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Abstract

Remote sensing measurements from the Cryogenic Infrared Spectrometers and Tele-
scope for the Atmosphere – New Frontiers (CRISTA-NF) during a flight on 29 July 2006
are presented. This flight is part of the AMMA-SCOUT-O3 measurement campaign,
where CRISTA-NF was deployed on the high-flying research aircraft M55-Geophysica.5

The flight path was located over Italy and the Mediterranean Sea and crossed over
the subtropical jet twice. Measurements of temperature, and the volume mixing ratios
of water vapor (H2O), ozone (O3), nitric acid (HNO3) and peroxyacetyl nitrate (PAN)
are available with a vertical resolution of up to 500 m between about 6 to 21 km alti-
tude. CRISTA-NF observes these trace gases simultaneously and provides a quasi-2D10

view of the transition region between the troposphere and the stratosphere. The ob-
servation of these different trace gases allows to determine the origin of air masses in
the stratosphere or troposphere. As expected, higher abundances are found where the
main source of the trace gases is located: in the stratosphere for O3 and in the tropo-
sphere for H2O and PAN. Tracer-tracer correlations between O3 and PAN are used to15

identify mixed tropospheric and lowermost stratospheric air at the subtropical jet and
around the thermal tropopause north of the jet. An intrusion of stratospheric air into
the troposphere associated with the subtropical jet is found in the CRISTA-NF obser-
vations. The observations indicate that the intrusion is connected to a tropopause fold
which is not resolved in the ECMWF analysis data. The intrusion was reproduced in20

a simulation with the Chemical Lagrangian Model of the Stratosphere (CLaMS). This
work discusses the nature of the observed processes at the subtropical jet based on
the CRISTA-NF observations and the CLaMS simulation.

1 Introduction

The Upper Troposphere, Lower Stratosphere (UTLS) is an atmospheric layer where25

strong gradients of e.g. trace gases and wind speeds exist both vertically and horizon-
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tally. Therefore high resolution measurements are important for the understanding of
the UTLS (e.g. Gettelman et al., 2011). Nevertheless, small and mesoscale structures
and dynamical processes can seldom be observed in detail. In situ measurements
require extensive planning and need to rely on forecasts (e.g. Pan et al., 2007). Satel-
lites can only resolve structures with a large horizontal and vertical extent, i.e. a lower5

stratospheric intrusion was observed by HIRDLS (Olsen et al., 2008).
During the African Monsoon Multidisciplinary Analysis (AMMA) campaign (Re-

delsperger et al., 2006; Cairo et al., 2010), the CRyogenic Infrared Spectrometers
and Telescope for the Atmosphere – New Frontiers (CRISTA-NF) was deployed on
the high altitude aircraft M55-Geophysica (Stefanutti et al., 1999) which can reach a10

flight level of about 20 km. CRISTA-NF provides information about stratospheric and
tropospheric trace gases with a vertical resolution of up to 500 m using the trace gas
retrieval setup presented in Weigel et al. (2010). This enables CRISTA-NF to distin-
guish tropospheric and stratospheric air masses and to identify transport and mixing
among them and hence, analyses of processes in the UTLS like e.g. blocking anti-15

cyclones or tropopause folds. This work presents CRISTA-NF measurements of H2O,
O3, PAN, HNO3, and temperature during the AMMA-SCOUT-O3 flight on 29 July 2006.
These CRISTA-NF measurements indicate an intrusion of stratospheric air into the
troposphere with a horizontal resolution of few degree latitude.

