001     21190
005     20240709081711.0
024 7 _ |2 pmid
|a pmid:22313249
024 7 _ |2 DOI
|a 10.1021/es204094v
024 7 _ |a 0013-936X
|2 ISSN
024 7 _ |2 ISSN
|a 1520-5851
024 7 _ |a WOS:000301630200036
|2 WOS
037 _ _ |a PreJuSER-21190
041 _ _ |a eng
082 _ _ |a 050
100 1 _ |a Sang, X.F.
|b 0
|0 P:(DE-HGF)0
245 _ _ |a Stable carbon isotope ratio analysis of anhydrosugars in biomass burning aerosol particles from source samples
260 _ _ |c 2012
|a Columbus, Ohio
|b American Chemical Society
300 _ _ |a 3312 - 3318
336 7 _ |a Journal Article
|0 PUB:(DE-HGF)16
|2 PUB:(DE-HGF)
336 7 _ |a Output Types/Journal article
|2 DataCite
336 7 _ |a Journal Article
|0 0
|2 EndNote
336 7 _ |a ARTICLE
|2 BibTeX
336 7 _ |a JOURNAL_ARTICLE
|2 ORCID
336 7 _ |a article
|2 DRIVER
440 _ 0 |a Environmental Science and Technology
|x 0013-936X
|0 1865
|y 6
|v 46
500 _ _ |a Record converted from VDB: 12.11.2012
520 _ _ |a A new method for stable carbon isotope ratio analysis of anhydrosugars from biomass burning aerosol particle source filter samples was developed by employing Thermal Desorption--2 Dimensional Gas Chromatography--Isotope Ratio Mass Spectrometry (TD-2DGC-IRMS). Compound specific isotopic measurements of levoglucosan, mannosan, and galactosan performed by TD-2DGC-IRMS in a standard mixture show good agreement with isotopic measurements of the bulk anhydrosugars, carried out by Elemental Analyzer--Isotope Ratio Mass Spectrometry (EA-IRMS). The established method was applied to determine the isotope ratios of levoglucosan, mannosan, and galactosan from source samples collected during combustion of hard wood, softwood, and crop residues. δ(13)C values of levoglucosan were found to vary between -25.6 and -22.2‰, being higher in the case of softwood. Mannosan and galactosan were detected only in the softwood samples showing isotope ratios of -23.5‰ (mannosan) and -25.7‰ (galactosan). The isotopic composition of holocellulose in the plant material used for combustion experiments was determined with δ(13)C values between -28.5 and -23.7‰. The difference in δ(13)C of levoglucosan in biomass burning aerosol particles compared to the parent fuel holocellulose was found to be -1.89 (±0.37)‰ for the investigated biomass fuels. Compound specific δ(13)C measurements of anhydrosugars should contribute to an improved source apportionment.
536 _ _ |a Terrestrische Umwelt
|c P24
|2 G:(DE-HGF)
|0 G:(DE-Juel1)FUEK407
|x 0
588 _ _ |a Dataset connected to Pubmed
650 _ 2 |2 MeSH
|a Aerosols
650 _ 2 |2 MeSH
|a Air Pollutants: analysis
650 _ 2 |2 MeSH
|a Angiosperms
650 _ 2 |2 MeSH
|a Biomass
650 _ 2 |2 MeSH
|a Carbon Isotopes: analysis
650 _ 2 |2 MeSH
|a Gymnosperms
650 _ 2 |2 MeSH
|a Hexoses: analysis
650 _ 2 |2 MeSH
|a Hot Temperature
650 _ 2 |2 MeSH
|a Particulate Matter: analysis
650 _ 7 |0 0
|2 NLM Chemicals
|a Aerosols
650 _ 7 |0 0
|2 NLM Chemicals
|a Air Pollutants
650 _ 7 |0 0
|2 NLM Chemicals
|a Carbon Isotopes
650 _ 7 |0 0
|2 NLM Chemicals
|a Hexoses
650 _ 7 |0 0
|2 NLM Chemicals
|a Particulate Matter
700 1 _ |a Gensch, I.
|b 1
|0 P:(DE-HGF)0
700 1 _ |a Laumer, W.
