.5% O,
with water vapour.
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Figure 45. Averaged, normalised peak areas of °°COS* (grey) / ®°NaCl*—calculated
(black).

The mass-to-charge ratio of 39 is occupied by ¥K* and **Na0", as recently shown
by Bldsing and Muiller [2010c]. The averaged, normalised peak areas of the alkali metal
species *®NaCl* and *°K*/*°Na0" are depicted in Figures 46 and 47. The anthracite K2-3
showed the highest amount of *®NaCl" (peak area of 2.11x10?) and the lowest amount
of 3*K*/**Na0" (peak area of 1.12x1072). The lignite HKT showed the lowest amount of
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*¥NaCl* and the highest amount of 3°k*/**Na0O*. The peak areas of **k*/**Na0* for the
lignites were about two orders of magnitude higher than the peak areas of *®NaCl*. The
sodium content of the coals and the amount of *®NaCl* showed a weak correlation.
There was no correlation between the sodium and potassium content and the amount
of *K*/*Na0".
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Figure 46. Averaged, normalised peak areas of *Nacl* (bars) at 1400 °C in He/7.5% O,
with water vapour.
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Figure 47. Averaged, normalised peak areas of ¥k /*¥Nao* (bars) at 1400 °C in
He/7.5% O, with water vapour.
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The peak areas of the K species *KCIl* and *°KOH"* are depicted in Figures 48 and
49. The peak areas of *°KOH* were about one order of magnitude smaller than the
peak area of "*KCI*, as shown by the following examples. The lignite K3-1 showed a
strong release. The averaged, normalised peak area of "*KCI" was 1.52x10™. The peak
area of ®KOH" was 4.2x10°3. In contrast, the hard coal K2-4 showed a small release of
1.04x10™* for *KCI* and 1.98x107 for **KOH*. The peak areas of **k*/**Na0O" for the
lignites were about four and five orders of magnitude higher than the peak areas of
*KOH* and "*KCI*, respectively. For the hard coals, the difference was lower—three
and four orders of magnitude. Neither the high rank coals nor the low rank coals
showed a significant correlation of the potassium content and the release of 5KOH*
and *KclI".
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Figure 48. Averaged, normalised peak areas of kel (bars) at 1400 °C in He/7.5% O,
with water vapour.
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Figure 49. Averaged, normalised peak areas of **KOH" (bars) at 1400 °C in He/7.5% O,

with water vapour.

In general, the hard coals showed a higher release of **HCI" than did the lignites, as

shown in Figure 50. The peak areas of the lignites were between 3.4 and 3.8% of the
hard coal STD-5, which showed the highest release with a peak area of 1.21x10™. Ex-
ceptions were the hard coals K2-4 and STN-2, which showed relatively low peak areas,

similar to those of the lignites. The high rank coals showed a significant correlation

with the chlorine content, whereas the low rank coals showed no correlation.
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Figure 50. Averaged, normalised peak areas of 36HCI (bars) at 1400 °C in He/7.5% O,

with water vapour.
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4.5 Influence of the pressure

The experiments simulate the batch-scale gasification of coal under pressure.
Based on the qualitative results of the MBMS measurements, spectra of the Norwe-
gian hard coal STN-2 are depicted in Figure 51. Key species were *°CO*, **H,S", *®HCI",
Kt Nao”, *ENacl’, ®%s0,", and 7*KCl*, all of which were released mainly during

devolatilisation.
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Figure 51. Intensity—time profiles of several inorganic compounds released during gasi-
fication experiments with the Norwegian hard coal STN-2 at 1325 °Cand at 2, 4, and 6
bar.

In order to quantify the detected species, the signal intensities were integrated
over time and normalised to the 3*0," signal. The quantitative results are depicted in
Figures 52 to 57.

Both the hard coals and the lignites under investigation showed a decrease of the
averaged, normalised peak areas of **H,S* with increasing pressure (Figure 52)—e.g.
the hard coal STD-5 showed a very strong >*H,S* decrease of 66.0% at 4 bar and 87.2%
at 6 bar. In contrast, the lignite K2-1 indicated a smaller influence of pressure on the
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release of >**H,5"*—29.5% at 4 bar and 34.0% at 6 bar. Additionally, the release of 8450,"
decreased with increasing pressure, e.g. K2-5 by 65.8% at 4 bar and 88.4% at 6 bar
(Figure 53).

The averaged peak areas of *HCI" decreased for both the hard coals and the lig-
nites (Figure 54). The variance of the decrease is high, e.g. STD-3 showed a decrease of
3.5% at 4 bar and 42.4% at 6 bar and K2-5 showed a decrease of 52.8% at 4 bar and
85.5% at 6 bar.

The averaged peak areas of *®NaCl* and "*KCI* decreased with increasing pressure
(Figures 55 and 56). STN-2 showed a very strong *®NaCl* decrease of 88.7% at 4 bar
and 95.6% at 6 bar. Additionally, the decrease of kCl* was strong for STN-2—75.8% at
4 bar and 85.1% at 6 bar.

The averaged peak areas of *'K*/*'NaO"* decreased with increasing pressure over a
broad range (Figure 57). K2-3 showed a moderate decrease of 7.5% at 4 bar and 26.2%
at 6 bar, whereas STD-1 showed a strong decrease of 75.8% at 4 bar and 85.5% at 6
bar.
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Figure 52. Averaged, normalised peak areas of **H,S* at 1325 °C and 2—6 bar.
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Figure 53. Averaged, normalised peak areas of #450," at 1325 °C and 26 bar.
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Figure 54. Averaged, normalised peak areas of **HCI" at 1325 °C and 2-6 bar.
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Figure 56. Averaged, normalised peak areas of 74KCI* at 1325 °C and 26 bar.
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Figure 57. Averaged, normalised peak areas of “K*/*'NaO* at 1325 °C and 26 bar.
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5 Discussion

5.1 Influence of gasification and combustion like

conditions

The main S species detected by the MBMS were >*H,S" and #S0,". The release of S
species during the devolatilisation phase is representative for weakly bound S, which is
released relatively easily at moderate temperatures of coal devolatilisation (500-800
°C). Pyrite decomposes thermally during devolatilisation, as shown in Eq. 12 [Raask,
1985].

FeS, —>  FeS+S(T>500"°C) Eqg. 12

The released S can undergo several reactions depending on the reaction partner.
The formation of H,S instead of SO, depends on the oxygen partial pressure. During
combustion experiments, released S can react with oxygen, leading to the formation of
S0,. >*H,S" was not detected.

The detection of ®S0," during gasification experiments indicated that the oxygen
partial pressure was high enough to allow for the formation of SO,. The second release
step of ®50,* can be explained by the release of char-bound S during the char conver-
sion phase and secondary reactions, as shown in Eq. 7 in Section 2.3. For the hard
coals, the second release step occurred with a significant intensity during the combus-
tion experiments, whereas the intensity of the second release step of ®50," was low
during the gasification experiments. This can be explained by kinetic constraints, which
are likely to occur during gasification because unreacted carbon can form a layer that
causes retarded mass transfer. It is suggested that the limiting factors in the release
mechanism are the transportation of gaseous reactants and products in the
char/boundary layer and the diffusion of gaseous reaction partners and products
through the pore system of the remaining char. Accordingly, the release occurred over
a long time period with lower intensity during gasification.

Despite the detection of a significant amount of ®450,*, which can stabilise the
formation of Na,SO,, the release of 142NaZSO4+ was not detected. A likely explanation is
given by the temperature dependence of the formation of ***Na,SO," in combination
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with the oxygen content of the reaction atmosphere. Additionally, the effect of the
oxygen content is modified by the temperature. Wibberley and Wall [1982] showed
that Na,SQ, is only stable below 1127 °C under combustion conditions in the furnace
gas and below 827 °C under extreme reducing conditions in the burning char.

The majority of the NaCl* was released with high intensity during the
devolatilisation phase at the start of the thermochemical conversion. Recently, the
release of *®NacCl* during devolatilisation was explained by the vaporisation of NaCl
that occurs as a result of its relatively low melting point (801 °C) [Oleschko, 2007].
However, considering the low vapour pressure of NaCl at the devolatilisation tempera-
ture (<800 °C), vaporisation cannot satisfactorily explain the high intensity of the re-
lease. According to Brinsmead and Kear [1956], vaporisation is not the main mecha-
nism of the NaCl release: the explanation must also consider the desorption of organi-
cally bound Na and Cl.

During the gasification experiments, the amount of released Nacl* (expressed by
the averaged, normalised peak areas) was higher than that during the combustion ex-
periments for the lignites and slightly higher for the hard coals. Several explanations
for this are the following: Under the influence of a hydrogen-rich atmosphere, the dis-
sociation of carboxylic-bound Na is enhanced, as mentioned in Section 2.3. Therefore,
the release of Na is likely to be enhanced during the gasification experiments. In addi-
tion, the capture of Na by Al-silicates is inhibited during the gasification experiments
because H,0 and oxygen play an important role in the capture mechanism, as shown
by Eq. 6 and 8 in Section 2.3 [Steffin, 1999]. These effects seem to overcome the en-
hanced capture capability: During the release process in the coal particle, the gaseous
Na compounds must diffuse through a mineral-rich char matrix, and a significant frac-
tion of the Na can react with silica [Huffman et al., 1989]. Retarded mass transfer, such
as that caused by a carbon layer, as mentioned above, should lead to a longer resi-
dence time of the released species and to an enhanced capture if a significant amount
of getter is available.

The high-intensity release of **HCI" during the devolatilisation phase of both gasifi-
cation and combustion experiments is assumed to originate mainly from weakly bound
Cl from the coal surface. Adsorbed Cl can react with hydrogen (such as that released
from coal during devolatilisation) and form highly volatile **HCI*. Because of the hy-
drogen-rich gasification atmosphere, the reaction of Cl with H is enhanced; this could
lead to the increased formation of HCI. Furthermore, the low-intensity long-term re-
lease of **HCI" after the devolatilisation phase can be partly explained by the release of
trapped Cl due to the slower conversion of the coal matter under the reduced oxygen
content of the gasification experiments. The slightly higher signal intensity of *°HCI*
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during the char reactions phase of the gasification experiments (Figure 20 in Section
4.1) is an indication of the slower release of Cl. This agrees with the observations re-
garding the release of *®NaCl*.

"AKCI* was detected with a reliable signal-to-noise ratio only for the hard coals. The
release occurred in two steps. The first release step occurred during devolatilisation,
with high intensity in only a few seconds, e.g. about 5 s for STD-5. The release can part-
ly be explained by the desorption of surface-bound K and Cl, and to a much smaller
extent, by the vaporisation of KCI (melting point: 790 °C). Also notable is the second
release step, which occurred during the char reactions phase with lower intensity over
a long time period. The second release step can be partly explained by the replace-
ment of K by Na in Al-silicates at 1400 °C, as mentioned in Section 2.3, and by the re-
lease of trapped KCl or secondary reactions. A lower oxygen partial pressure leads to a
slower char conversion, which traps some of the K species. These species were re-
leased during char conversion. Additionally, the residence time of trapped species is
higher, which can lead to an enhanced capture due to higher temperature as well as to
a longer time of contact between the mostly volatile K species and the remaining min-
eral matter. The slightly higher released amount of “*KCI* during gasification experi-
ments can be explained by an enhanced release of carboxylic-bound K as well as by
reduced capture, as mentioned above in regards to the alkali metal Na.

Thermodynamic calculations: The results of thermodynamic calculations for the
species HCl, NaCl, H,S/SO,, and KCl are provided and compared to the experimental
results in Figures 58 and 59.

German lignites: For combustion conditions (A = 1), the order of the formed spe-
cies calculated by FactSage 5.4.1, starting with the highest amount, is SO, > NaCl, K
species > HCl. The order for the released species measured by the MBMS is 3K >
#50," > *8NaCl’, **HCI". The extended release of the species with m/z = 39, discovered
during experimental investigations, cannot be satisfactorily explained by the fragmen-
tation of different K sources, e.g. *®KOH" and "*KCI*. The release of *®NaCl" is smaller
than that predicted by thermodynamic modelling.

For reducing conditions (A = 0.5), the order of the formed species calculated by
FactSage 5.4.1, starting with the highest amount, is H,S > NaCl > HCI. The order for the
released species measured during the gasification experiments is 3H,8* > BNacl,
3HCI*. The predicted release of H,S in place of SO, was confirmed by the experimental
results, but the order of the released amounts was not correctly predicted. A likely
explanation is the thermodynamic stability of the alkali metal species: NaOH > NaCl >
Na,S, as shown by thermodynamic calculations. There may be kinetic constraints so
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that Na,S is more stable than was predicted by thermodynamic calculations, and
therefore less >*H,S* and *®NaCl* are released, as was predicted. Consequently, the
order of the species according to released amount has been changed.

The experimental results, the calculated results for H,S for the gasification experi-
ments, and the calculations with A = 0.5 are in good agreement. H,S is the most abun-
dant gaseous S species. The predicted order of the release amount of H,S is identical to
the order from the experimental results. The trend of the released amount is similar to
the calculated fugacity. The highest fugacity and one of the highest peak areas were
found for HKN-S+. HKN-S- exhibited larger differences between the experimental find-
ings and the calculated fugacity. The release was much higher during the experiments
than was predicted by the thermodynamic calculations. A reasonable explanation is
yet to be found.

German hard coals: The order of the released amount of **HCI* cannot correctly be
predicted for the gasification-like environment. The order of the released amounts for
STD-1, STD-2, and STD-4 is different than the order of the predicted amounts. In con-
trast, the calculated order of the amount of HCl for the combustion-like environment
agrees well with the experimental results from the combustion experiments. This can
be partially explained by the differences between the experiments and the calcula-
tions. The release of **HCI* during the experiments is a result mainly of desorption and
further gas-phase reactions and is therefore a fast process. Equilibrium cannot be
reached because the gas flow carries away parts of the released **HCI" before the
temperature is high enough to support secondary reactions with the coal minerals. In
the gasification experiments, this effect was amplified as a result of the layer of unre-
acted carbon, as mentioned above.

The prediction for NaCl agrees with experimental results for STD-1, STD-2, and STD-
3, but the predicted release of STD-4 and STD-5 are much lower than what was detect-
ed during experimental investigation. This can be explained by the occurrence of kinet-
ic constraints in the exchange mechanism of K in K-aluminosilicates caused by Na. For
combustion-like conditions, the prediction becomes much closer to the experimental
results. Thus, the conclusion is that a layer of unreacted carbon may block the reaction
between NaCl and K-aluminosilicate during gasification experiments.