CRISTA-NF observed structures in the distribution of trace gases which indicate that20

a tropopause fold was present in the vicinity of the subtropical jet. The jet itself inhibits
horizontal transport but mixing is common in the regions around the jet (e.g. Gettelman
et al., 2011). Intrusions and tropopause folds are often observed in connection with
the jet streams and possibly give an important contribution to the stratosphere tropo-
sphere exchange (STE), (see, e.g. Shapiro, 1980; Seo et al., 2008; Olsen et al., 2008).25

Tracer-tracer correlations are a common way to analyze exchange processes between
troposphere and stratosphere for in situ measurements and model simulations (e.g.
Pan et al., 2004; James and Legras, 2007). Due to the narrow vertical field of view
of CRISTA-NF (about 300 m at tangent height of 10 km, see Spang et al., 2008) and
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a good vertical resolution of the observed trace gases, tracer-tracer correlations are
applicable for the retrieval results to identify mixing.

Another method to learn more about the nature of processes in the atmosphere
are model simulations. Lagrangian models are well suited to describe mesoscale pro-
cesses. The Chemical Lagrangian Model of the Stratosphere (CLaMS; McKenna et5

al., 2002a,b) has been employed to analyze dynamical and chemical processes in the
stratosphere and their influence on stratospheric trace gases. Several studies demon-
strated the capability of CLaMS by comparing the simulation results to remote sensing
measurements, among them the space shuttle experiment CRyogenic Infrared Spec-
trometers and Telescopes for the Atmosphere (CRISTA) (e.g. Khosrawi et al., 2005)10

and the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) (e.g. Vo-
gel et al., 2008) and in situ data (e.g. Günther et al., 2008).

This work compares structures seen in the trace gas distributions retrieved from
CRISTA-NF measurements to CLaMS model calculations and European Centre for
Medium-Range Weather Forecasts (ECMWF) analysis data. In Sect. 2 the CRISTA-NF15

instrument and the CLaMS model are described, Sect. 3 presents the observed trace
gases in comparison to the model results and Sect. 4 discusses observed structures
and probable processes causing them.

2 Methods

2.1 The CRISTA-NF instrument20

CRISTA-NF contains two mid infrared helium-cooled Ebert-Fastie grating spectrom-
eter (Fastie, 1991) and a limb-viewing telescope. This optical system was originally
part of the Space Shuttle experiment CRISTA (Offermann et al., 1999; Grossmann et
al., 2002). During its two Space Shuttle missions, CRISTA detected numerous small
and medium-scale transport and mixing structures in stratospheric trace gas distribu-25

tions associated with exchange of tropical and extra-tropical air masses (e.g. Riese et
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al., 1999, 2002). The aircraft version CRISTA-NF was deployed on the high-flying re-
search aircraft M55-Geophysica (Stefanutti et al., 1999) during the SCOUT-O3, AMMA-
SCOUT-O3, and RECONCILE measurement campaigns (e.g. Spang et al., 2008; Hoff-
mann et al., 2009; Weigel et al., 2010; Ungermann et al., 2011b). The helium cooled
detectors and spectrometers allow a high signal to noise ratio and fast measurements.5

The field of view of CRISTA-NF is vertical narrow, about 300 m. One profile is measured
in approximately 90 s corresponding to a horizontal distance of about 15 km along the
flight track (Kullmann et al., 2004). A detailed description of the instrument can be found
in Kullmann et al. (2004) the radiometric calibrations are explained in Schroeder et al.
(2009).10

The line of sight (LOS) points are located to the starebord-side of the aircraft. Most
information originates from the tangent altitude, which is the altitude where the LOS
is closest to the earth surface. Various satellite instruments use a similar observation
geometry to retrieve profiles of atmospheric trace gases, e.g. MLS (Microwave Limb
Sounder; see e.g. Waters et al., 2006) on Aura and MIPAS (Michelson Interferome-15

ter for Passive Atmospheric Sounding; see e.g. Fischer and Oelhaf, 1991) and SCIA-
MACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY;
see e.g. Bovensmann et al., 1999) on Envisat.