|b 2
|u FZJ
|0 P:(DE-Juel1)129220
700 1 _ |a Kammer, B.
|b 3
|u FZJ
|0 P:(DE-Juel1)129212
700 1 _ |a Chan, C.Y.
|b 4
|0 P:(DE-HGF)0
700 1 _ |a Engling, G.
|b 5
|0 P:(DE-HGF)0
700 1 _ |a Wahner, A.
|b 6
|u FZJ
|0 P:(DE-Juel1)16324
700 1 _ |a Wissel, H.
|b 7
|u FZJ
|0 P:(DE-Juel1)VDB50316
700 1 _ |a Kiendler-Scharr, A.
|b 8
|u FZJ
|0 P:(DE-Juel1)4528
773 _ _ |0 PERI:(DE-600)1465132-4
|a 10.1021/es204094v
|g Vol. 46, p. 3312 - 3318
|p 3312 - 3318
|q 46<3312 - 3318
|t Environmental Science & Technology
|v 46
|x 0013-936X
|y 2012
856 7 _ |u http://dx.doi.org/10.1021/es204094v
909 C O |o oai:juser.fz-juelich.de:21190
|p VDB
913 1 _ |b Erde und Umwelt
|k P24
|l Terrestrische Umwelt
|1 G:(DE-HGF)POF2-240
|0 G:(DE-Juel1)FUEK407
|2 G:(DE-HGF)POF2-200
|v Terrestrische Umwelt
|x 0
913 2 _ |a DE-HGF
|b Key Technologies
|l Key Technologies for the Bioeconomy
|1 G:(DE-HGF)POF3-580
|0 G:(DE-HGF)POF3-582
|2 G:(DE-HGF)POF3-500
|v Plant Science
|x 0
914 1 _ |y 2012
915 _ _ |a JCR/ISI refereed
|0 StatID:(DE-HGF)0010
|2 StatID
915 _ _ |a JCR
|0 StatID:(DE-HGF)0100
|2 StatID
915 _ _ |a WoS
|0 StatID:(DE-HGF)0110
|2 StatID
|b Science Citation Index
915 _ _ |a WoS
|0 StatID:(DE-HGF)0111
|2 StatID
|b Science Citation Index Expanded
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0150
|2 StatID
|b Web of Science Core Collection
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0199
|2 StatID
|b Thomson Reuters Master Journal List
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0200
|2 StatID
|b SCOPUS
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0300
|2 StatID
|b Medline
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)0310
|2 StatID
|b NCBI Molecular Biology Database
915 _ _ |a Nationallizenz
|0 StatID:(DE-HGF)0420
|2 StatID
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1040
|2 StatID
|b Zoological Record
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1050
|2 StatID
|b BIOSIS Previews
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1060
|2 StatID
|b Current Contents - Agriculture, Biology and Environmental Sciences
915 _ _ |a DBCoverage
|0 StatID:(DE-HGF)1160
|2 StatID
|b Current Contents - Engineering, Computing and Technology
920 1 _ |k IBG-3
|l Agrosphäre
|g IBG
|0 I:(DE-Juel1)IBG-3-20101118
|x 0
920 1 _ |k IBG-2
|l Pflanzenwissenschaften
|g IBG
|0 I:(DE-Juel1)IBG-2-20101118
|x 1
920 1 _ |k IEK-8
|l Troposphäre
|g IEK
|0 I:(DE-Juel1)IEK-8-20101013
|x 2
970 _ _ |a VDB:(DE-Juel1)137093
980 _ _ |a VDB
980 _ _ |a ConvertedRecord
980 _ _ |a journal
980 _ _ |a I:(DE-Juel1)IBG-3-20101118
980 _ _ |a I:(DE-Juel1)IBG-2-20101118
980 _ _ |a I:(DE-Juel1)IEK-8-20101013
980 _ _ |a UNRESTRICTED
981 _ _ |a I:(DE-Juel1)ICE-3-20101013
981 _ _ |a I:(DE-Juel1)IBG-2-20101118
981 _ _ |a I:(DE-Juel1)IEK-8-20101013


LibraryCollectionCLSMajorCLSMinorLanguageAuthor
Marc 21