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1 Introduction
Superconductivity is an exotic state of matter that has fascinated generations of scientists ever
since its discovery in mercury in 1911 [1]. After more than 100 years, there are whole classes of
superconducting materials that we still do not fully understand. In particular, understanding the
mechanism of high temperature superconductivity in cuprates, discovered in 1986 by Bednorz
and Müller [2], and in recently discovered iron-based superconductors [3] has remained as one
of the hardest tasks in condensed matter physics.

In this lecture note, the fundamentals of superconductivity, as commonly covered in most text-
books on solid state physics, will be given first. Detailed descriptions on the phenomenon
of superconductivity, phenomenological theories i.e. the London theory and Ginzburg-Landau
theory and the landmark microscopic BCS theory can be found in this section. A brief overview
of large classes of the known superconducting materials, including both conventional and un-
conventional superconductors will be given as well. The high temperature superconductivity is
a vast and always rapidly moving field, it is neither in our intention nor possible to present a
comprehensive review on the current status as well as a thorough description of the underlying
physics. Therefore, only some important aspects and basic understanding of the recently dis-
covered iron-based superconductors will be discussed here. The choice of the covered topic is
more or less based on our own research activities in this field with the main focus on the neutron
scattering studies.

2 Fundamentals of Superconductivity

2.1 Zero resistivity
In order to explain the electronic property of metals, the Drude theory was developed by Drude
in 1900. In the framework of the Drude theory, electrons are treated as classical particles. When
electrons are moving through the solid, they will collide with scattering center and change their
direction and velocity. In a metal, the conductivity can be defined by the constitutive equation as
the proportionality between electrical current density J and electric field E: J=σE. The electrical
conductivity σ is given by Drude theory as:

σ =
ne2τ

m
(1)

where τ is the mean life time and m is the effective mass of the conduction electrons. The
resistivity ρ is the reciprocal of the conductivity. i.e. ρ = 1/σ and ρ ∝ τ−1. The resistivity is the
sum of the contributions from different scattering processes. The scattering mechanisms can be
impurity scattering, electron-electron scattering and electron-phonon scattering. Furthermore,
these scattering processes act independently and they have different mean life times. The total
resistivity reads:

ρ =
m

ne2
(τ−1

i + τ−1
e−e + τ−1

e−p) (2)

The temperature dependencies of these mean life times are also different. The impurity scatter-
ing life time is independent of temperature, while the lifetimes of electron-electron and electron-
phonon scattering will exhibit temperature variation. At low temperatures, electron-electron
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scattering and electron-phonon scattering are negligible. Therefore, one expects a constant
value for resistivity at zero temperature as the residual resistivity.

(a)
(b)

Fig. 1: (a): Temperature dependence of the electrical resistivity for superconductors and nor-
mal metals. (b): The superconducting current maintains through the superconducting ring
[4, 5].

In 1911, Heike Kamerlingh Onnes performed an experiment to test the validity of the Drude
theory by measuring the resistivity of mercury at low temperature. Surprisingly, he found the
electrical resistance dropped sharply to zero below 4.2 K [1]. Thus the superconductivity was
discovered and it represents a new state of matter [4, 5].
As shown in Fig. 1(a), the resistivity of superconductor drops to zero when temperature is
below the critical temperature Tc. However, due to the experimental difficulty, we are not
be able to measure the zero resistivity. The existence of persistent current in a closed loop
of superconducting wire can be considered as the strong evidence of superconductivity. As
shown in Fig. 1(b), a circulating current I can be introduced in the superconducting ring. If the
superconductor has the zero resistivity, the energy stored in the ring will keep constant and the
current will continue flowing in the ring. Experimentally, it was found that almost no detectable
decay of the current in superconducting ring for years.

2.2 Meissner effect
Suppose we take a superconductor and place it under magnetic field, the external magnetic field
will penetrate into the superconductor if the superconductor is in its normal state, i.e. T > Tc.
Then we will get almost same value of magnetic field inside and outside of superconductor as
indicated in Fig. 2(a). When we cool the superconducting sample below Tc in the presence
of the same field, the magnetic field will be expelled from the sample. This phenomenon was
discovered by Meissner in 1933 and named as Meissner effect [6].
As we known, the superconductor exhibits zero resistivity. By E = ρJ, we will have E = 0
inside of superconductor. By using the Maxwell equation ∇×E = -∂B/∂t, we got ∂B/∂t = 0. It
is also known that magnetic flux density B is related with magnetic field H and magnetization
of sample M by B = µ0(H+M). Eventually, we find that ∂M/∂H = χ = -1 for superconductor.
Susceptibility χ = -1 indicated that the superconductors possess perfect diamagnetism. To study
the magnetic susceptibility as a function of temperature, we will be able to characterize the
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Fig. 2: (a): The Meissner effect in superconductors. (b): Temperature dependence of suscepti-
bility (χ) of bulk superconductor [4, 5].

superconducting sample. As shown in Fig. 2(b), we will obtain χ = -1 for bulk superconductor
below Tc, which is the solid evidence for Meissner effect.

2.3 London theory
In 1935, London brothers developed the first theory to explain the magnetic properties of su-
perconductors [7]. By applying the two-fluid model, the 1st London equation can be obtained,
which relate the superconducting current density J with the electric field E:

E = µ0λ
2
L

∂J
∂t

(3)

Combination of Eq. (3) with Maxwell equation ∇×E = -∂B/∂t, London equation can also be
rewritten in terms of magnetic field B and superconducting current density J, which is called
2nd London equation:

B = −µ0λ
2
L∇× J (4)

In both Eq. (3) and Eq. (4), λL is the London penetration depth with the dimension of length,

λL = (
me

µ0nse2
)1/2 (5)

The London equations provide a simple phenomenological model to explain the Meissner effect.
It also implies that the magnetic field will only penetrate the surface layer of depth λL and the
field equals to zero inside the bulk superconductor.