The predicted release of H,S is in partial agreement with the experimental results.
For STD-1, STD-2, and STD-3, the calculated amount is in agreement with the experi-
mental results, but for STD-4 and STD-5, the calculated amount is much higher than
the amount released during the gasification experiments. A possible explanation is that
the retention of S by Na and Ca is more effective than is indicated by the thermody-
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namic equilibrium calculations; this discrepancy is attributable to the layer of unreact-
ed carbon, which inhibits the incorporation of Na and Ca in the K-aluminosilicate.

The predicted release of SO, is in good agreement with the experimental results,
but the released amount of STD-3 is much higher than predicted.

The formation of KCl predicted by thermodynamic calculations is higher than the
amount of NaCl. In contrast, the amount of released *®NaCl* measured by the MBMS is
much higher than the amount of released "*KCI*. This can be partially explained by the
fragmentation of KCl due to the ionisation process [Krishnan and Wood, 1991; Milne
and Soltys, 1983b; French et al., 1994; Oleschko, 2007; Porbatzki, 2008]. An additional
explanation involves the different modes of occurrence and, accordingly, the different
release mechanisms of Na and K species. Part of the ionic bound Na is released at the
moderate temperatures of devolatilisation. Part of the released Na flows away in the
gas stream before ion-exchange reactions can occur, leading to the release of K. There-
fore, it is likely that there will be differences between release experiments and ther-
modynamic calculations.

Krishnan et al. [1994] performed thermodynamic calculations and experiments un-
der various conditions. They reported that the partial pressure of Na,SO, increased
with increasing oxygen content, whereas the partial pressures of Na, NaCl, and NaOH
decreased. The predominant gaseous Na species at low oxygen partial pressure were
Na, NaOH, NaCl, and Na,Cl,. Discrepancies between calculated and observed values
were related to absorption of vapour species on the surface of fume particles [Krish-
nan et al., 1994]. They found that gaseous Na species were present at about 14 ppm
under gasification conditions at a temperature of 827 °C.



86 5 DISCUSSION

0,12 0,006
Gasification experiments
A -
0,09 A
©
® 0,06 -
(]
x —_
3 £
0,03 - T
2 >
2 S
g g
5 0,00 - 2
c e}
= 2
©
@ ©
S 0,09 1 5
) ©
(@]
Zz ] .
0,06 - [] i
i
0
¢ - 0,002
0,03 1 g
s -
' ]
' ]
0,00 \ A L 0,000
STD-1 STD-2 STD-3 STD-4 STD-5
Averaged normalised peak area Calculated fugacity
= H.S (x2) w H,S (x1)
===~ HC| (x1) O HCI (x 50)
mmmm NaCl (x 10) A NaCl (x 10)
zzz1 SO, (x1) 0 SO, (x1)
=== KCI| (x 100) O KCl (x 10)

Figure 58. Averaged, normalised peak areas and the results of thermodynamic calcula-
tions by FactSage 5.4.1 for the release of H,S, HCI, NaCl, SO,, and KCI (hard coals).
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5.2 Temperature

Lignites: The 3H,S* and ®%S0," release behaviour of the lignites was very complex.
The release trends were contradictory and cannot be satisfactorily explained by the
known release mechanisms of S.

The released amount of *®NaCl* increased within the temperature range from 1100
to 1700 °C for HKN-S- (slightly positive), HKN-S+ (strongly positive), and HKS (strongly
positive). The amount is nearly constant for HKT. A likely explanation for the contrary
release trends of *®HCI" and *®NaCl* is the following: The lignites HKN-S-, HKN-S+, and
HKS have a high Na/Si ratio. It can be concluded that the main fraction of Na is highly
volatile, e.g. fixed to the organic matter or dispersed in the form of NaCl. However, the
lignites are characterised by a shortage of Cl, and therefore the fraction of NaCl is small
as well. Additionally, vaporisation of NaCl is assumed to play a minor role during the
release of NaCl, as mentioned in Section 5.1. An important release mechanism is the
desorption of the organically fixed Na and Cl. Sonoyama et al. [2006] found that alkali
metal and alkaline earth metal species volatilise from the surface of char mainly as
elemental species. They emphasised that the dissociation of carboxylic-bound metal
species is enhanced in an atmosphere that is rich in H radicals. The amount of H radi-
cals increases with increasing temperature. This leads to the enhanced release of car-
boxylic-bound metallic species. Furthermore, organically bound Cl is almost completely
released at moderate temperatures (300—-600 °C). In conclusion, organically fixed Na as
well as Cl should be completely released during the devolatilisation phase of the high-
temperature gasification experiments (1100-1700 °C) and should form Na and Cl spe-
cies. The reaction products are HCl and NaCl as well as KCl, depending on the reaction
partner and the conditions. Gaseous NaCl is one of the most stable reaction products
under the experimental conditions. However, owing to the lack of Cl, the main fraction
of Na will form other species, most likely intermediate NaOH [Wei et al., 2008]. The
increased amount of NaOH shifts the equilibrium of NaOH and HCI with NaCl and H,0
to the product side. With increasing temperature, the volatility of Na increases as a
result of the enhanced dissociation of carboxylic-bound Na species. This results in an
enhanced release of *®NaCl*, whereas the release of **HCI" decreases. The proposed
mechanisms constitute a likely explanation of the negative release trend of ®HCI" and
the positive trend of *8NaCl* for HKN-S-, HKN-S+, and HKS. In the case of HKT, it is as-
sumed that the enhanced release of Na is compensated for by the enhanced capture
by aluminosilicates contained in the ash of this clay-rich lignite.

The majority of the release of *k*/**Na0*, **NaOH", **NacCl’, and "*KCI* occurred

during devolatilisation at relatively low temperatures of 600-1000 °C. Therefore, the
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occurrence of ion-exchange reactions is assumed to be less important due to kinetic
limitations of the process. In conclusion, the contribution of K species to the signal of
m/z = 39 is likely to be marginal in the present experiments. The model experiments in
Section 4.2 showed that m/z = 39 is most likely occupied by *¥Nao™. Complementary
explanations of the increase of the m/z = 39 signal are given below. Additionally, the
species of KOH and KCl could have led to an increase of the m/z = 39 signal as a result
of the fragmentation of KOH and KCl and the detection of Py by the MBMS. However,
the signal intensity of **KOH" and *KCI* was about two to three orders of magnitude
lower than the signal intensity of m/z = 39. Therefore, it is unlikely that the signal of
m/z = 39 is caused mainly by *K".

Hard coals: In general, the released amount of **H,S" increased strongly with in-
creasing temperature, whereas the released amount of 64SOZ+ decreased. It is assumed
that the increased concentration of hydrogen led to the increased formation of **H,S*
with increasing temperature.

®450," was released in two steps during the devolatilisation phase and char reac-
tions phase. Comparing the spectra of %S0," at 1100-1700 °C, the second low-
intensity release step of ®450," was observed with increased signal intensity and with a
compressed spectrum, especially at 1700 °C. The second release step of #*S0," can be
explained by the long-term release of low-volatility S fixed in the coal matrix in the
form of S bound in heterogeneous aromatic carbon rings (e.g. thiophene). S bound in
aromatic systems is stable up to high temperatures and is only released during gasifi-
cation of the residual coal matter after devolatilisation. Therefore, a faster heat-up in
combination with a higher furnace temperature leads to a faster consumption of the
residual coal matter and to enhanced release of char-bound S. The enhanced release
leads to a significant peak at 1700 °C, as shown in Figure 28. The slower heat-up at
1100-1400 °C leads to a slower consumption of the coal matter, and therefore the S is
released with lower intensity over a longer period.

The released amount of **HCI" increased from 1100 to 1400 °C and decreased from
1400 to 1700 °C. However, the differences are moderate in comparison with those of
most of the other species under investigation, as mentioned above. The contrary re-
lease trends cannot be satisfactorily explained by the known release mechanisms of Cl.

*NaCl* was released in two steps. The high-intensity release during the
devolatilisation phase can be explained by desorption of adsorptively bonded Na and
Cl and by the vaporisation of NaCl. The low-intensity release during the char reactions
phase can be explained by the release of trapped NaCl that occurs during progressive
char conversion, as mentioned in Section 5.1. The intensity of the signals increased
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with increasing temperature during the devolatilisation phase. Additionally, the se-
cond-step release during the char reactions phase became shorter with increasing
temperature. This can be explained by faster conversion of the remaining coal matter
at higher temperatures, e.g. carbon layers that inhibit further reactions between min-
eral matter are consumed more quickly. The released amount of ¥NaCl* increases
within the temperature range from 1100 to 1700 °C for STD-1, STD-2, STD-3, and STN-
2. For STD-4 and STD-5, the release decreases from 1100 to 1400 °C and strongly in-
creases from 1400 to 1700 °C. The Na content of the coals is of secondary importance,
e.g. STN-2 has an Na content that is ten times higher than that of STD-1, but the re-
leased amount of *®NaCl* is much lower. The release of *NaCl* is positively correlated
with the Cl content of the coals. The present results highlight the importance of Cl in
the release mechanism of alkali metal during the gasification of coal. This is discussed
in more detail in Section 5.4.

The majority of "*KCI* (m/z = 74) was released during the devolatilisation phase.
However, there was a low-intensity, long-term release during the char reactions phase.
The second-phase release during the char reactions phase can be explained by sec-
ondary reactions, as mentioned above. In general, the released amount of “*KCI" in-
creased with increasing temperature; exceptions include STD-2, which showed a de-
crease of about 50% from 1100 to 1400 °C and an increase of about 400% from 1400
to 1700 °C. In comparison to the other four hard coals, STD-4 and STD-5 showed a very
large increase at 1700 °C. The temperature dependence of the K release agrees with
the data reported by Novakovic et al. [2009]. They reported a release of K that was
higher at 1000 °C than at 900 °C in an atmosphere of N,/H,0 for model experiments
with K;CO3—Ca0-SiO, mixtures. Osborn [1992] highlighted the important influence of
temperature on the release and capture of alkali metals. He assumed that there is a
small window of temperature retention that depends on the volatility and the melting
point of aluminosilicates. High temperatures can lead to very fast release, and thus
there may not be sufficient time for retention. However, Gottwald et al. [2001] report-
ed a high-efficiency capture of alkali metals by aluminosilicates at 920 °C during com-
bustion experiments. The authors suggested that the capture reactions occur before
the alkali metals are completely released.

The release of KCl from the Spitsbergen hard coal STN-2 was very low, despite con-
tents of K, Si, and Al that were similar to those of the hard coals STD-1, STD-2, and STD-
3. It is assumed that the low Cl content of STN-2 limits the release of KCI. Another K
species under investigation is KOH. The release of **KOH* (m/z = 56) was detected with
high intensity at 1700 °C. In contrast, only low-intensity signals were detected at 1100—
1400 °C. This can be explained by the shift in the equilibrium of KCl and KOH.
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5.3 Steam content

The experimental results indicate that, in general, the release of vapour alkali
metal compounds (*°K*/**Na0*, **KOH"*, *®NaCl’, "*KCI") increases under the influence
of steam. Previous investigations have highlighted the importance of Cl during the re-
lease of alkali metals [French et al., 1994]. Gottwald et al. reported the disproportion-
ately high increase in alkali metal release in experiments with Cl-doped coals under the
conditions of fluidised bed combustion [2001]. Regarding the chemical analysis, the
amount of Cl is of a quantity that is similar to the amount of Na in the five German
hard coals. In contrast, there is a lack of Cl in the four Renish lignites and the Norwe-
gian hard coal STN-2. The latter showed a very high release of *Kk*/**Na0". Further-
more, the amount of Cl is about one order of magnitude smaller than the amount of
Na. In conclusion, the release of Na in the form of NaCl is limited by the amount of Cl
for coals that lack Cl, as proven by the present experimental results. The noticeably
high release of ¥K*/*Na0" indicates that during the experiments with steam, highly
volatile NaOH is formed, as proposed in the reactions of Eq. 13 [Wei et al., 2008]. In
other words, steam acts as a carrier and enhances the release of Na. Wei et al. pro-
posed a reaction mechanism for the transformation of Na bound to the organic coal
matter in the form of Na-silicates [2008]. In the proposed mechanism, the formation of
NaOH under the influence of steam and the formation of Na,CO3 play an important
role (see Eqg. 14 and 15).

2 Na+2H,0 <> 2 NaOH +H,; Eq. 13
2 NaOH + CO <> Na,CO3+H; Eq. 14
Na,COs + nSiO, — Na,SiOs + CO, Eq. 15

Analogous to the present experiments, NaOH could have led to an increased signal
of m/z = 39 due to fragmentation of the mother molecule (*NaOH = 3**Na0*). Addi-
tionally, Kosminski et al. [2006a-c] reported the formation of NaOH and Na,COs; and
the enhanced formation of liquid Na,COs and Na-disilicate under the influence of
steam. The enhanced release of **NaO" under the influence of steam is an indication
for the correctness of the above-mentioned assumptions and the proposed reaction
mechanism. However, the majority of NaOH flowed away in the gas stream before
further reactions occurred, resulting in a high m/z = 39 signal intensity.
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Complementary explanations of the increase of the m/z = 39 signal are the follow-
ing: Osborn [1992] reported that atomic Na is one of the main gaseous species as a
result of the high temperature and, especially, of the highly reducing environment that
is present in the first milliseconds of the combustion process. Furthermore, atomic Na
is oxidised into NaO" or NaOH, which can form NaCl, Na,SO,4, Na-aluminosilicates, and
other species [Raask, 1985]. Concerning this, in the present experiments, the MBMS
may have detected non-converted NaO".