In the measurement mode used during the AMMA-SCOUT-O3 campaign, an ele-
vation mirror points the LOS to 60 different altitudes. This results in a profile of 6020

measured spectra located between the aircrafts flight level and about 6 km altitude.
The profiles lie slant in the atmosphere. This observation geometry with its high verti-
cal sampling allows to retrieve data with a high vertical resolution aligned in a quasi-2D
field. During the flight on the 29 July 2006 an active automated pointing stabilization
was tested for the first time. It increased the pointing stability during each spectrum25

and produced more uniform vertical distances within each profile. This lead to a signifi-
cantly improved data quality compared to the data presented in Hoffmann et al. (2009)
and Weigel et al. (2010).
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The JUelich Rapid Spectral Simulation Code (JURASSIC) (Hoffmann, 2006) is used
to retrieve the composition of the atmosphere. The retrieval algorithm used is based on
the optimal estimation maximum a posteriori approach, see Rodgers (2000). JURAS-
SIC was applied previously for the retrieval of data from several satellites (Hoffmann
et al., 2008; Hoffmann and Alexander, 2009) and CRISTA-NF (Hoffmann et al., 2009;5

Weigel et al., 2010). The used retrieval setup allows to retrieve altitude, temperature,
and the volume mixing ratios of water vapor (H2O), ozone (O3), nitric acid (HNO3),
peroxyacetyl nitrate (PAN), carbon tetrachloride (CCl4) as well as aerosol extinction
and a radiometric offset. The setup is explained in detail in Weigel et al. (2010), where
a tropical CRISTA-NF flight was discussed. Because the flight presented here took10

place in the extra tropics at about 40◦ N the mid latitude value from the climatology
of Remedios et al. (2007) are used for most trace gases. This differs from Weigel et
al. (2010), where the tropical value from the climatology was used as a priori or fixed
value for several trace gases and Atmospheric Chemistry Experiment – Fourier Trans-
form Spectrometer (ACE-FTS) data were used as fixed value for HCFC−22. For the15

setup used here, reliable informations about CFC-11 and CFC-12 are important for
the altitude and temperature retrieval. As in Weigel et al. (2010), CFC-11 and CFC-12
profiles measured on the current flight by the High Altitude Gas Analyser (HAGAR)
instrument (see e.g. Werner et al., 2010 and Homan et al., 2010) are combined with
climatological mixing ratios from Remedios et al. (2007). A priori profiles for O3 and20

temperature, and informations about wind speed and potential vorticity are taken from
interpolated ECMWF operational analysis data with 0.5 degrees horizontal resolution
on 28 pressure levels interpolated on the retrieval grid and position for each profile.

Spectra with optical dense conditions need to be excluded from the retrieval. Optical
dense conditions are defined by the cloud index (CI),the ratio of the mean radiances25

at 791–793 and 830–832 cm−1, (Spang et al., 2008)). When the CI is lower than the
threshold value of 3.5 no retrieval is done. In most cases optical dense conditions are
caused by clouds. To display the information of the cloud position together with the
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retrieved trace gases, the tangent points of spectra with optical dense conditions are
corrected for the result of the altitude retrieval and refraction.

2.2 The CLaMS model

Data from the Chemical Lagrangian Model of the Stratosphere (CLaMS; McKenna et
al., 2002a,b) have been compared to the CRISTA-NF observations. The introduction5

of a hybrid vertical coordinate (ζ -coordinates, see Konopka et al., 2007) extended the
range of application for CLaMS to the tropopause region and troposphere where most
of the CRISTA-NF measurements are located. The ζ−coordinates are a combination
between potential temperature in the stratosphere and pressure in the troposphere,

The CLaMS model run used in this study is a two month transient global run embed-10

ded in a climatological run following Konopka et al. (2007) using the HALOE climatol-
ogy developed by Grooß and Russell (2005) for initialization and boundary conditions
for most trace gases. For H2O ECMWF analysis data are used for initialization and
boundary conditions. Lower and upper boundaries are set to ζ =200 K and ζ =500 K,
respectively. Condensation and freezing are based on cloud parameters by Krämer15

et al. (2008) and Schiller et al. (2008). The horizontal resolution is 70 km between 20
and 40◦ N and 100 km north and south of this latitude range. CLaMS was run with a
temporal resolution of 6 h and a Lyapunov exponent of 1.5. To adjust the time between
CRISTA-NF observations and CLaMS fields a correction based on the CLaMS trajec-
tories is used.20