2.4 Ginzburg-Landau theory
In 1930, Landau had developed a theory for second-order phase transition. Many second-order
phase transitions can be characterized by an appropriate order parameter, the order parameter
shows different value at high temperature disordered state and low temperature order state. For
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example, the magnetic order parameter is always used to describe the magnetic phase transition
from ferromagnetism to paramagnetism. In 1950, Ginzburg and Landau proposed to describe
the superconducting state with a more complex order parameter Ψ, here Ψ is spatially varied,
and |Ψ|2 is proportional to the density of super electrons, i.e. |Ψ|2 = ns(r). Ψ is nonzero in the
superconducting state, while it equals zero in normal state above critical temperature Tc [8].
Since superconducting state is a thermal equilibrium state, its thermal dynamic property can be
described with free energy density f s. For temperature close to critical temperature, free energy
can be expanded as a function of order parameter |Ψ|,

fs(T ) = fn(T ) + a(T )|Ψ|2 + b(T )

2
|Ψ|4 + · · ·· (6)

where fs(T ) is the free energy density of the normal state, a and b are the temperature dependent
parameters, In order to get minimum for fs, b(T) has to be positive, while a(T) can be either
positive or negative, corresponding to T > Tc or T < Tc, respectively. If we plot the difference
of free energy density as a function of Ψ, we will get two different curves for a(T) > 0 and a(T)
< 0. These two curves have different minimum: at Ψ = 0 for T > Tc and at |Ψ|2 = -a(T)/b(T)
for T < Tc.

-0.9 -0.6 -0.3 0.0 0.3 0.6 0.9

a>0 T>Tc

a<0 T>Tc

fs
- 

fn

(a) (b)

Temperature

Tc

Fig. 3: (a): Difference between the free energy in the normal and superconducting state as a
function of order parameter Ψ. (b): Temperature dependence of order parameter Ψ in super-
conductor.

In a spatially inhomogeneous superconductor, the order parameter depends on position. A new
term depending on the gradient of Ψ(r) should be included in the free energy. If we also consider
the effect of magnetic field B = µ0H, another additional term should also be included. Therefore
the free energy of superconductor in the magnetic field is:

fs(T ) = fn(T ) + a|Ψ|2 + b

2
|Ψ|4 + 1

2ms

|(−i~∇− 2eA)Ψ|2 + µ0
|H|2

2
(7)

By minimizing the free energy of the system, we can get two Ginzburg-Landau equations:

aΨ+ b|Ψ|2Ψ+
1

2ms

(−i~∇− 2eA)2Ψ = 0 (8)
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Js = − 2e~i
i2ms

(Ψ∗∇Ψ−Ψ∇Ψ∗)− (2e)2

ms

|Ψ|2A (9)

Suppose there exists an interface between normal state and superconducting state. By assuming
that Ψ(r) is continuous and the boundary condition at Ψ(0) = 0, we can solve the first Ginzburg-
Landau equation and get Ψ(r):

Ψ(r) = Ψ(0)tanh(
r√

2ξ(T )
) (10)

where Ψ(0) is the order parameter far from the interface in the superconducting and ξ(T) is
called Ginzburg-Landau coherence length:

ξ(T ) =

√
~2

2ms|a(T )|
(11)

Beside of the London penetration depth λL, Ginzburg-Landau coherence length ξ(T) is another
fundamental length scale associated with superconductivity. The ratio between these two length
scales is denoted as Ginzburg-Landau parameter, which is independent of temperature,

κ =
λ(T )

ξ(T )
(12)

Usually, the ratio κ = 1/
√
2 is adopted as the criterion to define the type-I and type-II supercon-

ductors:

κ ≤ 1/
√
2 (Type− I) (13)

κ ≥ 1/
√
2 (Type− II) (14)

For type-I superconductor, the field inside is zero due to the Meissner effect, when external field
is larger than critical field Hc, the superconductivity is destroyed suddenly. While, there are two
different critical fields in type-II superconductor: the lower critical field HC1 and upper critical
field HC2. If external field is smaller than HC1, the sample is perfect diamagnet. If external
field exceeds HC1 but below HC2, the superconductor enters the so called Shubnikov phase, in
which the magnetic flux penetrates the superconductor in the form of vortices [9]. If external
field increases further, the vortex cores are getting closer and almost overlap when external field
reached upper critical field HC2. The superconductivity will be totally destroyed once the field
exceeds HC2.

2.5 Electron-pairing and the BCS theory
As a phenomenological theory, the Ginzburg-Landau theory was quite successful in explain-
ing many physical properties of superconductor. However, it can not explain the microscopic
origins of superconductivity. For instance, the physical meaning of the Ginzburg-Landau order
parameter was still no clear. In 1957, Bardeen, Cooper, and Schrieffer (BCS) proposed a mi-
croscopic theory which can provide the physical interpretation of the nature of order parameter
and describe the macroscopic wavefunction of conduction electrons [10]. The key idea of BCS
theory is that the crystal lattice phonons can act as the exchange bosons and give an attractive
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interaction between the conduction electrons near the Fermi surface. Thus, the pair bound state
of electrons is formed and the paired conduction electrons are called "Cooper pair".

(c)(b)(a)

Fig. 4: (a) Two electrons paired when moving through crystal lattice due to the electron phonon
coupling. (b) Interaction of electrons via exchange of boson (crystal lattice phonon). (c) Attrac-
tive interaction between two electrons close to the Fermi surface.