Additionally, the fragmentation of KOH and KCl could have led to an increase of the
m/z = 39 signal on account of the fragmentation of KOH and KCl and the detection of
39K* by the MBMS. However, the signal intensity of **KOH" and "*KCI* was about two to
three orders of magnitude lower than the signal intensity of m/z = 39. Therefore, it is
unlikely that the m/z = 39 signal is caused primarily by 39K, Furthermore, K present in
coal minerals is almost exclusively fixed in aluminosilicates and, therefore, is com-
monly a non-volatile compound. However, the author also discussed ion-exchange
reactions, as mentioned in Section 2.3. The majority of the release of 3K /*Nao”,
*NaOH*, *®NaCl*, and "*KCI" occurred during devolatilisation at relatively low tempera-
tures of 600 to 1000 °C. Therefore, the occurrence of ion-exchange reactions is as-
sumed to be less important, as already discussed above. In contrast, Gottwald et al.
[2001] reported a high-efficiency capture of alkali metals by aluminosilicates at 920 °C
during combustion experiments. The authors suggested that the capture reactions
occur before the alkali metals are completely released. Furthermore, the capture reac-
tion is enhanced by the presence of steam as shown by Eqg. 8 in Section 2.3. Steam
lowers the melting point of Na,CO3; and promotes the formation of liquid Na-disilicate
[Wei, 2008]. It is assumed that K is influenced in the same way. As a result, less alkali
metal chlorides are released from low-rank coals in the presence of steam if significant
amounts of SiO, are available. This influence can be seen for the four lignites, which
have nearly equal amounts of Na but have different amounts of Al and Si. HKT in par-
ticular showed a relatively low release of alkali metal compounds.

The release of **KOH* was strongly enhanced under the influence of steam for all
coals under investigation. The coals with under-stoichiometric amounts of Cl in com-
parison with K showed an especially high increase under the influence of steam. A
likely explanation for this increase is the enhanced formation of highly volatile KOH
under the influence of steam. In the experiments without steam, the amount of Cl is
the limiting factor of the release of K owing to its ‘carrier function’ during the release
of alkali metal, as mentioned above.

The increase in the amount of *®NaCl" and "*KCI" is likely a result of the enhanced
release of NaOH and KOH and of the reaction equilibrium, as shown in Eq. 16 (Me = Na
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or K). An increased amount of NaOH or KOH leads to an increased amount of NaCl due
to the shift of the reaction balance. However, one must keep in mind that the amount
of Cl is limited, as mentioned above.

MCI+H,0 <> MOH + HCl Eq. 16

In general, the amount of 3HCI* decreased for all coals under investigation under
the influence of steam. A likely explanation is the reaction of NaOH and/or KOH with
HCI and the resulting formation of alkali metal chloride. This is in agreement with the
slightly increased formation of NaCl and KCI.

The ten coals under investigation showed no clear trend regarding the release of
34H25+. On the contrary, the release of 64502+ increased under the influence of steam.
Cernic-Simic highlighted the role of the water—gas reaction in the release of S species
[1962]. However, the kinetic of the reaction is rather slow, and a shift would lead to a
general increase of **H,S* for all coals under investigation (Eq. 17). Steam can react
with hydrocarbons and form CO and H (nascendi). The CO can undergo further reac-
tions, e.g. to form COS [Brinsmead and Kear, 1956]. The result of this would also be a
shift to the side of H,S. Therefore, it can be concluded that the release mechanism of
H,S is more complex and may depend also on the capture of S by alkaline earth metals,
which are known to form excellent getter materials for S under combustion conditions.

COS + H,0 <> CO;+H.S Eq. 17

The slightly increased release of ®450," can be explained by the enhanced reaction
of alkali metal and alkaline earth metal with silica or aluminosilicate under the influ-
ence of steam, which results in a depressed capture capability. But this does not ex-
plain the different behaviour regarding 3H,8*,

To aid in the interpretation of the experimental results regarding the release of al-
kali metal compounds, thermodynamic calculations were performed. The results are
depicted in Figures 60 and 61.

K-aluminosilicate was the main K compound, from a thermodynamic point of view,
when sufficient alumina and silica were available, as shown for all hard coals and the
lignite HKT. In this case, KCI > KOH > K were found to be minor compounds. The lignites
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HKN-S-, HKN-S+, and HKS, which lack alumina and silica, showed some differences. For
these lignites, the formation of alkali metal aluminosilicate was not predicted. The

main alkali metal species were KOH, K, and KCI.

The calculations predicted that Na-aluminosilicate was the main Na compound for
all hard coals and the lignite HKT. Other important Na compounds were NaCl, NaOH,
and Na. The formation of Na-aluminosilicate was not predicted for the lignites HKN-S-,
HKN-S+, and HKS. The main compounds were NaOH, NaCl, and Na. Aluminosilicates
were found to be efficient getters of alkali metals under gasification conditions at 1400
°C from a thermodynamic point of view. In general, the predicted amount of alkali
metal aluminosilicate slightly increased under the influence of steam. Steam leads to a
shift in the equilibrium and enhances the capture of Na by kaolin, as shown in Eqg. 3.
However, the predicted enhanced capture of alkali metals by aluminosilicate has not
been clearly confirmed by the experimental results. This is likely caused by the non-
equilibrium character of the discontinuous experiments. The reaction kinetic of the
capture is strongly favoured by the thermodynamics, but it could not be reached by
the experimental setup. Most of the released alkali metals were simply carried away
by the gas stream before effective capture could occur.

In general, the enhanced formation of alkali metal hydroxide was correctly pre-
dicted by thermodynamic calculations for both hard coals and lignites. However, the
calculated increase is much lower than the experimental findings. The main Cl com-
pound predicted by FactSage for the lignites HKN-S-, HKN-S+, and HKS is NaCl, which is
followed by KCI and HCI. The differences between the experimental findings and the
thermodynamic calculations are mainly kinetic in nature. Equilibrium is not reached
during the batch-scale experiments, as mentioned above.
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5.4 Coal rank

The interpretation of the experimental results was supported by data from coal
analysis (Tables 4 and 5), correlation analysis (Tables 7 and 8), and thermodynamic
calculations (Figures 63 and 64).

The low rank coals show a high positive correlation of the peak areas of **H,S* with
the S content, as shown by the correlation analysis and depicted in Figure 44 in Section
4.4, The release trend of the hard coals is more complex. The high-rank coals can be
divided into two groups: K2-3 and the German hard coals STD-1 to STD-5 had a lower
peak area than did K2-4, K2-5, and STN-2, despite comparable amounts of S. For ex-
ample, the hard coals K2-3 and K2-5 have equal amounts of S, but the peak area of
3H,S" of K2-3 is 97.1% smaller than the peak area of K2-5. Furthermore, the release of
3H,S* for the lignites was found to exhibit a good negative correlation with the Ca/S
ratio. This can be explained by the well-known capability of Ca to capture S. However,
the release of the high-rank coals did not show a significant correlation with the Ca/S
ratio. The correlation of the German hard coals STD-1 to STD-5 exhibited a moderate
negative correlation (-0.63) with the peak areas of 3H,S*. This agrees with recently
published data [Blasing and Mdller, 2010b]. In summary, the release of H,S can be es-
timated with sufficient accuracy using the S and Ca content of the lignites under inves-
tigation.
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Table 7. Correlation matrix of important species and the composition of the low-rank
coals.

"H,ST HCT YK/  “KOH' ®NaCl  KCI'
39Na0+

Cl -0.047 0.023 -0.270 0.397 0.557  -0.035

Ca -0.518 0.062 0.574 -0.420 0267  -0.449

K 0.388 0.546 0.613 -0.057 -0.657  -0.297

Na -0.253 0.134 -0.060 -0.181 0531 -0.501

Ca/S -0.770  -0.453 -0.036 -0.451 0.184  -0.143

Na/Cl  -0.233 0.117 0.229 -0.513 -0.128  -0.450

Table 8. Correlation matrix of important species and the composition of the high-rank
coals.

3,87 3%HCr 3;9K+/ SkoH* ®Nacl'  “cost  %so,  KcIt
NaO*

Cl -0.568 0.830 0.090 -0.426 0.223 -0.524 -0.160 0.755

Ca 0.306 -0.097 -0.181 0.468 -0.013 0.288 0.417 0.118

K 0.462 -0.086 -0.243 -0.324 0.233 0.769 0.715 0.119

Na 0.466 -0.614 0.196 0.871 -0.081 0.441 -0.006 -0.437

Ca/S 0.410 -0.455 -0.200 0.786 -0.199 0.269 0.225 -0.310

Na/Cl 0.699 -0.670 -0.181 0.654 -0.275 0.617 0.457 -0.513
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A likely explanation for the observed dependence of the release of 3*H,S* on rank
was found in the mode of occurrence of S. S can be found in the form of inherent min-
eral matter or as organically bound S. There is a strong correlation between the form
of S and the coal rank. Maes et al. [1997] reported that the most common S functional-
ities in low-rank coals are aryl-aryl and diaryl sulphides. The amount of thiophenes
increases with increasing coal rank, and thiophenes are the main S group for bitumi-
nous coals. Nearly all S is fixed in the form of thiophenes in anthracites. Furthermore,
the authors mentioned that the distribution of S structures can differ widely, even
among coals of the same rank. The thermal stability of organic-bound S increases from
sulphide to thiophene. The release of H,S from pyrite and aryl sulphides occurs in the
same temperature range [Maes et al., 1997]. Therefore, it can be concluded that S in
the lignites, the Norwegian hard coal STN-2, and the hard coals K2-4 and K2-5 is mostly
bound in a volatile form, and it is assumed that the main S forms are inorganic and
organic sulphides. In contrast, the anthracite K2-3 and the German hard coals STD-1 to
STD-5 showed a smaller released amount than was expected on the basis of the S con-
tent. It can be concluded that a significant part of the S is bound in the form of
thiophenes and, therefore, is thermally more stable and is released during the char
reactions phase. Support for the correctness of this conclusion can be found in the
release of #*S0,", as shown in Figure 62. The spectra of several coals of different ranks
are depicted. All coals showed a high-intensity release of °'SO," during the
devolatilisation phase (I), whereas only the anthracite K2-3 and the German hard coals
showed a significant second-phase release during the char reactions phase (ll). A likely
explanation is that the thermally more stable thiophene-bound S was released during
the char reactions phase. The thermally less stable S, which can occur in the form of
inorganic and organic sulphides, was released during the devolatilisation phase at rela-
tively low temperatures. The release during the char reactions phase was not quanti-
fied because the conditions ranged between gasification and combustion conditions.
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Figure 62. Spectra of 64SOZ+ for several coals of different rank at 1400 °C and 7.5 v% O,
with steam.

An additional explanation for the observed rank dependence of the release of
**H,5" was found in the mode of occurrence of Ca. Correlations between coal rank and
coal composition were investigated using 43 coals by Vassilev et al. [1996]. They high-
lighted the differences between low- and high-rank coals. Usually, low-rank coal ash is
rich in basic oxides (e.g. MgO, Ca0), whereas high-rank coal ash is rich in acid oxides
(e.g. SiO,, Al,03). Commonly, the amount of organically fixed inorganic elements—e.g.
organically fixed Ca—decreases with increasing coal rank. This can be explained by the
decrease of functional groups (e.g. -COOH) that occurs with increasing rank. Weakly
fixed, easily exchangeable ions can be removed or can form more stable compounds
during coalification (e.g. ion-exchangeable fixed Ca can form calcite or water soluble
alkali, and alkaline earth compounds can even be leached by ground water). The con-
tent of volatile organic sulphides and the content of available Ca decrease with in-
creasing coal rank. Organically fixed Ca and S are released during devolatilisation, and,
therefore, reactions of S and Ca can occur immediately; this is expressed by the nega-
tive correlation of the Ca/S ratio with the peak areas of >*H,S" for the lignites (Table 7).

The correlation for the hard coals was not of statistical significance (Table 8).

The S/Cl ratio also seems to be important to the release of 3H,S* for both high-
and low-rank coals. The release of 3*H,S" exhibited a moderate-to-good positive corre-
lation with the S/Cl ratio, as shown in Tables 7 and 8. This indicates the occurrence of
competing reactions between S and Cl.

The interpretation of the release of ®°COS*/*°NaCl" is somewhat arguable because
of the overlapping mass-to-charge ratio. An estimation of the ratio of %cos* and
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®NaCl" in the peak area was performed using calculations, as mentioned in Section
4.4. The amount of °°COS* was much higher for the lignites compared with the hard
coals (except K2-4, K2-5, and STN-2). A likely explanation of the differences involves
the release mechanism of COS. The decomposition of pyrite leads to the formation of
H,S under reducing conditions. COS is not formed, as shown by experimental studies
[Van Krevelen, 1993]. Furthermore, the reaction of H,S with CO, leads to the formation
of COS and H,0. However, the reaction kinetic is rather slow, and its contribution to
the release of °COS" is assumed to be rather small, as mentioned above. Pyrite and
thermally stable thiophenes are commonly the main modes of occurrence of S in hard
coals. Therefore, the significant release of ®°COS* for the lignites and the hard coals K2-
4, K2-5, and STN-2 must have its origin in organic sulphide. In contrast, according to
the calculations, the anthracite K2-3 showed no release of 60COSJ'; this can be ex-
plained by the modes of occurrence of S, which are assumed to be mostly pyrite and
thiophenes.

The peak areas of *®HCI* exhibited good positive correlation (0.83) with the Cl con-
tent of the high-rank coals. However, the lignites showed no significant correlation. For
the high-rank coals, a moderate negative correlation was found between the release of
%HCI* and the Na/Cl ratio. A likely explanation is that a high Na/Cl ratio leads to an
enhanced formation of NaCl, which results in a smaller amount of Cl for the formation
of HCl. In contrast, the low-rank coals showed a very poor correlation. Furthermore,
the peak areas of **HCI* were found to exhibit a negative correlation with the S/Cl ratio
for the hard coals, whereas the lignites showed a positive correlation. A likely explana-
tion of these different trends is given by the mode of occurrence of Cl in coal. Yudovich
and Ketris [2006] highlighted two broad modes of occurrence of Cl in coal: inorganic-
bound Cl in the form of discrete minerals—such as salt-like Cl (e.g. NaCl, a common CI-
bearing mineral) or, to a much smaller extent, Cl-containing silicates—and organic-
bound Cl, with ‘semi-organic’ Cl sorbed to the coal matrix as the main form of organic-
bound Cl. In addition, it was pointed out that the majority of Cl in coal seems to be
associated with functional groups of the coal matter [Yudovich and Ketris, 2006; Till-
man et al., 2006; Sheth and Rasnake, 1992]. Therefore, it can be concluded that the
amount of organic-bound Cl decreases with increasing coal rank.