Since the vertical resolution of CLaMS is partly better than the vertical resolution
of CRISTA-NF, CLaMS data are interpolated onto the CRISTA-NF grid and their res-
olution is degraded with the Averaging Kernel (AVK) of CRISTA-NF, following e.g. von
Clarmann (2006). This ensures that the CLaMS data, like the a priori data used for
comparison in Weigel et al. (2010) are comparable to the CRISTA-NF retrieval results25

in terms of resolution and a priori influence.
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3 Results and comparisons

3.1 The AMMA flight on 29 July 2006

This work concentrates on the AMMA flight on 29 July 2006, which took place over Italy
and the Mediterranean Sea. Figure 1 shows the H2O and O3 distributions on the 350 K
level from the CLaMS simulation between 10◦ N–60◦ N and 60◦ E–60◦ W. Different po-5

tential vorticity value are used in the literature to represent the dynamical tropopause,
the best choice is in principle dependent on location and season (Gettelman et al.,
2011). In Fig. 1 the 2 and 4 PVU (potential vorticity units) line from ECMWF are dis-
played to indicate where the 350 K level intersects the dynamical tropopause. In this
area, the 350 K level is located partly in the troposphere and partly in the stratosphere:10

North of the 2 and 4 PVU lines air of stratospheric characteristics, i.e. high O3 and low
H2O mixing ratios prevail while the 350 K level is located in the troposphere to the south
of both PVU lines. Areas with horizontal wind speed of more than 25 and 35 m s−1 are
marked to show the position of the subtropical jet.

The 2 and 4 PVU line are separated by more than 10◦ Latitude over parts of the North15

Atlantic but lie close together over the central Mediterranean Sea and Eastern Europe.
This indicates a sharp transition between the lowermost stratosphere in the north and
the troposphere in the south on the 350 K level. This transition region was crossed twice
during the flight over the Mediterranean Sea. The subtropical jet, marked by the 25 and
35 m s−1 contour line of the ECMWF wind speed, is most often found close to the 4 PVU20

line. Over the Atlantic it is situated further north at about 45◦ N than over and east of the
Mediterranean Sea, where it is at about 35◦ to 40◦ N. Water vapor mixing ratios of more
than 20 ppmV are found nearly everywhere south of the 2 PVU line and at some places
between 2 and 4 PVU. North of the 4 PVU line the water vapor mixing ratios are usually
lower than 15 ppmV. On contrary high O3 mixing ratios (usually above 250 ppbV) are25

found north of the 4 PVU line. South of the 2 PVU line the O3 mixing ratios are mostly
lower than 200 ppbV. Between the 2 and the 4 PVU line intermediate O3 mixing ratios
(200–250 ppbV) are found.
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The flight track is located over Italy and the central Mediterranean Sea, where the
2 and 4 PVU lines lie close together and where a narrow core of the jet with a wind
speed of more than 35 m/s occurred. The flight track is shown in the inlay of Fig. 2.
Starting in Verona, the M55-Geophysica flew to the south-east. North of the coast of
Sicily, after three short legs towards east, southwest and west the aircraft turned and5

returned to Verona. A dive down to about 9 km was performed on the legs towards
southwest and west. The view direction of CRISTA-NF is to the right of the aircraft, thus
the measurements during the southeastward leg were taken over the Mediterranean
Sea. On the way back to Verona they were taken above Italy and the Adriatic Sea.
During the turn north of Sicily CRISTA-NF views towards southeast over Sicily and in10

northward directions during the dive.
The main part of Fig. 2 displays a three-dimensional view of the flight path and

schematic representation of the CRISTA-NF retrieval grid including the horizontal posi-
tion of the closest tangent point. Black dots show spectra with optical dense conditions
due to clouds. Large parts of the flight were performed in cloud free air down to an15