It is well known that bare electrons will repel each other due to the strong electrostatic Coulomb
repulsion. However, if we consider the electrons in a medium, say, surrounded by charged ions
in a crystal lattice [Fig. 4(a)], the Coulomb interaction will be largely reduced by the screening.
Furthermore, the attractive electron-electron interaction is generated via the exchange of virtual
exchange bosons such as phonons. As presented in Fig. 4(b), the Feynman diagram illustrated
the interaction of electrons via exchange phonons. Because the total wave vector is conserved,
we have k1+k2 = k1+q+k2-q = k′1+k′2. Considering a situation that only two additional electrons
located outside of the spherical Fermi surface at T = 0. The interaction between two additional
electrons will take place within the range ~ωD of Fermi surface, i.e. Ef < Ek < Ef+~ωD. To
ensure the momentum conservation and to minimize the energy, two additional electrons will
pair up as Cooper pair with no center of mass motion, as demonstrated in Fig. 4(c).
The coupling of the electron spins of the Cooper pairs will result in two different total spin, S =
0 or S = 1. Thus the spin wave function can be:

ϕ =
1√
2
(| ↑↓⟩ − | ↓↑⟩) (S = 0, singlet) (15)

or ϕ =


| ↑↑⟩
1√
2
(| ↑↓⟩+ | ↓↑⟩) (S = 1, triplet)

| ↓↓⟩

(16)

Furthermore, based on the distribution of pairing amplitude in k space, the pairing symmetry
can be classified as s, p, d, f...waves.
By using the language of second quantization, the pairing hamiltonian of singlet superconductor
can be given as:

H =
∑
k,σ

ϵ(k)nkσ +
∑
k,k′

Vk,k′c
†
k↑c

†
−k↓c−k′↓ck′↑ (17)
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By defining bk = ⟨c−k↓ck↑⟩ and △k = –
∑
k′

Vk,k′⟨c−k↓ck↑⟩, the model Hamiltonian is expressed

as:

H = µN +
∑
k,σ

ξkc
†
kσckσ −

∑
k

(△kc
†
k↑c

†
−k↓ +△∗

kc
†
−k↓c

†
k↑) (18)

The above Hamiltonian can be diagonalized by Bogoliubov-Valatin transformation:

ck↑ = u∗
kγk↑ + vkγ

†
−k↓ (19)

c†k↑ = −v∗kγk↑ + ukγ
†
−k↓ (20)

with |uk|2 + |vk|2 = 1.
If we insert these operators into the model Hamiltonian, use the relation between uk and vk,
then properly choose uk and vk, the following relations will be obtained:

2ξkukvk +△∗
kv

2
k −△ku

2
k = 0 (21)

Simplify above equation by multiple △∗
k/u2

k to both two sides gives:

△∗
kvk
uk

=
√

ξ2k + |△k|2 − ξk (22)

Excitation energy Ek is defined as Ek =
√

ξ2k + |△k|2 [Fig. 5(a)], thus, vk and uk can be ex-
pressed in term of Ek as:

|vk|2 = 1− |uk|2 =
1

2
(1− ξ

Ek

) (23)

In BCS theory, Bardeen, Cooper and Schrieffer proposed the ground state as:

|ΨG⟩ =
∏
k

(uk + vkc
†
k↑c

†
−k↓)|0⟩ (24)

Noted that |uk|2 + |vk|2 = 1. This implies that the parameter uk and vk are the probability
amplitudes. The probability of the pair (k↑,–k↓) being occupied is |vk|2, while the probability
of the pair being unoccupied is |uk|2. The relations between occupation probability |vk|2 and
|uk|2 is shown in Fig. 5(b).
The ground state energy can be expressed as:

⟨EG⟩ =
∑
k

(
ξk −

ξ2k
Ek

)
− ∆2

V0

(25)

Because the occupation probability is given by the Fermi-Dirac distribution, the definition of
△k can be rewritten as:

△k = −
∑
k′

Vk,k′⟨c−k↓ck↑⟩

= −
∑
k′

Vk,k′uk′vk′(1− 2f(Ek′))

= −
∑
k′

Vk,k′
△k′

2Ek′
tanh

(
Ek′

2kBT

) (26)
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Fig. 5: (a) Excitation energy Ek as a function of ξk in the normal and superconducting state.
(b) Occupation probability |vk|2 and |uk|2 as a function of ξk at T = 0 near the Fermi level.

Based on the assumption of week coupling in BCS theory, i.e. Vk,k′ = –V0, △k′ = △, the
summation of above equation can be converted into an integration over energy, then we arrive
at the BCS gap equation:

1 = λ

∫ ~ωD

0

1

Ek

tanh

(
Ek

2kBT

)
dξk (27)

where λ = V0D(µ) is the dimensionless electro-phonon coupling constant, D(µ) is the density
of states. The BCS gap equation gives the temperature dependence of gap energy, in particular,
it gives not only the energy gap at zero temperature but also the ordering temperature Tc.
For temperature approaching to Tc, we have △ → 0. Then we can get the equation for the
critical temperature:

kBTc = 1.13~ωDe
−1/λ (28)

Also at low temperature the ratio between △ and Tc can be determined as

△(0)

kBTc

= 1.764 (29)

Above relation is one of the most important result deduced from the BCS theory, indeed, it was
obeyed by all classical metallic superconductors as an universal amplitude ratio.