The release of *®NaCl* showed a strong dependence on the coal rank. The high-rank
coals and the low-rank coals showed a moderate negative correlation with the S/Cl
ratio (-0.51 and -0.59). Furthermore, the competitive reactions of S and Cl can influ-
ence the formation of NaCl, and therefore the ratio is important for the regulation of
the formation of HCl and NaCl. It is assumed that S undergoes reactions with alkali
metals that result in a reduced formation of alkali metal chloride. However, this is ra-



102 5 DISCUSSION

ther speculative; the formation of alkali metal sulphide may be of an intermediate
character. Additionally, the occurrence of alkali metal sulphide was not predicted by
the thermodynamic calculations.

Likely explanations for the observed differences are the following: Usually, much of
the Na in lignite is found to be surface-bound to the coal matrix or associated with Cl;
only some exists as Na-silicates [Raask, 1985; Yudovich and Ketris, 2006]. The amount
of organically fixed Na decreases with increasing coal rank. Loosely bound Na usually
forms volatile species during coal conversion. The Cl and the Na content of coal are
correlated. In principle, the Cl content is a reliable indicator of the NaCl content of the
coal. The differences in the peak areas can be explained by the mode of occurrence of
Na. The lignites K2-1, K2-2, HKN-S-, HKN-S+, HKS, and HKT, as well as the hard coals K2-
4, K2-5, and STN-2, have a high Na/Cl ratio, e.g. 16.2 for K2-2 and 44.9 for K2-4. It can
be concluded that a significant portion of the Na did not occur in the form of NaCl.
Furthermore, it is likely that a portion occurred in non-volatile form. The other coals
have a relatively low Na/Cl ratio, and therefore it can be assumed that the portion of
highly volatile Na is larger. These are likely explanations for the different release char-
acteristics of *®NaCl*. Furthermore, the ash-rich coals have a higher potential for the
capture of Na, e.g. by aluminosilicate, which can lead to a reduced release of Na com-
pounds. The suppression due to capture becomes increasingly significant at a kaolinite
(Al,05*2Si0,*2H,0)/Na molar ratio greater than 1.5 for a devolatilisation temperature
of 1220 °C as mentioned in Section 2.3.

Additionally, the relatively low release of STN-2 can be explained by the lack of Cl,
which functions as a carrier for the release of Na. Former investigations highlighted the
importance of Cl during the release of alkali metals. In this context, Cl was often re-
ferred to as a carrier [Tillman et al., 2009]. Gottwald et al. [2002] reported the dispro-
portionately high increase in alkali metal release in experiments with Cl-doped coals
under fluidised bed combustion conditions. Regarding the chemical analysis in Tables 4
and 5, the amount of Cl is similar to the amount of Na for the five German hard coals.
In contrast, there is a lack of Cl among the four Renish lignites and the Norwegian hard
coal STN-2. The amount of Cl is about one order of magnitude smaller than the amount
of Na. In conclusion, the release of Na in the form of NaCl is limited by the amount of
Cl for coals that lack Cl, as shown by the experimental results. The noticeably high re-
lease of *NaO" is an indicator that, during the experiments with steam, highly volatile
NaOH is formed, as discussed in Section 5.3.

In general, the release of **K"/**Na0O" was high for the low-rank coals and low for
the high-rank coals. An exception was the relatively high release from the high-rank
coal K2-4. There was a difference of two orders of magnitude between the highest and



5 DISCUSSION 103

the lowest release. No significant correlation between the coal composition and the
peak areas was found. Complementary explanations regarding the increase of the m/z
= 39 signal were given above.

The correlation coefficients of *KCI* and *°KOH* must be interpreted with care on
account of the low signal-to-noise ratio of the signals. The peak areas were of equal
quantity. In general, the release of the K species *°KOH" and *KCI* was much smaller
(two orders of magnitude) than the release of Na species, reflecting the commonly
non-volatile character of K bound in coal. There was no significant trend related to the
release of ®KOH" and the K content for the 17 coals under investigation. The release of
the high-rank coals STD-1, STD-2, STD-3, STD-4, and STD-5 was one order of magnitude
lower than the release of the low-rank coal with the highest release (K3-1). The peak
areas exhibited a high positive correlation with the Cl content of the high-rank coals.
For the hard coals under investigation, the peak areas of **KOH* exhibited a high posi-
tive correlation (0.99) with the Na/Cl ratio, a high positive correlation with the Na/Si
ratio (0.92), a high positive correlation with the Na/Al+Si ratio, a high positive correla-
tion with the S/Cl ratio, and good negative correlations with the K/Si and K/Al+Si ratios
(Table 8).

To aid in the interpretation of the experimental results, thermodynamic calcula-
tions were performed. The results are depicted in Figures 63 and 64.

Na-aluminosilicate is the main Na compound, from a thermodynamic point of view,
when sufficient alumina and silica are available, as shown for the nine hard coals and
the lignite HKT. The order of Na-containing compounds, starting with those with the
highest amount, is Na-aluminosilicate > NaCl > NaOH > Na. The formation of Na-
aluminosilicate was not predicted for the lignites HKN-S-, HKN-S+, and HKS. The main
alkali metal species for the lignites HKN-S-, HKN-S+, and HKS were NaOH, Na, and NaCl.
In most cases, NaOH was the main species.

According to the calculated predictions, K-aluminosilicate was the main K com-
pound for all hard coals and for the lignites K3-1 and HKT. Other important K com-
pounds were KCl, KOH, and K. For the hard coals, the amount of KCl exceeds the
amount of KOH, except for STN-2. The main K compounds of the lignites K2-1, K2-2,
K3-2, HKN-S-, HKN-S+, and HKS were KOH, KCI, and K. The formation of K-
aluminosilicate was not predicted for these lignites.

In general, it was correctly predicted that the amount of alkali hydroxide would ex-
ceed the amount of alkali chloride for the lignites. The formation of alkali metal hy-
droxide was correctly predicted by thermodynamic calculations for both hard coals
and lignites. However, the calculated increase was much lower than the experimental
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findings. In addition, the calculations correctly predicted that the amount of NaOH and
KOH formed from the lignites (except K3-1 and HKT) exceeded the amount formed
from the hard coals, whereas the formation of NaCl from the hard coals was higher
than that from the lignites during the experiments. This was not correctly predicted by
the calculations. Aluminosilicates were found to be an efficient getter of alkali metals
under gasification-like conditions at 1400 °C from a thermodynamic point of view. The
differences between the experimental findings and the thermodynamic calculations
are mainly kinetic in nature. Equilibrium is not reached during the batch-scale experi-
ments.
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5.5 Pressure

Regarding the release of *®HCI*, *®NaCl®, and ®*SO,", the experimental results are
comparable to the results reported by Oleschko and Miller [2007a] and, specifically
regarding NaCl, to the results of Reichelt et al. [2001]. Oleschko and Muiller [2007a]
explained the decreasing release of **HCI*, *®NaCl*, and %*SO," with increasing pressure
by pointing out that these species have a lower concentration in the gas phase. The
increase in absolute pressure for a given partial pressure of a vapour compound, which
is in equilibrium in a condensed phase, leads to a lower concentration in the gas phase.
However, the influence is assumed to be rather small in the pressure range of the
pressure experiments (2—6 bar). Additional explanations are now provided. In princi-
ple, there are two main mechanisms: first, the reduced formation of volatile com-
pounds, which includes the explanation of Oleschko and Miiller [2007a], and second,
the enhanced capture of volatilised compounds. The investigation of Sathe et al.
[2003] of the release of alkali and alkaline earth metals during devolatilisation of Victo-
rian brown coal support the proposed classification. However, the two mechanisms
occur at the same time, and the fraction of S released/captured is in variance regarding
the conditions and the coal under investigation.

The influence of pressure on the release of **H,S" and ®*S0," can be explained by
the shift of several reactions, as partially shown in Section 2.3. The decomposition
equilibrium of FeS, is shifted to the educts side by increasing pressure. Therefore,
smaller amounts of gaseous S species were formed with increasing pressure. However,
the shift is rather slight under the present experimental conditions, as shown by ther-
modynamic calculations and as assumed from the results of Xu and Kumagai [2003]. To
describe the present results satisfactorily, further explanations are needed. A likely
explanation of the release trend of 34,S" is the following: The formation of H,S and
char-bound S was described by Zevenhoven and Kilpinen [2002], as shown by way of
example in the non-stoichiometric Eq. 17 and Eqg. 18. Reaction 18 is suppressed under
increasing pressure. Furthermore, H,S can react with the remaining char to form stable
thiophenic structures (Eq. 19). The reaction of released S with char is enhanced under
increased pressure. As a result, smaller amounts of 344,S* were formed under in-
creased pressure; this is in agreement with the present results and the results of Nich-
ols et al. [1989].

Fuel-S —> H,S + Char + Volatiles Eq. 18
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Fuel-S —> Char-S + Volatiles Eqg. 19

The released amount of the alkali metal species **K*/**Na0", *®Nacl*, and "*KCI* de-
creases with increasing pressure for both hard coals and lignites. A likely explanation is
the following: In general, temperature and residence time have a significant influence
on capture reactions. The role of the temperature was discussed in Section 5.2. The
residence time of the volatilised species in the remaining coal is very important for the
capture. Thus, the influence of pressure on the residence time needs to be discussed.
Yang et al. [2007] investigated the influence of pressure on coal devolatilisation (up to
50 bar). They found that the majority of the volatiles evolved at 400-800 °C. The
devolatilisation rate decreased and the amount of char increased with increasing pres-
sure. Additionally, Gadiou et al. [2002] reported that increasing pressure leads to an
increasing residence time of volatile products in the remaining char. In summary, the
retarded mass transfer leads to the residence time of the released species increasing
with increasing pressure; this effect can enhance capture reactions. On this topic,
Sathe et al. [2003] reported an increased retention of Na within the coal char with in-
creasing pressure. They explained the observation by referring to the retarded mass
transfer due to increasing absolute pressure as well as to the chemical reactions re-
sponsible for the formation of volatile Na compounds.

The release of **HCI" decreased for all coals under investigation. Regarding the re-
actions in Eq. 1 and Eq. 2 in Section 2.3, the increasing pressure caused a shift in the
equilibrium to the educt side. Additionally, the retarded mass transfer out of the char
could cause a reduced release of *HCI* during the devolatilisation phase.

The results of thermodynamic modelling are shown in Figures 65 and 66. The most
stable alkali metal compounds predicted by thermodynamic calculations are alkali
metal chlorides, alkali metal hydroxides, atomic alkali metal species, and alkali metal
aluminosilicates. Alkali metal aluminosilicates are by far the most abundant alkali met-
al compound for all hard coals and for the silica- and alumina-rich lignite HKT. For ex-
ample, Na fixed in NaAlSizOg accounts for 72.8-80.1% of the total amount of Na in
STD-1. For the lignites except K3-1 and HKT, alkali metal hydroxides are the most
abundant alkali metal species, e.g. K fixed in hydroxide accounted for 80.2-86.5% of
the total K in HKN-S-. The formation of alkali metal aluminosilicates and alkali metal
hydroxides is, in most cases, slightly enhanced by increasing pressure. The formation
of alkali metal chlorides and metallic species, in most cases, slightly decreases with
increasing pressure, e.g. a decrease of 20% of KCl is predicted for STN-2 under pressure
increasing from 2 to 6 bar, and a decrease of 46% of NaCl is predicted for similarly in-
creasing pressures.
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The results of the thermodynamic modelling confirm the assumption that in-
creased pressure leads to retarded mass transfer and to enhanced capture of NaCl and
KCl.
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6 Summary and recommendations

The development of cleaner, more efficient techniques in next-generation coal
power plants is becoming increasingly important, especially regarding to the discussion
of the influence of CO, emissions on global warming. Coal-based combined-cycle
power generation systems are currently under development. A promising coal utilisa-
tion process is the integrated gasification combined cycle (IGCC) process. In IGCC, a
broad range of different coals can be used to produce fuel gas for gas turbines or syn-
thesis gas for chemical applications. In addition, it offers the possibility of CO, seques-
tration. The first process step is the gasification of coal in an entrained-flow gasifier,
which is operated at temperatures up to 1500 °C and pressures up to 3.0 MPa and
which is able to use a wide variety of coals. The direct use of hot fuel gas for driving a
gas turbine requires gas clean-up to prevent downstream parts of the gasifier from
experiencing several problems, e.g. corrosion of the turbine blades and poisoning of
catalysts and membranes caused by Na, K, S, and Cl compounds that are released dur-
ing gasification. An increased efficiency and a decreased amount of harmful species
can be achieved through hot fuel gas cleaning. This clean-up technique requires a
comprehensive knowledge of the release characteristics of inorganic coal constituents.
Despite research efforts during the last few decades, there are many open questions
involving the release and the underlying release mechanisms, especially regarding the
process conditions of high-temperature coal gasification.

The aim of this thesis was to provide enhanced knowledge of the effect of key
process parameters (content of oxygen and steam, temperature, and pressure) and of
the chemical constitution of several different coals on the release of inorganic species
from high-temperature coal gasification. The focus was on the release of Na, K, S, and
Cl species. Experiments were carried out under well-defined conditions with an em-
phasis on the influence of the conditions of entrained-flow gasification on the release.

The experimental setup consisted of atmospheric flow tube furnaces and a pres-
surised furnace. Online, in-situ analysis of the high-temperature product gas was car-
ried out using molecular beam mass spectrometry. The rank of the investigated coals
ranged from lignite to anthracite and covered a broad spectrum of different fuels with
assumed qualitative and quantitative differences in the release characteristics. Addi-
tionally, experiments with model substances were performed in order to obtain more
detailed information on the release mechanisms of selected species. The results of the
experimental investigation were compared with thermodynamic calculations.
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The experiments, as well as the equilibrium modelling, provided new information
on the release of Na, K, S, and Cl species under the conditions of an entrained-flow
gasifier. However, the significance of the calculations was often limited which could be
caused by the non-equilibrium character of the experiments. Therefore, an advanced
model including kinetics and thermodynamics of coal gasification should be invented.

Key chemical species detected by the mass spectrometer were **H,S*, *°*HCI",
3K*/*¥Na0”, *°KOH", *Nacl*, ©cos*/®Nacl*, ®*s0,*, and 7*KCI*. The main findings are
presented below.