altitude of 8 km providing excellent conditions for trace gas retrievals.
Colored symbols represent the CRISTA-NF PAN measurements positioned on the

retrieval grid (vertical) and at the horizontal position of the nearest tangent point (in-
cluding the effect of refraction). The vertical extent of these symbols denotes the ver-
tical resolution of the retrieval result. The vertical resolution is calculated according to20

the method proposed by Purser and Huang (1993). Due to the nature of the limb mea-
surements the horizontal resolution is much coarser, in the order of several 100 km
(see Ungermann et al., 2011b for a more detailed discussion). Another measure for
the quality of the retrieval is the measurement contribution. It approximates contribu-
tion of the measurement relative to the contribution of the a prior values to the retrieval25

result. To assess the quality of the retrieved data the measurements contribution, the
χ2 m−1 values, and the resolution are calculated as described in Weigel et al. (2010).
All CRISTA-NF results shown are filtered for measurement contribution between 0.8
and 1.2 and a resolution better than 5 km. Fewer data were analyzed during the dive
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because of increased aircraft movements and hence decreased data quality (causing
the white areas in the middle of the retrieval results in Figs. 3–5).

3.2 Water vapor and clouds

Figure 3 shows the water vapor mixing ratios retrieved from CRISTA-NF (panel a),
from the CLaMS simulation (panel b), and from ECMWF (panel c). The ECMWF and5

CLaMS data are interpolated on the grid shown in Fig. 2 and folded with the AVK to
be comparable to the CRISTA-NF data with respect to a priori influence and resolution.
In addition to the 2 and 4 PVU lines from ECMWF shown in Fig. 1, the 1.5 PVU line
is displayed in Fig. 3 and the following vertical cross sections. The 1.5 PVU line does
not follow the 2 PVU line with a constant vertical distance but shows an even steeper10

increase and decrease in altitude at about 07:15 and 08:15 UTC, respectively. The flight
altitude and the PVU lines are shown in all panels for better comparison. Additionally,
the spectra with optical dense conditions are marked (panel a). As in Weigel et al.
(2010), a climatological profile was chosen as a priori for H2O in the retrieval to ensure
that all variations are a result of the measurements and not influenced by the choice of15

the a priori value.
The detection limit for CRISTA-NF H2O is about 15 ppmV. For lower H2O mixing

ratios the combined error exceeds 90 %. Here, the detection limit is reached above
12.5 km altitude for most profiles. An exception are single, remarkably high water va-
por values at altitudes of 13-14 km found in two isolated structures at about 7:00 and20

8:30 UTC as well as enhanced H2O mixing ratios in this altitude in the southernmost
part of the flight, between 07:15–08:15 UTC. Below 12 km the H2O mixing ratios are
lowest in the southernmost part of the flight.

At 12 to 13 km altitude, there is an enhanced amount of water vapor mixing ratio in
the southernmost part of the flight between about 07:15 to 08:15 UTC in the CLaMS25

data. This agrees in general with the CRISTA-NF results but the CLaMS H2O mixing
ratios are somewhat higher and more uniform at these altitudes. The structures of
enhanced water vapor seen at about 07:00 and 08:30 UTC in the CRISTA-NF results
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above 12 km are not found in the CLaMS data. As in the CRISTA-NF data, there is less
water vapor in the southern part of the flight than in the northern part for the CLaMS
data at lower altitudes. But for CLaMS this is the case for altitudes below 10 km and
not up to 12 km as for CRISTA-NF. Below 12 km altitude the CLaMS water vapor mixing
ratios are lower than the retrieved ones almost everywhere.5

The ECMWF H2O mixing ratios agree well with the CRISTA-NF results below 12 km.
However, the enhanced water vapor values and horizontal structures seen by CRISTA-
NF and CLaMS above 12 km are not found in the ECMWF data. For ECMWF the water
vapor is lowest in the south (i.e. between about 07:00 and 08:30 UTC) for all altitudes
up to 14 km.10