3 A survey of the superconducting materials
After superconductivity was found in Hg with Tc = 4.2 K, great efforts are made to search for
new superconductors. Till now, thousands of superconducting materials have been found [11].
However, superconductivity is still a low temperature phenomenon. To find a room-temperature
superconductor seems still a long way to go. In the following parts, the main superconducting
materials are classified.
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• Superconducting element
After Hg, Superconductivity is also found in some other elements, such as Sn, Pb and La.
Among all elements, Pb possesses the highest Tc of 9.2 K in the ambient pressure. Although
some elements are non-superconductor at very low temperature, the superconductivity can
emerge when they are subjected to high pressure or fabricated as thin films.

• Superconducting alloys and compounds
As a solid solution of different kinds of atoms, some alloys also exhibit superconductivity,
such as NbTi (Tc = 9.5 K) and NbTa (Tc = 6.0 K). Higher Tc are also found in other Nb-
content A3B compounds, e.g. Tc = 18 K for Nb3Sn and Tc = 23.2 K for Nb3Ge. Besides, the
superconductivity with Tc up to 40 K was discover in MgB2 [12].

• Organic superconductors
Usually, the Organic compounds are insulators, but it was found that some organic compounds
are superconductors. The Critical temperatures of organic superconductors are still in the range
of classical superconductors [13].

• Heavy-fermion superconductors
In Heavy-fermion system, the electrons have large effective mass of about 200 times the free
electron mass. Superconductivity was found in some heavy-fermion system such as CeCu2Si2.
It was believed that heavy Fermion superconductors belong to the unconventional superconduc-
tor, however, the mechanism of this kind of superconductor is still not clear [14].

• Superconducting fullerene compounds
Fullerene, with the formula C60 was discovered as the third form of carbon in 1980s. After inter-
calating with exotic atoms, the doped C60 molecular crystals will exhibit the superconductivity
with Tc up to 40 K [15, 16].

Fig. 6: Timeline of the discovery of superconductors [17].

• High-Tc cuprate superconductors
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In 1986, the first cuprate superconductor La2−xBaxCuO4 with Tc ≈ 30 K was discovered by
Bednorz and Müller [2]. It was quite surprising that high Tc is shown in cuprate since the ox-
idize compounds are always insulators or poor conductors. The researchers are immediately
motivated by this breakthrough and start searching for new cuprate compounds with higher Tc.
Soon after, the superconductivity is observed in YBa2Cu3O6+x with Tc ≈ 90 K, which is well
above the temperature of liquid nitrogen [18]. So far the highest Tc of 133 K at ambient pressure
was found in Hg-based cuprate HgBa2Ca2Cu3O8 [19]. Obviously, the Cuprate with high Tc are
unconventional superconductors and it can not be explained in the framework of BCS theory.
Therefore, new theory is required to explain the physics of the cuprate superconductors. How-
ever, the fundamental mechanism of high-temperature superconductivity is still unclear and it
was still considered as the topic of the frontier of condensed matter physics.
From the point of view of crystal structure it was found that all high Tc cuprate have a layered
structure. All Cuprate have one or more layers of copper oxide (CuO2) and the CuO2 layer
are spaced by layers containing elements such as lanthanum, barium or yttrium. The schematic
view of crystal structure of YBa2Cu3O7 is shown in Fig. 7(a). Based on the large number
of experimental results the universal phase diagram relating the critical temperature to doping
level can be draw Fig. 7(b).

(a) (b) (c)

Fig. 7: (a) Crystal structure of YBa2Cu3O7. (b) Schematic phase diagram of hole doped cuprate
high Tc cuprate superconductor [20]. (c) Stripe-like electronic order in the cuprates [21].

Considering the phase diagram with increasing doping, the material is still an antiferromag-
netic insulator at the lowest doping level. With increasing doping, the material enters the super-
conducting phase and the critical temperature Tc exhibits a dome-like dependence on doping
with further increases in the doping level. At the over doped level, the material again become
non-superconducting. Between the antiferromagnetic and superconducting phase zone, there is
phase named pseudogap phase, in which physical properties show behavior of the existence of
an energy gap. It is still controversial whether the pseudogap arisen from competing orders or
it is the precursor of superconductivity.
As shown in Fig. 7(b), the undoped Cuprate compounds are Mott insulator with long-range
antiferromagnetic order of Cu. Upon doping with holes, the stripes of spin and charge order
formed. Both charge and spins are periodically modulated in the stripe phase [22]. As illus-
trated in Fig. 7(c), inhomogeneity arises due to the hole doping process. The antiferromagnetic
spin order in the spin-part of stripe is similar as in the undoped antiferromagnetic Mott in-
sulator, whereas the charge can conduct between the spin-part of stripe. Experimentally, the
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strip phase is directly detected by neutron scattering study. Information on the period of both
charge and spin density modulations can be obtained. It was also observed that the period of the
charge order is temperature dependent, which indicates the variation of charge concentration as
a function of temperature. Theoretically, it was thought that the formation of stripe phase was
attributed to the competition between the kinetic energy of the electrons, the antiferromagnetic
interaction among spins, and the Coulomb interaction between charges. It was believed that the
existence of the strip phase might give rise to superconductivity.

• Iron-based high-Tc superconductors

The iron-based superconductors, discovered in 2008 [3], is the latest family of high-Tc super-
conductors. Extensive attention are drawn afterwards since it provides a new opportunity to
investigate the mechanism of unconventional superconductivity. More detailed introductions
on iron-based superconductors can be found in the next section.