Basic investigations on the oxygen content: Nine coals were gasified at 1400 °C in
He/20% O, and He/7.5% O,. The release of the inorganic species 34,5*, 3®Hel, *8Nacl,
#50,", and "*KCI" occurred mainly during devolatilisation and the char reactions phase.
From a qualitative point of view, Na, K, and Cl species were unaffected by the oxygen
content, whereas S formed H,S and SO,. Na,SO,4 was not detected. From a quantitative
point of view, several effects were found that allowed for the determination and con-
firmation of release mechanisms. Under the influence of a hydrogen-rich atmosphere,
the dissociation of carboxylic-bound Na is enhanced. Therefore, the release of Na is
likely to be enhanced during the gasification experiments. Furthermore, the capture of
Na by Al-silicates is inhibited during the gasification experiments because H,O and
oxygen play an important role in the capture mechanism. These effects seem to over-
come the enhanced capture capability, as described in the following: During the re-
lease process in the coal particle, the gaseous Na compounds must diffuse through a
mineral-rich char matrix, and a significant fraction of the Na can react with silica. Re-
tarded mass transfer, e.g. caused by a carbon layer or slower char conversion, should
lead to a longer residence time of the released species and to an enhanced capture.

Temperature: Ten coals were gasified in He/7.5% O, at 1100-1700 °C. For the lig-
nites, the release of **HCI" decreased with increasing temperature, whereas the re-
lease of *NaCl® increased for HKN-S-, HKN-S+, and HKS. Indications are given that the
major release mechanism is the dissociation of carboxylic-bound Na species caused by
reaction with hydrogen radicals. The mechanism is able to explain the increased re-
lease of *®NaCl* due to enhanced dissociation with increasing temperature. Addition-
ally, higher amounts of NaCl lead to a lower amount of HCl as a result of reaction equi-
librium. The divergent release of the lignite HKT is explained by the capture of Na by
aluminosilicates, which seems to compensate for the enhanced release. For the hard
coals, the release of 56KOH", SSNaCI+, and "*KCI" increased with increasing temperature.
The released amount of **HCI" increased from 1100 to 1400 °C and decreased from
1400 to 1700 °C. The release of ®*SO," decreased with increasing temperature,
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whereas the amount of 3*H,S" increased. This is explained by a higher amount of hy-
drogen that occurs with increasing temperature, which enhances the formation of H,S.

Steam: Ten coals were gasified at 1400 °C and 1 atm in a gas stream of He/7.5% O,
with additional steam. The amount of *K*/>*Na0"* and *°KOH"* species increased signifi-
cantly under the influence of steam. Cl and steam were identified as especially impor-
tant to the release mechanism of Na and K. The present results confirm the release
mechanism proposed in the literature, which includes the formation of intermediate
NaOH. There were some differences found in the comparison of the experimental re-
sults and the thermodynamic calculations. The enhanced formation of alkali metal hy-
droxide under the influence of steam was correctly predicted. However, the calculated
increase is much lower than that from the experimental findings; this is probably an
effect of the non-equilibrium nature of the experiments. Aluminosilicates were found
to be materials for the efficient capture of alkali metals under gasification conditions at
1400 °C from a thermodynamic point of view.

Coal rank: Seventeen coals were gasified at 1400 °C and 1 atm in a gas stream of
He/7.5% 0,/2.5% H,0. The modes of occurrence of several inorganic coal constituents
were shown to have a remarkable effect on the release, e.g. the results could distin-
guish between thiole-bound S and thiophenic-bound S. The S content of coal is insuffi-
cient for predicting the release of **H,S*. The release of **H,S" can be estimated with
sufficient accuracy using the Ca/S ratio of the lignites under investigation. The release
trend of the hard coals was more complex. However, the mode of occurrence of Ca
seems to have a significant influence on the release of 344,S* for all coals under inves-
tigation. The S/Cl ratio seems to be important for the release of 3,5t regardless of
the coal rank. This indicates the occurrence of competing reactions between S and Cl.
The release of *®NaCl* showed a strong dependence on the coal rank. The high-rank
coals and the low-rank coals exhibited a moderate negative correlation with the S/Cl
ratio (-0.51 and -0.59). Furthermore, the competitive reactions of S and Cl can influ-
ence the formation of NaCl, and therefore the ratio is important for the regulation of
the formation of HCl and NaCl. It is assumed that S undergoes reactions with alkali
metals, resulting in a reduced formation of alkali metal chloride. The ash-rich coals
have a higher potential for the capture of Na, e.g. by aluminosilicate, which can lead to
a reduced release of Na compounds; this has been confirmed by the results of ther-
modynamic calculations. Na-aluminosilicate was the main Na compound, from a ther-
modynamic point of view, when sufficient alumina and silica were available. For low-
ash coals, the main alkali metal species were NaOH, Na, and NaCl. In most cases, NaOH
was the main species.
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Pressure: Nineteen coals were gasified in He/7.5% O, at 2—6 bar and 1325 °C. All
coals under investigation showed a decreasing release of the vapour species 3H,5*,
BHel, “kt/*INa0*, *8NaCl*, ®s0,*, and 7*KCI* with increasing pressure. Likely explana-
tions include a shift in reaction balance, retarded mass transfer, and, in consequence,
an enhanced capture due to longer residence time of the volatilised compounds. In
general, the thermodynamic calculations confirm the trends of decreasing alkali metal
chloride release and of enhanced formation of alkali metal aluminosilicates.

Finally, the results of the study are used to formulate some important recommen-
dations, from a scientific point of view, for the operation of a high-temperature gasi-
fier. This means that several important variables—e.g. economic considerations—are
excluded.

The high-temperature gasifier should work under elevated pressure on account of
the extended residence time of the released species in the remaining char and the re-
sulting enhanced capture, e.g. of alkali metals by aluminosilicates.

It is assumed that blending coals would have synergetic effects, e.g. blending clay-
rich coals with Na-rich coals in order to utilise the natural capture capability of clay.
However, various coal blends and the addition of additives should be investigated in
more detail in order to better predict these synergetic effects.

The coals should have high aluminosilicate content on account of aluminosilicate’s
ability to capture alkali metals. Aluminosilicate could be used as an additive, as is al-
ready seen in the use of limestone to reduce the amount of S in combustion flue gas.

The alkali metal/Cl ratio of the coal should be high in order to minimise the amount
of gaseous alkali metal chloride. This can be achieved by blending and gasification of a
mixed coal.

The Cacarboxylic bound)/S ratio should be high in order to reduce the amount of re-
leased H,S. For this reason, it could be beneficial to blend lignite of high Ca content
with high-sulphur coals.

The steam content is a critical variable: first, it increases the release of alkali metal
in the form of hydroxide species, and second, it decreases the amount of gaseous alkali
metal species as a result of enhanced capture by aluminosilicates. However, the ther-
modynamic calculations showed a much lower increase.
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9 Appendix

9.1 Setup of the MBMS

Table A. 1. Setup of the MBMS.

129

lonisation:

Lens:

Recipient:

Cathode

Optic

Emission voltage:
Emission current:

lon region:
Extractor:
Lens 1/3:
Lens 2:

Quadrupole entrance:

Quadrupole exit:

Dynode voltage:
Dynode polarity:

Front nozzle:
Skimmer:
Blende Kammer 2/3:

-50V
1.0mA

8V
-10V
-370V
9V
-10V
-40V

5000 V
negative

0.3 mm
1.0 mm
1.5mm
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9.2 Results in tables

9.2.1 Influence of the oxygen content

9 APPENDIX

Table A. 2. Experimental results: Averaged, normalised peak areas (-).

7.5v% 0,

20v% O,

m/z

STD-1
STD-2
STD-3
STD-4
STD-5

m/z
HKN-S-
HKN-S+
HKS
HKT

m/z

STD-1
STD-2
STD-3
STD-4
STD-5

m/z
HKN-S-
HKN-S+
HKS
HKT

34
2.68E-03
9.55E-03
2.62E-02
7.65E-04
3.37E-03

34
3.08E-02
3.86E-02
2.21E-02
2.92E-02

34
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

34
0.00E+00
0.00E+00
0.00E+00
0.00E+00

36
1.34E-02
1.90E-02
2.76E-02
2.09E-02
3.62E-02

36
2.75E-03
5.38E-03
5.08E-03
5.70E-03

36
2.63E-02
4.02E-02
4.24E-02
3.22E-02
5.82E-02

36
1.41E-03
1.88E-03
2.91E-03
3.62E-03

58
3.68E-03
4.73E-03
4.35E-03
4.05E-03
4.54E-03

39
3.77E-01
4.57E-01
7.40E-01
3.93E-01

58
1.28E-02
1.64E-02
1.67E-02
5.03E-02
4.15E-02

39
6.88E-02
3.93E-01
4.55E-01
2.01E-01

64
3.94E-02
2.56E-02
3.90E-02
4.35E-02
6.23E-02

58
3.59E-03
5.71E-03
6.26E-03
1.94E-03

64
6.54E-02
6.16E-02
9.66E-02
6.77E-02
9.93E-02

58
1.53E-03
2.15E-03
2.10E-03
6.69E-04

74
6.79E-05
9.75E-05
1.12E-04
1.39E-04
1.45E-04

64

74
4.01E-03
9.86E-03
7.61E-03
2.17E-02
1.38E-02

64
1.07E-02
3.45E-02
2.25E-02
2.21E-02
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Table A. 3. Results of thermodynamic modelling: Fugacity in atm.

Lambda 1.0

Lambda 0.5

STD-1
STD-2
STD-3
STD-4
STD-5
HKN-S-
HKN-S+
HKS
HKT

STD-1
STD-2
STD-3
STD-4
STD-5
HKN-S-
HKN-S+
HKS
HKT

H,S
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
6.31E-08
2.98E-06

H,S
1.99E-03
2.09E-03
2.41E-03
2.65E-03
3.37E-03
6.82E-04
1.65E-03
1.26E-03
1.82E-03

HCl

5.30E-05
6.16E-05
8.92E-05
5.99E-05
1.09E-04
1.08E-06
2.90E-06
1.39E-05
6.11E-06

HCl

4.37E-05
5.44E-05
7.45E-05
3.81E-05
7.92E-05
1.97E-06
5.12E-06
1.02E-05
3.98E-06

Nacl

1.35E-04
2.32E-04
2.19E-04
2.43E-04
4.19E-04
3.26E-05
7.95E-05
4.85E-05
2.21E-05

Nacl

9.90E-05
1.80E-04
1.72E-04
2.74E-04
4.92E-04
2.96E-05
7.22E-05
5.46E-05
2.34E-05

S0,

2.28E-03
2.42E-03
2.88E-03
3.07E-03
3.69E-03
8.08E-04
1.98E-03
1.49E-03
2.14E-03

S0,
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
8.45E-06
1.86E-05
1.45E-05
1.33E-05

131

KCl
1.73E-04
1.89E-04
2.64E-04
1.84E-04
3.18E-04

KCl
2.19E-04
2.49E-04
3.25E-04
2.08E-04
3.73E-04
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9.2.2 Influence of the temperature

Table A. 4. Experimental results: Averaged, normalised peak areas (-).

Temperature 1100 °C 1400 °C 1700 °C

m/z=34 Mean Variance Mean Variance Mean Variance
STD-1 1.78E-03 4.69E-04 1.23E-02 7.45E-03 5.54E-02 1.46E-02
STD-2 1.08E-03 2.38E-04 2.31E-02 7.00E-03 6.71E-02 9.25E-03
STD-3 4.33E-04 1.11E-04 3.58E-02 1.17E-02 1.12€-01 1.42E-02
STD-4 2.86E-03 1.71E-03 2.42E-03 1.48E-03 5.99E-02 1.48E-02
STD-5 8.83E-04 3.38E-04 4.48E-03 1.86E-03 5.20E-02 1.28E-02
STN-2 4.26E-03 2.89E-03 6.61E-02 1.73E-02 7.83E-02 1.64E-02
HKN-S- 2.80E-02 3.47E-03 3.08E-02 2.79E-03 1.29E-02 2.62E-03
HKN-S+ 3.36E-02 8.16E-03 4.25E-02 4.94E-03 2.17E-02 2.87E-03
HKS 3.57E-02 3.63E-03 2.65E-02 1.82E-03 8.28E-03 1.95E-03
HKT 4.36E-02 1.04E-03 3.80E-02 2.37E-03 3.35E-02 4.19E-03
m/z=36 Mean Variance Mean Variance Mean Variance
STD-1 5.14E-02 2.57E-02 6.04E-02 3.90E-03 3.71E-02 1.47€-02
STD-2 8.39E-02 1.02€-02 9.71E-02 4.03E-03 7.03E-02 1.45€-02
STD-3 1.08€E-01 9.39E-03 1.16E-01 5.30E-03 8.01E-02 1.35E-02
STD-4 6.42E-02 7.69E-03 8.56E-02 2.41E-03 4.65E-02 5.08E-03
STD-5 1.10€-01 1.25€E-02 1.62E-01 4.80E-03 6.74E-02 1.80E-02
STN-2 4.74E-03 1.67E-03 9.65E-03 1.29€-03 5.04E-03 1.98E-03
HKN-S- 2.90E-03 9.29E-04 3.45E-03 7.74E-04 1.32€E-03 4.19E-04
HKN-S+ 6.94E-03 9.24E-04 5.59E-03 6.21E-04 1.38E-03 7.20E-04
HKS 4.67E-03 7.53E-04 3.73E-03 4.46E-04 1.88E-03 4.82E-04
HKT 6.30E-03 1.00€-03 4.66E-03 1.10€-03 4.90E-03 7.63E-04
m/z =58 Mean Variance Mean Variance Mean Variance
STD-1 2.88E-03 1.92€-03 3.44E-03 6.71E-04 5.29E-03 2.25E-03
STD-2 3.40E-03 1.51E-03 5.06E-03 1.32E-03 1.06E-02 1.65E-03
STD-3 5.16E-03 1.31E-03 5.62E-03 9.36E-04 1.11E-02 1.49€-03
STD-4 4.48E-03 1.72€-03 3.48E-03 1.23E-03 9.37E-03 1.69E-03
STD-5 1.00€E-02 3.51E-03 4.35E-03 1.25€-03 1.02€-02 2.52E-03
STN-2 3.16E-04 2.92E-04 7.48E-04 2.04E-04 1.15€-03 2.12E-04
HKN-S- 2.77E-03 5.83E-04 3.37E-03 3.09E-04 3.29E-03 1.22€E-03
HKN-S+ 2.60E-03 2.93E-04 4.78E-03 6.51E-04 5.93E-03 9.72E-04
HKS 3.34E-03 6.78E-04 4.92E-03 5.59E-04 5.42E-03 4.59E-04

