000021191 001__ 21191
000021191 005__ 20200423203229.0
000021191 0247_ $$2pmid$$apmid:22645597
000021191 0247_ $$2pmc$$apmc:PMC3355755
000021191 0247_ $$2DOI$$a10.3389/fpls.2012.00070
000021191 0247_ $$2ISSN$$a1664-462X
000021191 0247_ $$2WOS$$aWOS:000208837900071
000021191 0247_ $$2Handle$$a2128/7469
000021191 037__ $$aPreJuSER-21191
000021191 041__ $$aeng
000021191 082__ $$a570
000021191 1001_ $$0P:(DE-Juel1)129409$$aTemperton, V.M.$$b0$$uFZJ
000021191 245__ $$aEffects of four different restoration treatments on the natural abundance of 15N stable isotopes in plants
000021191 260__ $$aLausanne$$bFrontiers Media$$c2012
000021191 300__ $$a1 - 12
000021191 3367_ $$0PUB:(DE-HGF)16$$2PUB:(DE-HGF)$$aJournal Article
000021191 3367_ $$2DataCite$$aOutput Types/Journal article
000021191 3367_ $$00$$2EndNote$$aJournal Article
000021191 3367_ $$2BibTeX$$aARTICLE
000021191 3367_ $$2ORCID$$aJOURNAL_ARTICLE
000021191 3367_ $$2DRIVER$$aarticle
000021191 440_0 $$025925$$aFrontiers in Plant Science$$v3$$y70
000021191 500__ $$aRecord converted from VDB: 12.11.2012
000021191 520__ $$aδ(15)N signals in plant and soil material integrate over a number of biogeochemical processes related to nitrogen (N) and therefore provide information on net effects of multiple processes on N dynamics. In general little is known in many grassland restoration projects on soil-plant N dynamics in relation to the restoration treatments. In particular, δ(15)N signals may be a useful tool to assess whether abiotic restoration treatments have produced the desired result. In this study we used the range of abiotic and biotic conditions provided by a restoration experiment to assess to whether the restoration treatments and/or plant functional identity and legume neighborhood affected plant δ(15)N signals. The restoration treatments consisted of hay transfer and topsoil removal, thus representing increasing restoration effort, from no restoration measures, through biotic manipulation to major abiotic manipulation. We measured δ(15)N and %N in six different plant species (two non-legumes and four legumes) across the restoration treatments. We found that restoration treatments were clearly reflected in δ(15)N of the non-legume species, with very depleted δ(15)N associated with low soil N, and our results suggest this may be linked to uptake of ammonium (rather than nitrate). The two non-legume species differed considerably in their δ(15)N signals, which may be related to the two species forming different kinds of mycorrhizal symbioses. Plant δ(15)N signals could clearly separate legumes from non-legumes, but our results did not allow for an assessment of legume neighborhood effects on non-legume δ(15)N signals. We discuss our results in the light of what the δ(15)N signals may be telling us about plant-soil N dynamics and their potential value as an indicator for N dynamics in restoration.
000021191 536__ $$0G:(DE-Juel1)FUEK407$$2G:(DE-HGF)$$aTerrestrische Umwelt$$cP24$$x0
000021191 588__ $$aDataset connected to Pubmed
000021191 7001_ $$0P:(DE-Juel1)VDB102833$$aMärtin, L.L.A.$$b1$$uFZJ
000021191 7001_ $$0P:(DE-Juel1)VDB85274$$aRöder, D.$$b2$$uFZJ
000021191 7001_ $$0P:(DE-Juel1)129567$$aLücke, A.$$b3$$uFZJ
000021191 7001_ $$0P:(DE-Juel1)VDB85275$$aKiehl, K.$$b4$$uFZJ
000021191 773__ $$0PERI:(DE-600)2613694-6$$a10.3389/fpls.2012.00070$$gVol. 3, p. 70$$p70$$q3<70$$tFrontiers in plant science: FPLS$$v3$$x1664-462X$$y2012
000021191 8567_ $$2Pubmed Central$$uhttp://www.ncbi.nlm.nih.gov/pmc/articles/PMC3355755
000021191 8564_ $$uhttps://juser.fz-juelich.de/record/21191/files/FZJ-21191.pdf$$yOpenAccess$$zPublished final document.
000021191 8564_ $$uhttps://juser.fz-juelich.de/record/21191/files/FZJ-21191.jpg?subformat=icon-1440$$xicon-1440$$yOpenAccess
000021191 8564_ $$uhttps://juser.fz-juelich.de/record/21191/files/FZJ-21191.jpg?subformat=icon-180$$xicon-180$$yOpenAccess
000021191 8564_ $$uhttps://juser.fz-juelich.de/record/21191/files/FZJ-21191.jpg?subformat=icon-640$$xicon-640$$yOpenAccess
000021191 909CO $$ooai:juser.fz-juelich.de:21191$$pdnbdelivery$$pVDB$$pdriver$$popen_access$$popenaire
000021191 9141_ $$y2012
000021191 915__ $$0LIC:(DE-HGF)CCBYNC3$$2HGFVOC$$aCreative Commons Attribution-NonCommercial CC BY-SA 3.0
000021191 915__ $$0StatID:(DE-HGF)0500$$2StatID$$aDBCoverage$$bDOAJ
000021191 915__ $$0StatID:(DE-HGF)0510$$2StatID$$aOpenAccess
000021191 915__ $$0StatID:(DE-HGF)0310$$2StatID$$aDBCoverage$$bNCBI Molecular Biology Database
000021191 915__ $$0StatID:(DE-HGF)0300$$2StatID$$aDBCoverage$$bMedline
000021191 915__ $$0StatID:(DE-HGF)0040$$2StatID$$aPeer review unknown
000021191 9131_ $$0G:(DE-Juel1)FUEK407$$1G:(DE-HGF)POF2-240$$2G:(DE-HGF)POF2-200$$bErde und Umwelt$$kP24$$lTerrestrische Umwelt$$vTerrestrische Umwelt$$x0
000021191 9132_ $$0G:(DE-HGF)POF3-582$$1G:(DE-HGF)POF3-580$$2G:(DE-HGF)POF3-500$$aDE-HGF$$bKey Technologies$$lKey Technologies for the Bioeconomy$$vPlant Science$$x0
000021191 9201_ $$0I:(DE-Juel1)IBG-3-20101118$$gIBG$$kIBG-3$$lAgrosphäre$$x0
000021191 9201_ $$0I:(DE-Juel1)IBG-2-20101118$$gIBG$$kIBG-2$$lPflanzenwissenschaften$$x1
000021191 970__ $$aVDB:(DE-Juel1)137094
000021191 980__ $$aVDB
000021191 980__ $$aConvertedRecord
000021191 980__ $$ajournal
000021191 980__ $$aI:(DE-Juel1)IBG-3-20101118
000021191 980__ $$aI:(DE-Juel1)IBG-2-20101118
000021191 980__ $$aUNRESTRICTED
000021191 980__ $$aJUWEL
000021191 980__ $$aFullTexts
000021191 9801_ $$aFullTexts
000021191 981__ $$aI:(DE-Juel1)IBG-2-20101118