4 Iron-based high-Tc superconductors

4.1 Materials series and phase diagrams
In 2008, a new family of high-Tc superconductors, iron-based superconductors were discovered
[3]. This discovery has provided a new playground to investigate the mechanism of unconven-
tional superconductivity [23]. There are a number of homologous families of iron-based super-
conductors discovered so far, which are short-named after the stoichiometries of their parent
compounds (as shown in Fig. 8(a)). While most of the iron-based superconductors contain
arsenic, some contain phosphorus, which come from the same pnictogen group of the periodic
table. Therefore, they are usually termed as iron pnictides. In the so-called "11" and "245"
families, the pnictogen is replaced by selenium or tellurium from the chalcogen group. These
families are thus termed as iron chalcogenides. All iron-based superconductors have a common
layer of iron atoms which are tetrahedrally coordinated by pnictogen or chalcogen atoms (as
shown in Fig. 8(c)). They differ only in the details of the buffer layers. Experiments and theory
now agree that the superconducting electrons in all the iron-based superconductors flow in the
planes that contain Fe. Despite of the compositional variety, the Fe-containing planes have the
same structure from material to material (as shown in Fig. 8(b)). Note that the iron-containing
plane is not flat: pnictogen or chalcogen atoms reside above and below the plane. Because
the pnictogen and chalcogen atoms are much larger than the iron atoms, they pack themselves
in edge-sharing tetrahedral. By contrast, the smaller size difference between the copper and
oxygen atoms in a cuprate superconductor leads to corner-sharing octahedral packing. Such a
structural difference has an important consequence on the respective crystal-field splitting and
electronic structure.
Most of the research on iron-based superconductors has focused on RFeAs(O1−xFx)(with R =
La, Nd, Sm, or Pr etc.) and AFe2As2 (with A = Ba, Ca, or Sr etc.), the so-called "1111" and
"112" families. Starting from the parent compounds, superconductivity can be achieved either
by doping, or by the application of pressure in some materials. Since the parent compounds
are already metallic, the effect of the doping can not be solely related to the introduction of
free charge carriers. It has been suggested that the modifications of the Fermi surface, which
are similar under pressure and chemical doping, are important for inducing superconductivity



Superconductivity E1.13

Fig. 8: (a) Several homologous families of iron-based superconductors [23]; (b) the crystalline
plane containing of iron pnictides or iron chalcogenides; (c) the iron atom is tetrahedrally
coordinated by pnictogen or chalcogen atoms.

in the iron-based compounds. Up to now, the highest Tc attained is 57.4 K in the electron-
doped ’1111’ compound Ca0.4Nd0.6FeAsF, while for the ’122’ compound the highest Tc of 39
K is reached in the hole-doped Ba0.6K0.4Fe2As2. A typical behaviour of the resistivity and
magnetization as a function of temperature of the electron-doped Ba(Fe1−xCox))2As2 single
crystals is shown in Fig. 9(a)-(b) [24]. The resistivity anomaly at 137 K in the undoped parent
122 compound is due to concurrent phase transitions from tetragonal to orthorhombic and from
Pauli paramagnet to low-temperature spin-density wave (SDW) phase. With the increasing
of the Co doping level, both orthorhombic structural and SDW phases are suppressed, while
superconductivity emerges eventually at higher dpoing levels.
The measurements of resistivity, magnetic susceptibility as well as more bulk-sensitive tech-
niques, such as thermal expansion, heat capacity and neutron and x-ray diffraction etc. would
allow for an accurate determination of the phase diagrams of the iron-based superconductors.
The phase diagrams of three representative iron-based superconductors are shown in Fig. 10.
One of the most fascinating phenomena is the apparent coexistence and competition between
superconductivity and the SDW phase in the underdoped regime of Ba(Fe1−xCox)2As2. The
transition from the SDW phase to superconductivity in LaFeAs(O1−xFx) appears more abrupt.
Such coexistence between superconductivity and magnetism has also been observed in the hole-
doped Ba1−xKxFe2As2. The exact nature of this phenomenon remains to be established.
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Fig. 9: (a) The temperature dependence of (a) the resistivity and (b) the magnetization of the
electron-doped Ba(Fe1−xCox)2As2 single crystals [24].

Fig. 10: (The phase diagram of: (a) LaFeAs(O1−xFx)[23]; (b) Co-doped Ba(Fe1−xCox)2As2
[25]; (c) Ba1−xKxFe2As2. [23]

4.2 Close proximity to magnetism: magnetic ordering and spin fluctua-
tions

The nature of the magnetic ordering and spin fluctuations in superconductors has had a rich
and interesting history, and has been a topic of special interest ever since the parent compounds
of the high-Tc cuprates were found to be antiferromagnetic Mott insulators that exhibit huge
exchange energies within the Cu-O planes. These strongly correlated spin fluctuations persist
into the superconducting regime, often developing a spin resonance mode whose energy scales
with Tc and whose intensity exhibits a superconducting order-parameter-like behavior. Recently
discovered iron-based superconductors represent another remarkable example in which super-
conductivity is in close proximity to magnetism. Although neutrons do not couple directly to
the superconducting order parameter, they have nevertheless played a decisive role in the un-
derstanding of the interplay between superconductivity and magnetism, as demonstrated by the
determination of magnetic ordering in the parent compound and the observations of the spin
resonant mode in the superconducting counterparts. It has also been established via neutron
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scattering that magnetic ordering in iron pnictides is strongly coupled to lattice instabilities.

Fig. 11: Powder neutron diffraction of LaFeAsO [26] : (a) a tetragonal-to-orthorhombic tran-
sition occurs at 155 K; (b) an antiferromagnetic ordering due to SDW occurs at 138 K.

As shown in Fig. 11, the coupling of the antiferromagnetic and structural phase transitions in
LaFeAsO has been captured via powder neutron diffraction [26]. This allowed for the determi-
nation of long-range collinear antiferromagnetic ordering with a very small saturation moment
of 0.4 µB per Fe site.