HKT 1.49E-03 2.60E-04 1.63E-03 3.20E-04 1.54E-03 3.92E-04
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m/z=64
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2
HKN-S-
HKN-S+
HKS
HKT

m/z=74
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

Mean
1.42E-01
1.53E-01
2.56E-01
1.85E-01
2.90E-01
2.85E-01
4.71E-02
1.25E-01
6.02E-02
1.13E-01

Mean
4.86E-05
1.05E-05
1.20E-04
4.74E-05
1.02E-04
7.86E-06

Variance
7.76E-03
1.02E-02
8.99E-03
1.07E-02
9.29E-03
1.12E-02
6.12E-03
1.32E-02
2.97E-02
1.14E-02

Variance
2.58E-05
3.81E-06
4.44E-05
2.53E-05
3.54E-05
4.69E-06

Mean
1.48E-01
1.30E-01
2.08E-01
1.71E-01
2.50E-01
1.81E-01
3.79E-02
9.76E-02
7.31E-02
1.13E-01

Mean
3.21E-05
1.84E-04
6.24E-05
4.68E-05
1.61E-04
1.72E-05

Variance
1.87E-02
1.27E-02
2.01E-02
1.05E-02
1.37E-02
3.76E-02
1.18E-02
3.45E-03
2.60E-03
1.02E-02

Variance
1.05E-05
1.05E-04
2.78E-05
1.48E-05
7.85E-05
1.81E-05

Mean
9.59E-02
6.74E-02
8.05E-02
1.29E-01
1.32E-01
8.58E-02
5.28E-02
1.20E-01
9.77E-02
8.94E-02

Mean
7.90E-05
3.44E-04
4.81E-04
1.22E-03
2.22E-03
3.45E-05

133

Variance
2.54E-02
1.48E-02
1.40E-02
2.24E-02
4.05E-02
2.94E-02
4.55E-03
2.46E-03
7.46E-03
1.01E-02

Variance
4.03E-05
8.89E-05
1.82E-04
1.45E-04
2.37E-04
1.94E-05
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9.2.3 Influence of the steam content

9 APPENDIX

Table A. 5. Experimental results: Averaged, normalised peak areas (-).

m/z=23
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z=34
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z=36
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

With steam

Mean Variance

4.06E-02 1.20€E-02
3.23E-02 1.48€E-02
9.24E-02 5.00E-02
1.37€E-02 2.20E-03
7.58E-03 2.10E-03
1.19€-02 2.09E-03
9.67E-03 1.84E-03
1.70€E-02 5.49E-03
2.58E-02 2.79E-03
1.60E-02 5.89E-03
Mean Variance

2.68E-02 2.39E-03
4.51E-02 2.91E-03
1.62E-02 8.43E-03
2.23E-02 5.63E-03
9.59E-03 6.35E-03
9.19E-03 3.94E-03
9.00E-03 4.69E-03
3.73E-03 1.67E-03
1.01E-02 8.75E-03
5.14E-02 6.25E-03
Mean Variance

3.53E-03 4.17E-04
4.53E-03 1.08€E-03
2.94E-03 3.94E-04
4.37E-03 1.17€-03
5.19E-02 4.52E-03
6.51E-02 1.68E-02
9.36E-02 9.91E-03
6.38E-02 2.19E-02
1.21E-01 1.42€E-02
4.06E-03 1.11E-03

Without steam

Mean
0.0112
0.0101
0.0113

3.51E-03
5.11E-03
7.63E-03
7.85E-03
5.99E-03
8.02E-03
1.24€E-03

Mean
0.0308
0.0425
0.0265

0.038
1.23€E-02
2.31E-02
3.58E-02
2.42E-03
4.48E-03
6.61E-02

Mean
3.45E-03
5.59E-03
3.73E-03
4.66E-03
6.04E-02
9.71E-02
1.16E-01
8.56E-02
1.62E-01
9.65E-03

Variance
5.35E-03
1.54E-03
4.08E-04
5.29E-04
1.53E-03
4.58E-04
3.73E-04
5.25E-04
1.42€E-03
4.92E-04

Variance
2.79E-03
4.94E-03
1.82E-03
2.37E-03
7.45E-03
7.00E-03
1.17€-02
1.48€E-03
1.86E-03
1.73€E-02

Variance
7.74E-04
6.21E-04
4.46E-04
1.10€-03
3.90E-03
4.03E-03
5.30E-03
2.41E-03
4.80E-03
1.29€-03
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m/z=39
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z=56
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z=58
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z =60
HKN-S-
HKN-S+
HKS

Mean
3.71E-01
2.97E-01
8.46E-01
1.08E+00
2.90E-02
3.72E-02
3.19E-02
6.00E-02
7.52E-02
5.80E-02

Mean
1.90E-03
2.49E-03
1.40E-03
5.94E-04
4.69E-04
4.29E-04
4.67E-04
4.13E-04
4.93E-04
3.90E-03

Mean
4.68E-03
8.00E-03
7.10E-03
1.83E-03
5.48E-03
7.01E-03
6.14E-03
1.16E-02
1.80E-02
2.22E-03

Mean
7.28E-03
1.06E-02
6.68E-03

Variance
1.19E-01
2.22E-01
4.25E-01
1.59E-01
8.32E-03
2.22E-02
1.36E-02
2.23E-02
1.44E-02
1.37E-02

Variance
4.85E-04
7.41E-04
5.64E-04
5.53E-04
2.88E-04
3.01E-04
1.93E-04
3.44E-04
2.17E-04
1.74E-03

Variance
6.71E-04
1.38E-03
1.43€-03
5.94E-04
1.07E-03
3.49E-03
2.21E-03
4.40E-03
2.45E-03
7.33E-04

Variance
3.06E-04
7.15E-04
5.55E-04

Mean

0.0706
8.05E-03

0.0181

0.0157
9.69E-03
2.17E-02
1.81E-02
1.43E-02
1.89E-02
2.87E-03

Mean
5.31E-04
5.75E-04
6.66E-04
4.21E-04
3.39E-05
2.24E-05
1.84E-05
3.42E-05
2.59E-05
6.03E-06

Mean
3.37E-03
4.78E-03
4.92E-03
1.63E-03
3.44E-03
5.06E-03
5.62E-03
3.48E-03
4.35E-03
7.48E-04

Mean
5.15E-03
7.34E-03
6.10E-03

Variance

0.0895
4.50E-03

0.0186

0.0262
1.89E-03
1.00E-02
4.65E-03
2.73E-03
4.89E-03
1.12E-03

Variance
3.20E-04
3.49E-04
2.34E-04
1.10E-04
2.13E-05
2.45E-05
1.56E-05
7.42E-05
4.19E-05
6.08E-06

Variance
3.09E-04
6.51E-04
5.59E-04
3.20E-04
6.71E-04
1.32E-03
9.36E-04
1.23E-03
1.25E-03
2.04E-04

Variance
6.17E-04
9.35E-04
4.43E-04
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HKT

STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z=64
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

m/z=74
HKN-S-
HKN-S+
HKS
HKT
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2

4.46E-03
2.32E-03
3.24E-03
2.85E-03
3.64E-03
6.59E-03
6.25E-03

Mean
5.35E-02
9.83E-02
1.13E-01
1.63E-01
2.02E-01
1.72E-01
2.90E-01
2.09E-01
3.19E-01
2.70E-01

Mean
1.35E-04
2.12E-04
1.62E-04
1.29E-04
1.74E-04
2.71E-04
3.76E-04
3.31E-04
5.43E-04
1.18E-04

3.51E-04
1.27E-03
1.69E-03
1.14E-03
1.45E-03
1.13E-03
1.08E-03

Variance
2.95E-03
1.06E-02
9.80E-03
7.70E-03
2.84E-02
3.03E-02
2.34E-02
4.12E-02
1.89E-02
4.38E-02

Variance
7.95E-05
7.85E-05
3.66E-05
4.32E-05
2.11E-04
1.96E-04
1.19E-04
1.75E-04
1.21E-04
9.97E-05

6.60E-03
1.54E-03
3.08E-03
4.01E-03
9.63E-04
1.82E-03
4.02E-03

Mean
0.0379
0.0976
0.0731

0.113
1.48E-01
1.30E-01
2.08E-01
1.71E-01
2.50E-01
1.81E-01

Mean
1.28E-04
1.82E-04
1.32E-04
3.59E-05
3.21E-05
1.84E-04
6.24E-05
4.68E-05
1.61E-04
1.72E-05
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4.85E-04
6.81E-04
8.52E-04
1.45E-03
9.06E-04
2.74E-04
1.72E-03

Variance

0.0118
3.45E-03
2.60E-03

0.0102
1.87E-02
1.27E-02
2.01E-02
1.05E-02
1.37E-02
3.76E-02

Variance
3.90E-05
8.47E-05
4.02E-05
6.27E-05
1.05E-05
1.05E-04
2.78E-05
1.48E-05
7.85E-05
1.81E-05
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Table A. 6. Results of thermodynamic modelling: Mole fraction.

Na-species

STD-1

STD-2

STD-3

STD-4

STD-5

STN-2

HKN-S-

HKN-S+

HKS

HKT

K-species

STD-1

STD-2

STD-3

STD-4

STD-5

STN-2

HKN-S-

HKN-S+

HKS

HKT

Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0

Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0
Without H,0
With H,0

Nacl
9.26E-04
6.60E-04
1.24E-03
9.29E-04
1.45E-03
1.29E-03
8.98E-04
6.75E-04
1.41E-03
1.11E-03
1.62E-04
1.45E-04
2.46E-04
2.37E-04
6.05E-04
5.84E-04
5.60E-04
5.41E-04
1.05E-04
8.81E-05

KCl
1.86E-04
1.33E-04
2.50E-04
1.87E-04
2.70E-04
2.18E-04
1.81E-04
1.36E-04
2.83E-04
2.23E-04
3.15E-05
2.13E-05
2.32E-05
2.00E-05
6.46E-05
5.62E-05
5.89E-05
5.18E-05
2.18E-05
1.83E-05

NaOH
4.27E-05
9.16E-05
5.28E-05
1.06E-04
6.00E-05
1.41E-04
4.50E-05
9.29E-05
5.04E-05
9.82E-05
4.26E-04
7.11E-04
4.21E-03
5.14E-03
3.94E-03
4.83E-03
4.46E-03
5.30E-03
1.23E-04
2.34E-04

KOH
8.04E-06
1.73E-05
9.94E-06
2.00E-05
1.04E-05
2.23E-05
8.47E-06
1.75E-05
9.50E-06
1.85E-05
7.73E-05
9.78E-05
3.72E-04
4.06E-04
3.94E-04
4.35E-04
4.39E-04
4.76E-04
2.41E-05
4.56E-05

Na
2.19E-04
2.06E-04
2.21E-04
2.17E-04
2.09E-04
2.59E-04
1.05E-04
1.19E-04
7.99E-05
9.61E-05
1.11E-03
1.05E-03
5.10E-03
4.19E-03
5.02E-03
4.15E-03
4.54E-03
3.72E-03
9.55E-05
1.23E-04

K
1.06E-05
1.00E-05
1.08E-05
1.05E-05
9.42E-06
1.06E-05
5.10E-06
5.81E-06
3.89E-06
4.68E-06
5.22E-05
3.75E-05
1.16E-04
8.55E-05
1.30E-04
9.66E-05
1.16E-04
8.62E-05
4.81E-06
6.20E-06

NaAlSi;Og

1.12E-03
1.35E-03
2.31E-03
2.58E-03
1.41E-03
1.44E-03
5.91E-03
6.07E-03
6.73E-03
6.96E-03
0.00E+00
9.58E-05
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

KAISi,O¢
3.89E-03
3.93E-03
3.82E-03
3.87E-03
4.06E-03
4.10E-03
1.90E-02
1.90E-02
2.20E-02
2.20E-02
4.19E-03
4.19E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
2.10E-03
2.10E-03

NaAISiO,
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
2.00E-02
1.97E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
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Na;Mg,Sis015
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
9.68E-03
9.56E-03
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9.2.4 Influence of the coal rank

Table A. 7. Coal Rank: Averaged, normalised peak areas (-).

m/z

K2-3
K2-4
K2-5
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2
K2-1
K2-2
K3-1
K3-2
HKN-S-
HKN-S+
HKS
HKT

m/z

K2-3
K2-4
K2-5
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2
K2-1
K2-2
K3-1
K3-2
HKN-S-
HKN-S+
HKS
HKT

34

Mean Variance

2.44E-03  6.22E-04
5.71E-02  9.10E-03
8.32E-02  5.65E-03
9.59E-03  6.35E-03
9.19E-03  3.94E-03
9.00E-03  4.69E-03
3.73E-03  1.67E-03
1.01E-02  8.75E-03
5.14E-02  6.25E-03
1.36E-02  3.28E-03
3.03E-02  2.62E-03
7.04E-02  1.13E-02
1.29€-02  3.51E-03
2.68E-02  1.20E-03
451E-02  1.46E-03
7.74E-03  4.22E-03
2.23e-02  2.82E-03

58

Mean Variance

2.11E-02  3.03E-03
2.40E-03  8.07E-04
4.51E-03  5.11E-04
5.48E-03  1.07E-03
7.01E-03  3.49E-03
6.14E-03  2.21E-03
1.16E-02  4.40E-03
1.80E-02  2.45E-03
2.22E-03  7.33E-04
4.59E-03  1.28E-03
7.81E-03  1.70E-03
3.43E-03  4.96E-04
4.22E-03  8.78E-04
4.68E-03  6.71E-04
8.00E-03  1.38E-03
7.10E-03  1.43E-03
1.83E-03  5.94E-04

36

Mean Variance

4.45E-02  5.31E-03
4.43E-03  6.78E-04
1.40E-02  4.45E-03
5.19e-02  4.52E-03
6.51E-02  1.68E-02
9.36E-02  9.91E-03
6.38E-02  2.19E-02
1.21E-01  1.42E-02
4.06E-03  1.11E-03
4.06E-03  2.95E-03
3.86E-03  1.12E-03
4.65E-03  1.20E-03
2.47E-03  9.42E-04
3.53E-03  8.33E-04
4.53E-03  2.15E-03
2.94E-03  7.87E-04
4.37E-03  2.33E-03

60

Mean Variance

6.80E-03  8.40E-04
8.48E-03  3.32E-03
1.30E-02  8.08E-04
2.32E-03  1.27E-03
3.24E-03  1.69E-03
2.85E-03  1.14E-03
3.64E-03  1.45E-03
6.59E-03  1.13E-03
6.25E-03  1.08E-03
5.12E-03  1.31E-03
7.68E-03  1.43E-03
1.21E-02  2.11E-03
5.08E-03  8.10E-04
7.28E-03  6.11E-04
1.06E-02  1.43E-03
6.68E-03  1.11E-03
4.46E-03  7.02E-04