3.3 Ozone

The O3 mixing ratios from CRISTA-NF, CLaMS, and ECMWF are shown in Fig 4. In
general, the O3 mixing ratio increases with altitude. In all panels low, tropospheric O3
mixing ratios are found up to 15 km altitudes in the middle of the plot, i.e. the southern
part of the flight track between about 07:00 and 08:30 UTC. Here, also the 1.5, 2 and15

4 PVU lines from ECMWF are found about 2–3 km higher than in the northern part of
the flight (i.e. before 07:00 and after 08:30 UTC). The altitudes, shape and absolute O3
mixing ratios differ between the different data sets. It is important to note that the low
ozone mixing ratios at altitudes up to 13.5–16 km are not part of an enclosed feature.
The aircraft is turning before 08:00 UTC, measuring the same structure a second time.20

This time the viewing direction is now toward the northeast instead of southwest.
For the CRISTA-NF data (Fig. 4a) O3 mixing ratios lower than 200 ppbV are found

up to an altitude of 16 km in the southern part of the flight track between about 07:00
and 08:30 UTC. There, the vertical gradient between tropospheric and stratospheric
O3 mixing ratios is especially steep, whilst it is much smoother in the northern part of25

the flight track. The vertical gradient is smoothest within two intrusions of air with high,
rather stratospheric O3 mixing ratios into the troposphere in between. These structures
observed in the O3 mixing ratios are significant compared to the size of the retrieval
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errors. There are somewhat higher O3 mixing ratios in the first half of the flight than
in the second half, but in general the structures are nearly symmetrical in both flight
directions. This indicates a structure with several hundred kilometers horizontal extent
(> 600 km) perpendicular to the flight track. The horizontal extent along the flight track
is about 350 km.5

In the first half of the flight there are large O3 mixing ratios reaching down to below
10 km, at about 06:40 UTC. This is, if at all, only mirrored by a single profile at about
08:50 UTC in the second half of the flight. Another region with enhanced O3 is present
directly in the beginning of the flight, down to about 11 km. It is not found in the second
half, presumably because the descent of the aircraft starts before.10

A comparison of the structure found in the O3 in Fig. 4a to the retrieved water vapor
in Fig 3a shows that the isolated structures of enhanced H2O observed at 07:00 and
08:30 UTC above 12 km coincide with the base of the intrusion of stratospheric O3.

The vertical O3 distribution from CLaMS (Fig. 4b) has a very similar shape compared
to the one measured by CRISTA-NF. O3 with less than 200 ppbV is found up to an15

altitude of 15.5 km in the southern part of the flight track and there are also intrusions
with enhanced O3 and a smooth transition between low and high O3 mixing ratios in
between the southern and the northern part. The absolute O3 values differ between
CLaMS and CRISTA-NF. In regions of low O3 CRISTA-NF is lower by 50–100 ppbV
than CLaMS in most places, about 200 ppbV in maximum. Above, where higher O320

volume mixing ratios are found the CRISTA-NF data are about 50–250 ppbV higher
than the CLaMS results.

For the ECMWF data (Fig. 4c) the transition is rather smooth and the gradient be-
tween low and high O3 about the same along the whole flight path. O3 with less than
200 ppbV is found highest at about 14.5 km. The intrusion of stratospheric air into the25

troposphere seen in the CRISTA-NF and CLaMS O3 mixing ratios is not found in the
ECMWF data.
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3.4 Other trace gases and temperature

The CRISTA-NF mixing ratios for HNO3 and PAN as well as temperature are shown in
Fig. 5. HNO3 has a similar structure as O3 for the southern part of the flight (i.e. before
07:00 and after 08:30 UTC), while for the northern part the gradient between HNO3
mixing ratios within stratospheric and tropospheric air is more smooth than for O3. Like5