Fig. 12: Neutron diffraction of single-crystalline BaFe2As2: (a) the measurement of two mag-
netic reflections, the clues about the aligning direction of the ordered magnetic moment can be
obtained from the drastically different peak intensities; (b) the determined magnetic structure
of BaFe2As2 [27].

Such a collinear antiferromagnetic ordering was soon after confirmed in single-crystalline BaFe2As2
[27] and other iron pnictide compounds [23]. As shown in Fig. 12(a), from the measurement



E1.16 Y. Xiao and Y. Su

of these two magnetic reflections with a modulation wavevector (1, 0, 1), the clues about the
aligning direction of the ordered magnetic moment can be obtained from the drastically differ-
ent peak intensities. The ordered magnetic moment of iron has been determined to be aligned
along the longer a-axis of the low temperature orthorhombic phase. The magnetic moments of
iron are arranged in such a way that they are anti-parallel to the neighbouring ones along the
orthorhombic a- and c-axis, while they are parallel along b-axis (in Fig. 12(b)). Except the case
in the parent compound of iron chalcogenides family, the saturation moments of Fe in all other
iron pnictide parent compounds have been found to be in the range of 0.3-1.0 µB.

Fig. 13: The magnetic structure of EuFe2As2: (a)-(b) the temperature dependence of the
Eu2+ antiferromagnetic reflections (112)M and (003)M and the Fe-SDW reflections (101)M and
(103)M ; (c) the refined magnetic structure [28].

However, the determination of magnetic structures in some magnetic rare-earth containing iron
pnictide compounds is not trivial due to the presence of two magnetic sublattices as well as the
possible interplay between the localized rare-earth magnetism and itinerant Fe-SDW, such as in
EuFe2As2 [28] and SmFeAsO [29] etc. Via complementary single-crystal neutron and magnetic
x-ray scattering, the magnetic structure of EuFe2As2 has been thoroughly determined [28](see
Fig. 13). The Fe-SDW retains the same magnetic ordering as in other parent iron pnictides, the
the Eu2+ moment is aligned along the orthorhombic a-axis. The propagation wavevector of the
Eu2+ antiferromagnetic ordering is QEu = (0, 0, 1) with TN = 19 K, while the Fe-SDW orders
at QSDW = (1, 0, 1) with TSDW = 190 K. The temperature dependence of the corresponding
magnetic reflections indicates a rather weak coupling between these magnetic sublattices. The
situation appears quite differently in SmFeAsO, in which a strong coupling between Sm and Fe
magnetism has been experimentally demonstrated [29].
While the static magnetic ordering in various iron pnictides compounds has been well estab-
lished, the nature of magnetism is being hotly debated. Two approaches have been used so far,
one based on the localized Heisenberg J1-J2 exchange interactions, the other based on the itiner-
ant picture where magnetism is governed by the Fermi surface (FS) nesting wavevector between
the hole pockets at the Γ-point and the electron pockets at the M-point (as schematically shown
in Fig. 14). A recent inelastic neutron scattering investigation on the spin-wave excitations of
CaFe2As2 [30] indicated that the spin waves in the entire Brillouin zone can be described by
an effective three-dimensional local-moment Heisenberg Hamiltonian, but the large in-plane
anisotropy cannot. Therefore, magnetism in the parent compounds of iron arsenide supercon-
ductors was suggested to be neither purely local nor purely itinerant, rather it is a complicated
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mixture of the two.

Fig. 14: The nature of magnetism in iron-based superconductors: (a) Heisenberg J1-J2 ex-
change interactions based on the well localized spins; (b) Interband particle-hole excitation
due to the Fermi surface nesting.

Fig. 15: The spin resonance mode observed via inelastic neutron scattering techniques: (a-c) in
Ba1−xKxFe2As2 via time-of-flight spectroscopy [31]; (d-f) in Ba(Fe1−xCox)2As2 via triple-axis
spectroscopy [32].
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Measurements of the spin dynamics within the spin density wave phase of the parent com-
pounds has shown evidence of strongly dispersive spin waves with exchange interactions con-
sistent with the observed magnetic order and a large anisotropy gap. Again, in a way very
similar to the cuprates, these antiferromagnetic spin fluctuations persist in the normal state of
the superconducting compounds, but they become more diffuse. Below Tc, there exists evi-
dence in several "122" compounds that these spin fluctuations condense into a resonant spin
excitation at the in-plane antiferromagnetic wavevector with an energy that scales with Tc (see
Fig. 15) [31, 32, 23] . Such resonances have been also observed in the high-Tc cuprates and
a number of heavy fermion superconductors, where they are considered to be the evidence of
d-wave symmetry. Since it has been indicated from ARPES and other measurements that the su-
perconducting gap in iron-based superconductors is likely isotropic, the observation of the spin
resonance mode in neutron scattering has thus been seen as strong evidence of unconventional
superconductivity due to sign-reversal s±-wave symmetry.

Fig. 16: (a) Generalized phonon-DOS measured by inelastic neutron scattering at room tem-
perature for BaFe2As2 (bottom black curve) and the calculated GDOS with (middle blue) and
without (top red) Fe-magnetism [33]; (b) comparison of experimentally determined phonon fre-
quencies (solid circles) in the (100), (001) and (110) directions of CaFe2As2 at T = 300 K with
the results of density functional theory (solid lines)[34]; (c) anomalous phonons in CaFe2As2
measured at Q = (2.5, 1.5, 0) at room temperature and at a temperature far below the structural
phase transition. The calculated phonon structure factors for nonmagnetic and spin-polarized
are shown in the upper and lower panel (dashed lines), respectively [34].