39

Mean Variance

1.12E-02  1.35E-03
3.56E-01  2.21E-01
6.77E-02  3.02E-02
3.19E-02  1.04E-02
1.63E-01  6.10E-02
3.72E-02  1.71E-02
1.43E-01  7.25E-02
2.90E-02  7.20E-03
7.52E-02  1.71E-02
8.24E-01  1.08E-01
2.20E-01  3.75E-02
6.21E-01  8.28E-02
2.47E-01  2.49E-02
3.71E-01  7.11E-02
2.97E-01  1.33E-01
8.46E-01  2.55E-01
1.08E+00  9.54E-02

74

Mean Variance

2.48E-04  1.84E-04
1.04E-04  3.06E-05
1.77E-04  4.71E-05
1.74E-04  1.05E-04
2.71E-04  9.80E-05
3.76E-04  5.95E-05
3.31E-04  8.75E-05
5.43E-04  6.05E-05
1.18E-04  4.99E-05
9.50E-05  2.35E-05
1.43E-04  4.08E-05
1.52E-04  5.90E-05
4.29e-04  1.09E-04
1.35E-04  7.95E-05
2.12E-04  7.85E-05
1.62E-04  3.66E-05
1.29€-04  4.32E-05
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56

Mean Variance

6.156-04  2.88E-04
1.98E-03  5.06E-04
5.22E-04  4.02E-04
4.69E-04  2.88E-04
4.29E-04  3.01E-04
4.67E-04  1.93E-04
4.13E-04  3.44E-04
4.93E-04  2.17E-04
3.90E-03  1.74E-03
1.90E-03  1.34E-03
3.01E-03  9.13E-04
4.20E-03  5.14E-04
1.56E-03  4.14E-04
1.90E-03  4.85E-04
2.49E-03  7.41E-04
1.40E-03  5.64E-04
5.94E-04  5.53E-04
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Table A. 8. Results of thermodynamic modelling: Mole fraction.

Na-sepcies
K2-3
K2-4
K2-5
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2
K2-1
K2-2
K3-1
K3-2
HKN-S-
HKN-S+
HKS
HKT

K-species
K2-3
K2-4
K2-5
STD-1
STD-2
STD-3
STD-4
STD-5
STN-2
K2-1
K2-2
K3-1
K3-2
HKN-S-
HKN-S+
HKS
HKT

Nacl
6.00E+00
4.66E-01
1.61E+00
2.86E+01
2.43E+01
4.13E+01
9.70E+00
1.34E+01
6.68E-01
1.24E+01
5.71E+00
5.54E+01
3.74E+01
2.48E+00
6.11E+00
5.65E+00
8.81E-01

Kcl
8.43E-01
2.32E-01
5.43E-02
3.25E+00
4.57E+00
5.02E+00
7.08E-01
1.00E+00
4.90E-01
1.61E+01
7.79E+00
4.14E+01
2.12E+00
3.92E+00
9.56E+00
8.44E+00
1.00E+00

NaOH
1.94E-01
8.75E-02
3.30E-01

3.97E+00
2.78E+00
4.50E+00
1.34E+00
1.19E+00
3.27E+00
5.74E+01
5.67E+01
4.33E+01
4.69E+01
5.37E+01
5.05E+01
5.54E+01
2.34E+00

KOH
2.55E-02
1.89E-01
1.04E-02
4.22E-01
4.90E-01
5.12E-01
9.13E-02
8.31E-02

2.25E+00

7.73E+01
8.33E+01
5.59E+01
9.93E-01
7.94E+01
7.40E+01
7.75E+01
1.11E+00

Na
7.68E-01
6.42E-01
4.92E-03
8.92E+00
5.66E+00
8.27E+00
1.72E+00
1.16E+00
4.85E+00
3.02E+01
3.75E+01
1.24E+00
1.56E+01
4.38E+01
4.33E+01
3.89E+01
1.23E+00

K
2.61E-02
7.73E-02
4.01E-05
2.45E-01
2.58E-01
2.43E-01
3.03E-02
2.10E-02
8.62E-01
6.56E+00
8.88E+00
2.71E+00
2.83E-03
1.67E+01
1.64E+01
1.40E+01
2.21E-01

NaAISiO,
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
9.08E+01
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

KAISiOg
9.91E+01
9.95E+01
9.99E+01
9.61E+01
9.47E+01
9.42E+01
9.92E+01
9.89E+01
9.64E+01
0.00E+00
0.00E+00
0.00E+00
9.69E+01
0.00E+00
0.00E+00
0.00E+00
9.68E+01

NaAISiO308
9.30E+01
9.85E+01
9.81E+01
5.84E+01
6.73E+01
4.59E+01
8.72E+01
8.42E+01
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

139

Na;Mg,Sis015
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
9.56E+01
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9.2.5 Influence of the pressure
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Table A. 9. Experimental results: Averaged, normalised peak areas (-).

m/z=34

HKN-S-
HKN-S+
HKS
HKT
K2-1
K2-2
K3-1
K3-2
K3-3
STD-1
STD-2
STD-3
STD-4
STD-5
STN-1
STN-2
K2-3
K2-4
K2-5

m/z=36

HKN-S-
HKN-S+
HKS
HKT
K2-1
K2-2
K3-1
K3-2
K3-3
STD-1
STD-2
STD-3
STD-4
STD-5
STN-1
STN-2
K2-3

2 bar

Mean

6.30E-02
1.56E-01
9.21E-02
1.19€-01
4.47E-02
1.12€-01
2.35E-01
1.22€-01
1.55€E-01
1.22€-01
1.70€-01
3.18E-01
1.73E-01
2.79E-01
2.53E-01
3.16E-01
5.63E-02
1.71E-01
2.08E-01

2 bar

Mean

5.10E-03
1.07€-02
1.10€E-02
7.56E-03
6.30E-03
9.21E-03
1.03€-02
7.70E-03
1.04€E-02
2.47E-02
3.63E-02
4.34E-02
3.57E-02
7.26E-02
1.22€-02
1.92€-02
3.28E-02

Variance
1.31E-02
2.34E-02
1.11E-02
1.80E-02
9.75E-03
2.23E-02
5.80E-02
4.38E-03
2.34E-02
4.38E-02
6.45E-02
7.40E-02
1.49€-02
3.97E-02
5.95E-02
7.25E-02
2.00E-02
3.67E-02
2.45E-02

Variance
1.41E-03
5.05E-04
2.23E-03
7.15E-04
5.50E-04
2.65E-04
1.57E-03
6.20E-04
1.46E-03
3.61E-03
6.55E-03
1.10€-02
1.02€-03
5.75E-03
1.52E-03
3.55E-03
5.10E-03

4 bar

Mean

3.20E-02
8.23E-02
5.49E-02
8.59E-02
3.15E-02
5.89E-02
1.79€-01
3.54E-02
4.25E-02
5.17E-02
1.06E-01
1.59E-01
7.10E-02
1.61E-01
1.31E-01
2.16E-01
2.57E-02
1.12€-01
7.07E-02

4 bar

Mean

2.82E-03
9.25E-03
6.39E-03
6.19E-03
4.62E-03
5.19E-03
9.75E-03
4.67E-03
5.56E-03
1.72€-02
2.04E-02
4.19E-02
2.16E-02
4.02E-02
8.02E-03
9.28E-03
2.61E-02

Variance
1.20E-02
1.46E-02
1.10€E-02
1.99€-02
8.50E-03
2.39E-02
4.14E-02
1.14€E-02
6.75E-03
1.77€-02
2.42E-02
5.55E-02
2.16E-02
2.90E-02
2.62E-02
5.70E-02
9.90E-03
3.79E-02
1.26E-02

Variance
9.15E-04
1.24€E-03
5.50E-04
1.40€E-03
7.75E-04
1.03E-03
1.19€-03
7.85E-04
1.10€-03
2.44E-03
3.17E-03
2.55E-03
2.91E-03
6.80E-04
1.50E-03
2.57E-03
3.70E-03

6
Mean

2.07E-02
7.38E-02
3.41E-02
5.63E-02
2.95E-02
3.95E-02
1.17€-01
2.42E-02
2.98E-02
2.69E-02
7.22E-02
1.10€-01
1.86E-02
2.35E-02
7.75E-02
1.27€-01
2.44E-02
7.51E-02
2.66E-02

6

Mean
2.59E-03
5.40E-03
5.73E-03
2.69E-03
3.88E-03
3.89E-03
8.81E-03
4.04E-03
3.88E-03
6.63E-03
1.71E-02
2.50E-02
1.30E-02
1.87E-02
4.14E-03
6.73E-03
1.48E-02

bar
Variance
5.45E-03
7.30E-03
6.05E-03
1.87E-02
2.43E-03
9.05E-03
3.45E-02
5.30E-03
1.76E-03
4.98E-03
1.87E-02
2.47E-02
1.75E-03
3.66E-03
1.34E-02
3.72E-02
6.05E-03
1.79€-02
4.22E-03

bar
Variance
7.65E-04
1.55E-03
1.15€-03
1.50E-03
9.95E-04
1.12€-03
2.42E-03
1.17€-03
1.08E-03
7.54E-04
6.70E-03
4.21E-03
1.03E-03
4.89E-03
1.11E-03
1.78E-03
3.97E-03
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K2-4
K2-5

m/z=39

HKN-S-
HKN-S+
HKS
HKT
K2-1
K2-2
K3-1
K3-2
K3-3
STD-1
STD-2
STD-3
STD-4
STD-5
STN-1
STN-2
K2-3
K2-4
K2-5

m/z=58

HKN-S-
HKN-S+
HKS
HKT
K2-1
K2-2
K3-1
K3-2
K3-3
STD-1
STD-2
STD-3
STD-4
STD-5
STN-1
STN-2
K2-3

8.24E-03
2.31E-02

2 bar
Variance

Mean
9.11E-03
1.75E-02
1.74E-02
8.12E-03
1.15E-02
1.20E-02
7.21E-03
6.85E-03
8.84E-03
1.90E-02
1.57E-02
2.57E-02
1.78E-02
1.22E-02
2.52E-02
2.34E-02
6.10E-03
2.13E-02
5.74E-03

2 bar
Variance

Mean
1.39E-03
2.12E-03
1.99E-03
1.30E-03
1.47E-03
1.63E-03
1.73E-03
1.96E-03
2.08E-03
4.02E-03
5.39E-03
7.09E-03
2.98E-03
4.96E-03
5.05E-03
1.03E-02
5.00E-04

1.92E-03
3.43E-03

1.87E-03
3.20E-04
1.34E-03
1.26E-03
2.22E-03
8.88E-04
4.95E-04
8.93E-04
2.43E-03
4.68E-04
6.63E-04
1.26E-03
2.53E-03
2.02E-03
2.40E-03
3.13E-03
8.63E-04
1.60E-03
2.05E-03

2.89E-04
3.78E-04
2.99E-04
2.31E-04
3.54E-04
1.50E-04
3.69E-04
6.15E-04
1.98E-05
8.70E-04
9.00E-04
1.57E-03
6.10E-04
6.10E-04
1.78E-03
2.44E-03
6.05E-05

7.04E-03
1.09E-02

4 bar
Variance

Mean
5.03E-03
1.09E-02
6.48E-03
5.91E-03
6.30E-03
9.16E-03
6.02E-03
6.85E-03
7.67E-03
4.59E-03
1.01E-02
9.20E-03
1.33E-02
8.02E-03
1.23E-02
8.31E-03
5.64E-03
5.79E-03
3.85E-03

4 bar
Variance

Mean
8.86E-04
1.02E-03
1.05E-03
8.08E-04
1.03E-03
9.99E-04
8.74E-04
1.15E-03
5.34E-04
6.17E-04
1.17€-03
6.70E-04
1.52E-03
1.19€-03
1.36E-03
1.16E-03
3.75E-04

5.75E-04
6.65E-04

1.61E-03
1.27E-03
5.13E-04
4.35E-04
1.19E-03
1.60E-03
1.76E-03
8.93E-04
3.78E-04
7.65E-04
5.60E-04
5.48E-04
1.41E-03
5.10E-04
9.93E-04
8.23E-04
9.10E-04
5.78E-04
1.29E-03

2.85E-04
1.68E-04
1.92E-04
1.91E-04
2.82E-04
5.45E-04
2.87E-04
1.21E-04
2.16E-04
2.49E-04
2.18E-04
1.59E-04
1.23E-04
1.93E-04
3.83E-04
4.14E-05
3.75E-04

5.34E-03
3.34E-03

6 bar
Variance

Mean
1.66E-03
5.66E-03
5.80E-03
1.92E-03
6.03E-03
8.83E-03
4.31E-03
2.97E-03
4.22E-03
2.76E-03
6.79E-03
8.18E-03
1.64E-03
1.08E-03
6.93E-03
4.32E-03
4.50E-03
4.67E-03
3.10E-03

6 bar
Variance

Mean
5.06E-04
7.57E-04
3.11E-04
2.78E-04
4.32E-04
3.21E-04
4.96E-04
5.12E-05
2.94E-04
4.50E-04
1.17€-03
5.09E-04
2.40E-04
2.54E-04
5.04E-04
4.50E-04
4.14E-04
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2.81E-04
7.70E-04

7.90E-05
1.38E-03
5.03E-04
1.33E-03
3.80E-04
5.93E-04
1.26E-03
1.60E-03
5.88E-04
6.99E-04
1.54E-03
9.33E-04
1.34E-04
6.48E-04
5.35E-04
1.09E-03
3.60E-04
1.17E-03
9.25E-04