O3, HNO3 has a higher mixing ratio in the stratosphere than in the troposphere.
PAN is a tracer originating from the troposphere mainly from aged pollution. The

lifetime of PAN is in the order of months in the upper troposphere (Talukdar et al.,
1995). Its vertical structure during this flight is similar to the one observed for H2O.
For PAN the detection limit for CRISTA-NF measurements is at about 50 pptV. This is10

usually reached in the lower stratosphere above about 16 km for most of the profiles. In
the southern part PAN mixing ratios of about 80 pptV are found up to 15.5 km altitude,
in the northern part these values are rather located at 14 km. Enhanced mixing ratios
of PAN with over 150 pptV are also found at the same location as the enhanced H2O
obvious in Fig. 3 at 07:00 and 08:30 UTC between about 12 and 13.5 km. There is an15

isolated maximum at 07:15 and 08:15 UTC in the 14–15 km region with over 125 pptV
PAN surrounded by air with lower PAN mixing ratios of about 90 pptV. The distribution
is quasi symmetric for the southward and northward flight leg, but the absolute values
are higher during the first half of the flight, i.e. with the LOS pointing westward. For both
HNO3 and PAN the observed structures are in most cases significant compared to the20

combined retrieval error.
Figure 5c shows the temperature retrieved from CRISTA-NF observations. The low-

est temperatures for each profile are found at altitudes between 16 and 18 km during
the whole flight. The minimum temperature along the flight path, about 205 K, is located
at about 16 to 17 km altitude in the southernmost profiles (at about 07:30 UTC). In this25

part of the flight also the highest temperatures are observed at an altitude below about
10 km. Thus, the temperature gradient is steeper in the southern part, as expected for
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air masses of tropical origin. In the northernmost part of the flight, a local minimum can
be seen at a altitude of about 12 to 12.5 km.

In summary the trace gases retrieved from CRISTA-NF measurements show a tran-
sition from stratospheric to tropospheric characteristics between about 10 and 15 km
altitude at the position where the height of the thermal and dynamical tropopause in-5

creases and the subtropical jet is located. This transition is not as clear in the ECMWF
data and does not reach as high up as seen in the measurements. The shape and posi-
tion of the vertical O3 distribution is reproduced well in the CLaMS simulation although
the tropospheric O3 mixing ratios are not as low as the ones observed by CRISTA-NF.

4 Discussion10

The detailed observation of the transition between stratospheric and tropospheric air at
the subtropical jet raises the questions where the observed air masses originate from,
whether mixing occurs between them and what kind of structure is observed.

4.1 Where do the observed air masses originate from?

To gain further insight into the origin and the fate of the air masses detected during15

the flight trajectories are calculated with CLaMS. Figure 6 shows 10 days backward
trajectories of air parcels arriving at all CRISTA-NF grid positions between 350 and
360 K ζ . For ζ between 350 and 360 K relatively low O3 values are only found in the
southern part of the flight. The trajectories reveal that nearly all air parcels with low O3
volume mixing ratios lower than 200 ppbV originate from the region around the Asian20

monsoon anticyclone. In contrast, about all trajectories arriving at the northern part of
the flight track with O3 values higher than 200 ppbV come from westward directions
along the subtropical jet.

The low O3 and HNO3 mixing ratios along with high PAN mixing ratios in the southern
part of the flight also correspond well to ACE-FTS observations of low O3 and HNO325
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and high mixing ratios of tropospheric species within the Indian monsoon anticyclone
(Park et al., 2008). They observe a strong isolation of the air within this anticyclone.
Air influence by the Indian monsoon is also found by Barret et al. (2008) in MLS CO
measurements over the Mediterranean Sea in July 2006.