4.3 Roles of electron-phonon coupling
It has been widely accepted that electron-phonon coupling alone can not account for the oc-
currence of high temperature superconductivity in iron-based superconductors [35]. However,
the importance of electron-phonon coupling have been implied from a number of experiments.
As shown in Fig. 16(a), the generalized phonon density-of-state (DOS) measured by inelastic
neutron scattering at room temperature for BaFe2As2 is much closer to the calculated mag-
netic phonon-DOS rather than non-magnetic one [33]. This clearly demonstrates that the Fe-
magnetism is intimately coupled to the phonons in iron pnictides. One way to verify possible



Superconductivity E1.19

roles of electron-phonon coupling is to measure phonon dispersions as a function of tempera-
ture in details on single-crystal sample via inelastic neutron scattering. A fairly complete pic-
ture of phonon dispersions in the main symmetry directions of CaFe2As2 has been established
from such an approach [34], as shown in Fig. 16(b). Strong temperature dependence of some
phonons near the structural phase transition near 172 K was observed (see Fig. 16(c)). The cal-
culated phonon spectra for non-magnetic/spin-polarized structures are shown as dashed lines in
Fig. 16(c). The agreement between the experimental results and the calculation is poor. It has
been suggested that the interplay between magnetism and the lattice is in some way responsible
for the anomalous phonons in CaFe2As2. That is to say, the coupling of the vibrational and
the electronic degrees of freedom is stronger than calculated by density functional theory, and
hence phonon might play an important role in superconductivity in the doped compounds.

4.4 Superconducting gap symmetry and structure
Understanding the nature of the superconducting gap (∆) in a superconductor is essential to es-
tablish the microscopic origin of superconductivity, since the magnitude, symmetry and struc-
ture of a superconducting gap are directly associated with the pairing strength and the pairing
interactions. For instance, the wider the gap, the harder it is to break apart the Cooper pairs and
destroy the superconducting state. In conventional superconductors (e.g. Nb, Pb and Al etc.),
the superconducting gap function, that can be nicely predicetd by the BCS theory, has s-wave
symmetry and it is thus isotropic along the Fermi sea (as schematically shown in Fig. 17(a)).
This reflects the pairing interaction being attractive, its origin is the electron-electron interac-
tion mediated by phonons. p-wave pairing symmetry has been suggested for superfluid 3He and
possibly in ruthenates superconductors. The pairing symmetry for the high-TC cuprates has
been identified to be d-wave. The gap nodes, where the superconducting gap can be closed,
exist for both p-wave and d-wave (see Fig. 17(b)-(c)).

Fig. 17: The schematic drawing of the superconducting gap functions: (a) s-wave, nodeless
isotropic gap; (b) p-wave, with nodes; (c) d-wave, with nodes.

One of the key challenges for iron-based superconductors is to identify the superconducting gap
symmetry and structure. While the leading candidate for the pairing symmetry in iron-based
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superconductors is a sign-reversal s±-wave as first proposed by Mazin[36], unlike the case in
cuprates, an unambiguous picture has not been established [23]. It has been found that the
superconducting gap seemingly shows strong material dependence. As an example shown in
Fig. 18, two isotropic gaps can be identified in hole-doped Ba0.6K0.4Fe2As2 via ARPES [37].

Fig. 18: Fermi-surface-dependent nodeless superconducting gaps in Ba0.6K0.4Fe2As2: (a)
three-dimensional plot of the superconducting gap amplitude (∆) measured at 15 K on the three
observed Fermi surface sheets (shown at the bottom as an intensity plot); (b) their temperature
evolutions [37] .

5 Special topics

5.1 Superconducting vortex lattices
For type-II superconductors with λ> 1/

√
2 ξ, the magnetic flux can penetrate the superconduc-

tor and form the vortices. The superconducting order parameter will be suppressed over the core
region of the length scan ξ and the supercurrent surrounding the vortex core will extend over
the length scale λ. To minimize the total free energy of the system, these vortices will arrange
themselves in a periodic array, which is called Abrikosov flux line lattice (FLL). Many impor-
tant information concerning the superconducting state, such as penetration depth and coherence
length can be obtained by investigating the flux line lattice [38].
Among many experimental techniques, Small Angle Neutron Scattering (SANS) is considered
as one of the most suitable probe for flux line lattice because neutrons can be scattered via the
interaction of their intrinsic moments with the modulation of magnetic field originated from the
flux line lattice. The diffraction pattern from SANS provides not only the information about the
structure of flux line lattice and its correlation with the crystal lattice, but also the information
on the gap structure and the value of characteristic length scales [39].
In Fig. 19, series of SANS diffraction patterns from the flux line lattice of YBa2Cu3O7−δ cuprate
superconductor are presented [40]. these patterns are collected at 2 K and various magnetic field
along the crystallographic c axis. It can be seen that hexagonal FLL structure is formed at 1.5
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(f)

Fig. 19: (a) to (e) Flux line lattice diffraction patterns of YBa2Cu3O7−δ cuprate superconductor
taken at 2 K in different magnetic fields. FC and OFC indicate field cooling and oscillation
field cooling procedures, respectively. (f) Magnetic field dependence of the flux line lattice apex
angle for different structure type [40].