7.75E-05
1.89E-04
1.16E-04
2.80E-05
8.70E-05
3.91E-04
7.20E-05
8.75E-05
9.95E-05
3.24E-04
1.82E-04
1.63E-04
9.05E-05
8.25E-05
1.31E-04
1.36E-04
1.59E-04
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K2-4
K2-5

m/z=64

HKN-S-
HKN-S+
HKS
HKT
K2-1
K2-2
K3-1
K3-2
K3-3
STD-1
STD-2
STD-3
STD-4
STD-5
STN-1
STN-2
K2-3
K2-4
K2-5

m/z=74

HKN-S-
HKN-S+
HKS
HKT
K2-1
K2-2
K3-1
K3-2
K3-3
STD-1
STD-2
STD-3
STD-4
STD-5
STN-1
STN-2
K2-3

3.13E-03 9.10E-05
1.41E-03 3.52E-04

2 bar

Mean Variance

1.59E-01 4.25E-02
2.08E-01 3.16E-02
1.62E-01 3.93E-02
2.57E-01 6.10E-02
1.69E-01 4.40E-02
2.47E-01 5.55E-02
2.56E-01 3.54E-02
4.61E-01 1.54E-01
2.35E-01 6.10E-02
3.59E-01 7.65E-02
4.29E-01 1.20E-01
5.12E-01 8.40E-02
3.93E-01 4.95E-02
6.02E-01 1.03E-01
2.84E-01 6.00E-02
5.61E-01 1.05E-01
2.81E-01 3.67E-02
2.92E-01 5.20E-02
6.02E-01 9.40E-02

2 bar

Mean Variance

4.32E-03 1.84E-03
6.58E-03 2.08E-03
8.71E-03 1.35E-03
4.34E-03 8.70E-04
4.06E-03 8.80E-04
7.40E-03 2.21E-03
1.03E-02 1.03E-03
1.05€E-02 1.28E-03
1.06E-02 2.49E-03
3.71E-03 8.90E-04
6.43E-03 2.49E-03
7.66E-03 1.42E-03
3.91E-03 4.31E-04
4.00E-03 8.10E-04
8.93E-03 2.18E-03
6.83E-03 1.68E-03
2.53E-04 1.84E-04

1.55E-03 2.71E-04
3.64E-04 2.53E-04

4 bar
Mean Variance
9.36E-02 9.45E-03
1.02E-01 1.71E-02
1.13E-01 1.63E-02
1.18E-01 1.94E-02
7.76E-02 1.38E-02
9.19€E-02 1.09€-02
1.10E-01 2.55E-02
1.97E-01 2.14E-02
1.09E-01 9.00E-03
1.70€E-01 3.85E-02
1.78E-01 2.73E-02
2.76E-01 2.71E-02
2.38E-01 1.65E-02
2.91E-01 4.13E-02
1.62E-01 2.48E-02
2.18E-01 2.32E-02
7.98E-02 2.01E-03
1.54E-01 1.46E-02
2.06E-01 1.84E-02

4 bar

Mean Variance

9.02E-04 5.35E-04
2.29E-03 9.65E-04
3.63E-03 1.11E-03
2.11E-03 4.28E-04
2.22E-03 1.02E-03
2.06E-03 4.71E-04
2.18E-03 2.74E-04
1.76E-03 5.20E-04
1.64E-03 9.75E-04
1.83E-03 8.00E-04
2.21E-03 2.49E-04
1.55E-03 4.31E-04
1.76E-03 5.35E-04
1.31E-03 2.47E-04
3.81E-03 1.14€E-03
1.65E-03 6.30E-04
6.59E-05 4.38E-05
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7.56E-04 1.48E-04
2.88E-04 1.37E-04

6 bar
Mean Variance
4.98E-02 1.11E-02
8.02E-02 1.07E-02
5.35E-02 1.17€-02
9.77E-02 1.94E-02
7.39E-02 5.50E-03
7.97E-02 1.59E-02
7.35E-02 5.10E-03
1.27E-01 2.01E-02
5.41E-02 9.30E-03
1.35E-01 1.73E-02
1.43E-01 1.57E-02
2.01E-01 4.40E-02
1.38E-01 1.42E-02
2.05E-01 2.06E-02
1.04E-01 1.86E-02
1.26E-01 2.25E-02
4.51E-02 7.45E-03
8.92E-02 2.29E-02
6.96E-02 6.60E-03

6 bar

Mean Variance

9.02E-04 4.24E-04
1.79E-03 5.05E-04
3.52E-03 1.95E-03
7.65E-04 2.52E-04
1.19E-03 6.25E-04
1.68E-03 7.00E-04
6.72E-04 2.53E-04
6.19E-04 1.70E-04
1.91E-03 6.15E-04
3.55E-04 3.47E-05
1.41E-03 5.60E-04
6.13E-04 1.99E-04
4.84E-04 2.92E-04
1.39E-04 6.50E-05
1.24E-03 1.00E-03
1.02E-03 5.70E-04
5.82E-05 4.06E-05
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K2-4
K2-5

Table A. 10. Results of thermodynamic modelling: Mole fraction.

Na-species pin bar

STD-1

STD-2

STD-3

STD-4

STD-5

STN-1

STN-2

K2-3

K2-4

K2-5

HKN-S-

HKN-S+

HKS

4.17E-03
2.51E-03

N O AN OB N OB NOOORERNOORENOOODRENOOOPRENOORANOOOD RN NOOO RN SN

5.40E-04
4.08E-04

NacCl
5.61E-04
4.23E-04
4.26E-04
7.64E-04
5.76E-04
4.84E-04
1.21E-03
9.28E-04
7.87E-04
5.13E-04
3.80E-04
3.18E-04
8.01E-04
5.92E-04
4.93E-04
2.31E-04
2.00E-04
1.25E-04
1.41E-04
1.24E-04
1.14E-04
4.69E-04
3.48E-04
2.90E-04
3.82E-05
2.82E-05
2.35E-05
7.62E-05
5.57E-05
4.62E-05
2.53E-04
2.55E-04
2.57E-04
6.24E-04
6.31E-04
6.34E-04
5.76E-04

2.73E-03
3.79E-04

NaOH

1.64E-05
1.16E-05
1.16E-05
2.06E-05
1.46E-05
1.19E-05
3.40E-05
2.41E-05
1.96E-05
1.78E-05
1.26E-05
1.03E-05
1.96E-05
1.39E-05
1.13E-05
1.61E-04
1.14E-04
9.26E-05
1.96E-04
1.38E-04
1.13E-04
9.43E-06
6.67E-06
5.44E-06
2.11E-05
1.49E-05
1.22E-05
1.03E-05
7.29E-06
5.95E-06
5.22E-03
5.98E-03
6.40E-03
4.90E-03
5.64E-03
6.05E-03
5.42E-03

Na
4.98E-05
2.49E-05
2.05E-05
5.11E-05
2.55E-05
1.70E-05
7.25E-05
3.62E-05
2.41E-05
2.06E-05
1.03E-05
6.87E-06
1.57E-05
7.83E-06
5.21E-06
3.75E-04
1.87E-04
1.02E-04
3.32E-04
1.66E-04
1.10E-04
2.44E-05
1.22E-05
8.13E-06
2.16E-05
1.08E-05
7.19E-06
6.15E-08
2.59E-08
1.56E-08
4.09€E-03
3.32E-03
2.90E-03
4.04€E-03
3.28E-03
2.87E-03
3.57E-03

1.01E-03
4.65E-05

NaAlSi;Og
1.68E-03
1.85E-03
1.85E-03
2.99E-03
3.21E-03
3.31E-03
1.81E-03
2.14E-03
2.30E-03
6.41E-03
6.56E-03
6.62E-03
7.43E-03
7.65E-03
7.75E-03
2.00E-03
1.92E-03
1.89E-03
0.00E+00
0.00E+00
0.00E+00
1.25E-02
1.27€-02
1.27€-02
1.38E-02
1.39€-02
1.39E-02
8.18E-03
8.20E-03
8.21E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

1.58E-03
8.21E-05
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1.23E-04
6.90E-05

NaAlISiO,
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
8.11E-03
8.45E-03
8.59E-03
2.11E-02
2.13E-02
2.14E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
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HKT

K2-1

K2-2

K3-1

K3-2

K3-3

K-species

STD-1

STD-2

STD-3

STD-4

STD-5

STN-1

STN-2

RN O R NOORENOOPRNOORNOOOSRAENOO D

A AN O R NOOERENOOPRNOOPRNOOORAENOOO BN

5.62E-04
5.65E-04
6.92E-05
5.32E-05
4.51E-05
8.87E-04
8.91E-04
8.93E-04
9.83E-04
9.86E-04
9.88E-04
1.60E-04
1.25E-04
1.07E-04
3.09E-04
3.14E-04
3.17E-04
2.72E-04
2.77E-04
2.79E-04

KCl
1.16E-04
8.70E-05
7.90E-05
1.57E-04
1.18E-04
9.96E-05
1.88E-04
1.44E-04
1.22E-04
1.05E-04
7.83E-05
6.54E-05
1.65E-04
1.22E-04
1.01E-04
3.36E-05
2.91E-05
2.64E-05
3.26E-05
2.88E-05
2.65E-05

4.54E-03
4.82E-03
4.80E-05
3.39E-05
2.77E-05
4.53E-03
4.89E-03
5.07E-03
1.12E-02
1.23E-02
1.28E-02
8.00E-05
5.66E-05
4.62E-05
3.54E-04
3.69E-04
3.76E-04
3.91E-04
4.07E-04
4.14E-04

KOH
3.16E-06
2.24E-06
2.03E-06
3.99E-06
2.82E-06
2.31E-06
4.98E-06
3.52E-06
2.87E-06
3.44E-06
2.43E-06
1.99E-06
3.80E-06
2.69E-06
2.19E-06
2.19E-05
1.55E-05
1.27E-05
4.27E-05
3.02E-05
2.47E-05

2.11E-03
1.83E-03
2.40E-05
1.19E-05
7.95E-06
1.54E-03
1.18E-03
9.95E-04
4.78E-03
3.70E-03
3.15E-03
9.18E-07
3.86E-07
2.35E-07
7.64E-05
5.63E-05
4.68E-05
7.62E-05
5.61E-05
4.66E-05

K
2.40E-06
1.20E-06
8.88E-07
2.46E-06
1.23E-06
8.20E-07
2.64E-06
1.32E-06
8.79E-07
9.95E-07
4.97E-07
3.31E-07
7.57E-07
3.77E-07
2.51E-07
1.27E-05
6.36E-06
4.24E-06
1.80E-05
9.01E-06
6.01E-06

0.00E+00
0.00E+00
9.86E-03
9.91E-03
9.92E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
1.06E-04
1.66E-04
1.94E-04
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

KAISi,04
3.97E-03
4.00E-03
4.01E-03
3.93E-03
3.97E-03
3.99E-03
4.15E-03
4.20E-03
4.22E-03
1.91E-02
1.91E-02
1.91E-02
2.21E-02
2.21E-02
2.21E-02
2.75E-03
2.76E-03
2.77E-03
4.25E-03
4.28E-03
4.29E-03
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2.35E-03
2.35E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
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K2-3

K2-4

K2-5

HKN-S-

HKN-S+

HKS

HKT

K2-1

K2-2

K3-1

K3-2

K3-3

D AN OB NOOPRNOORENOOOPRNOODRNOORNOOO AN NOOPRNOOO RN SN

9.64E-05
7.15E-05
5.97E-05
7.86E-06
5.81E-06
4.84E-06
1.57E-05
1.15E-05
9.51E-06
2.12E-05
1.96E-05
1.89E-05
5.95E-05
5.54E-05
5.33E-05
5.43E-05
6.48E-05
6.28E-05
1.43E-05
1.09E-05
9.29E-06
5.77E-05
5.54E-05
5.43E-05
4.18E-05
3.96E-05
3.85E-05
1.69E-04
1.68E-04
1.68E-04
3.30E-05
2.57E-05
2.20E-05
1.68E-04
1.67E-04
1.67E-04

1.82E-06
1.29E-06
1.05E-06
4.08E-06
2.89E-06
2.36E-06
1.99E-06
1.41E-06
1.15E-06
4.10E-04
4.32E-04
4.43E-04
4.39E-04
4.65E-04
4.78E-04
4.81E-04
4.92E-04
5.03E-04
9.28E-06
6.56E-06
5.36E-06
2.77E-04
2.86E-04
2.90E-04
4.48E-04
4.63E-04
4.70E-04
2.29E-04
2.33E-04
2.35E-04
1.55E-05
1.10E-05
8.95E-06
1.80E-04
1.84E-04
1.86E-04

1.18E-06
5.88E-07
3.92E-07
1.04E-06
5.20E-07
3.46E-07
2.97E-09
1.25E-09
7.51E-10
8.02E-05
5.97E-05
4.99E-05
9.00E-05
6.75E-05
5.66E-05
7.88E-05
5.70E-05
4.75E-05
2.87E-07
5.76E-07
3.83E-07
2.35E-05
1.71E-05
1.42E-05
4.77E-05
3.48E-05
2.88E-05
1.11E-05
7.99E-06
6.58E-06
4.42E-08
1.86E-08
1.13E-08
9.70E-06
7.00E-06
5.76E-06

1.86E-02
1.86E-02
1.86E-02
5.61E-03
5.62E-03
5.62E-03
4.93E-02
4.93E-02
4.94E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
2.15E-03
2.16E-03
2.16E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
1.51E-03
1.52E-03
1.53E-03
0.00E+00
0.00E+00
0.00E+00
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by F. Pléger (2011), vi, 104 pages
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ISBN: 978-3-89336-705-4
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Synthese und ldentifizierung von substituierten Mg-Al-Cl Doppelhydro-
xidverbindungen mit Schwerpunkt IR-Spektroskopie

von B. Hansen (2011), XII, 121 Seiten

ISBN: 978-3-89336-709-2



Schriften des Forschungszentrums Jilich
Reihe Energie & Umwelt / Energy & Environment

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

Analysis of spatial soil moisture dynamics using wireless sensor net-
works

by U. Rosenbaum (2011), xxii, 120 pages

ISBN: 978-3-89336-710-8

Optimierung von APS-ZrO2-Warmedammschichten durch Variation der
Kriechfestigkeit und der Grenzflachenrauhigkeit

von M. E. Schweda (2011), 168 Seiten

ISBN: 978-3-89336-711-5

Sorption of a branched nonylphenol isomer and perfluorooctanoic acid on
geosorbents and carbon nanotubes

by C. Li (2011), X, 102 pages

ISBN: 978-3-89336-716-0

Electron Transport in the Plasma Edge with Rotating Resonant Magnetic
Perturbations at the TEXTOR Tokamak

by H. Stoschus (2011), iv, 113 pages

ISBN: 978-3-89336-718-4

Diffusion and Flow Investigations in Natural Porous Media by Nuclear
Magnetic Resonance

by N. Spindler (2011), viii, 144 pages

ISBN: 978-3-89336-719-1
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