T [Fig. 19(a) and (b)]. When 4 T field is applied, a single distorted hexagonal FLL is observed.
The transition between these two hexagonal FLL is likely to be first order as indicated by sudden
change of FLL symmetry angle [see Fig. 19(f)]. Another first order FLL structure transition
is observed with further increase of field. As shown in Fig. 19(d), the rhombic FLL structure
emerges and coexists with the distorted hexagonal structure at 6.5 T. Once field reached above
7 T, the pure rhombic structure is established for the FLL.
In the simplest approximation, hexagonal flux line lattice is the most stable state due to the
close packed structure. However, repulsive interaction between the flux line, property of the
Fermi surface, as well as the anisotropic superconducting order parameter can result in the
transition from hexagonal to other symmetry. As described above, two field driven first order
flux line lattice structure transitions was observed in YBa2Cu3O7−δ. It is suggested that the low
field transition is probably driven by Fermi surface effects, while the high field transition from
hexagonal to square structure is due to the dominant role of anisotropic superconducting order
parameter.

5.2 Crystal field excitation in superconductors
For the rare earth ions, both electric field and magnetic field can lift, at least partially lift the
2J+1 fold degenerate ground state. Considering a three dimentional crystal structure, the elec-
tric field might be generated by the ion surrounding the rare earth ion in lattice. Following
some definitions and transformations, crystal electric field (CEF) Hamiltonian can be expressed
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as this famous notation, HCEF =
∑
l,m

Bm
l Om

l , where Bm
l is the crystal field parameters and Om

l

is the Stevens equivalent operators. It is obvious that the crystal field Hamiltonian will give
rise to discrete energy levels. Neutron scattering is the method of choice to determine crystal
field level schemes by measuring the excitation between these levels. The magnetic scattering
of the CEF transition can be expressed in terms of differential neutron cross section. Because
CEF of rare earth is largely related to the surrounding environment, to study the CEF of rare
earth in rare earth based superconductor can provide detailed information on the local charge
distribution and the formation of energy gap.
Inelastic neutron scattering has been long time used to investigate the relaxation behavior of
the ground state crystal field excitation associated with the rare earth ion in high Tc cuprate
superconductor. Since the crystal field levels are subject to an interaction with charge carriers,
neutron scattering measurements of the relaxation rate of crystal field excitations can provide
the direct evidence on the opening of energy gap and reflect the variation of density of state at
the Fermi energy. For example, the pseudogap opening temperature in Ho-based cuprate can be
clearly observed by following the emperature dependence of the intrinsic linewidth correspond-
ing to the lowest ground state crystal field excitation [41].

CeFeAsOF   TN (Fe)

CeFeAsO0.84F0.16

(a) (b)

(c)

(e)

(d)

(f)

(g)

Fig. 20: (a) Energy level scheme of Ce3+ ion in CeFeAsO as determined by inelastic neutron
scattering. (b)Energy spectra of neutron scattered from CeFeAsO at T = 60 K. Noted that
the phonons contribution collected using isostructural LaFeAsO compound was substracted.
(c) Energy level scheme of Ce3+ ion in CeFeAsO0.84F0.16 as determined by inelastic neutron
scattering. (d) Temperature dependence of excitation between ground state and the first excited
state in CeFeAsO0.84F0.16. (e) Temperature dependence of the peak position (e), intrinsic line
width (f), line width ratio (g) for the excitation peak in (d) [42].
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Regarding to the recently discovered Fe-pnictide superconductor, there also exist a large number
of compounds that content rare earth elements, such as RFeAs(O1−xFx) compounds with R =
Ce, Nd, Sm, or Pr etc. As we will show in the following example, the crystal electric field
can be used as a probe for long range antiferromagnetic order and superconducting state in
CeFeAsO1−xFx superconductors [42].
Similar to other parent compounds of Fe-pnictides, CeFeAsO exhibits a phase transition from
tetragonal to orthorhombic structure and then orders antiferromagneticly with decreasing tem-
perature. The crystal field Hamiltonian for two different structures can be written as H(T ) =
B0
2O

0
2 + B0

4O
0
4 + B4

4O
4
4 and , H(O) = B0

2O
0
2 + B2

2B
2
2 + B0

4O
0
4 + B2

4O2
4 + B4

4O
4
4, respectively. The

crystal field parameters Bm
l can be deduced by modeling the inelastic neutron scattering data.

It was found that three doublets are shown in paramagnetic phase of CeFeAsF, and these three
doublets split into six singlet when the Fe ions order antiferromagneticlly. The splitting scheme
of crystal electric field is shown in Fig. 20(a). A typical inelastic neutron spectra of CeFeAsF
collected at 60 K is presented in Fig. 20(b), in which two clear bands of CEF excitations at 16.9
and 20.1 meV are clearly observed.
For F-doped CeFeAsO0.84F0.16 superconductor, the tetragonal structure maintains in wide tem-
perature range from 4 K to room temperature. Three doublets are detected [Fig. 20(c)]. In Fig.
20(d), the excitation between the ground state and the first excited state is plot as a function of
temperature. The temperature dependence of peak position, intrinsic line width are obtained by
fitting the excitation peaks [Fig. 20(e),(f) and (g)]. Both peak position and line width exhibit
anomalies at critical temperature Tc at around 40 K, which suggested that CEF can be used as
a probe for the superconducting state in Fe-pnictide superconductors.

6 Summary
While high temperature superconductivity remains one of the biggest challenges in condensed
matter physics, the understanding of its mechanism has advanced tremendously over the past
26 years or so. A common feature among cuprates, iron-based superconductos and heavy-
fermion superconductors is that superconductivity is in close proximity to magnetism. This has
thus provided neutron scattering with an important playground due to its unique sensitivity to
magnetic correlations in a wide dynamic range as demonstrated in previous sections. It can be
expected that the advanced scattering methods in particular neutron scattering will continue to
play a major role in the studies of superconductivity.
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