To get a deeper insight on the vertical distribution of the observed trace gases,5

Fig. 7 shows scatter plots of O3 and PAN versus potential temperature calculated from
CRISTA-NF temperature measurements and ECMWF analysis pressure. The altitude
where the data is observed is color coded. For a potential temperature above about
400 K O3 increases strong and approximately linearly, as expected for stratospheric
air. These values are found at altitudes of 16 km or higher. Below 400 K the spread10

of observed O3 mixing ratios is wider. At 370 K both tropospheric mixing ratios lower
than 100 ppbV and mixing ratios influenced by stratospheric air up to 300 ppbV occur.
Their altitude varies between up to 16 km for the tropospheric mixing ratios and about
14 km for rather stratospheric mixing ratios. This shows, that during these measure-
ments tropospheric mixing ratios where observed at higher altitudes than stratospheric15

mixing ratios. Reasons are, that the height of the tropopause varies along the flight
track and transport processes between stratosphere and troposphere occur, as it can
be expected near the subtropical jet (e.g. Gettelman et al., 2011). The distribution of
PAN versus potential temperture differs from the one of O3. The main source of PAN
is in the troposphere. Therefore the highest PAN mixing ratios are found below 350 K20

and 12 km. Above 380 K PAN mixing ratios decrease linearly with increasing potential
temperature.

4.2 Do the observed air masses mix?

As shown in Fig. 7, the vertical gradients of stratospheric and tropospheric trace gases
like O3 have the opposite sign as the gradients of tropospheric trace gases. Therefore,25

mixing at the tropopause is often identified by tracer-tracer correlations, especially for in
situ measurements, e.g. Hoor et al. (2002) and Pan et al. (2004). Hegglin (2010) uses
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tracer-tracer correlations to identify the extratropical transition layer (exTL), a layer with
mixed tropospheric and stratospheric air, from ACE-FTS measurements.

The CRISTA-NF observations of PAN are of better quality than the H2O observa-
tions due to their lower instrumental error and detection limit. In addition to dynamical
processes the transport of H2O between the troposphere and the stratosphere is influ-5

enced by microphysical processes in connection with clouds, like condensation, evap-
oration, freezing, and sublimation. Therefore PAN is a better tracer for the mixing of
tropospheric and stratospheric air masses. Hence, PAN is used here as tropospheric
trace gas for the tracer-tracer correlation with O3 (Fig. 8a). Between the low PAN and
high O3 values above 14 km and the high PAN and low O3 below 13 km there are in-10

termediate values found between about 10 and 14 km. Such measurements with more
than 100 ppbV O3 and simultaneously more than 120 pptV PAN indicate mixing be-
tween tropospheric and stratospheric air and are marked with pink circles in Fig. 8.
Like Hegglin (2010), we use 100 ppbV as threshold value for tropospheric O3. On the
contrary, according to Fig. 7 O3 mixing ratios up to 160 ppbV are observed for the15

lowest potential temperatures and altitudes.
The altitudes where intermediate PAN and O3 mixing ratios occur, indicate a layer

about 4 km wide with mixing between tropospheric and lowermost stratospheric air. It
is similar to the one found by Pan et al. (2007) in connection with a tropopause fold on
the cyclonic side of the polar jet in December 2005, using in situ measurements. Pan20

et al. (2007) observed a depth of the mixed air up to 5 km with rather low O3 values
with 100 ppbV also within the mixed air. For the CRISTA-NF measurements during the
flight on 29 July the O3 mixing ratios within the mixed air is significantly higher (up to
300 ppbV).

4.2.1 How does the resolution of CRISTA-NF influence the observations?25

Due to the limb viewing geometry the measurements of CRISTA-NF provide an inte-
grated information along the lines of sight. It certainly helped to resolve the observed
structure that the flight track was aligned nearly perpendicular to it, providing that the
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CRISTA-NF measurements also have a relatively high horizontal resolution and sam-
pling in addition to the generally high vertical resolution. For the altitudes where the
mixing is observed the vertical resolution of PAN and O3 is in most cases better than
3 km. Values with coarser resolution are marked with grey stars in Fig. 8a. Often, the
resolution is better than 2 km for O3 and 1 km for PAN.5

Unlike in situ measurements CRISTA-NF provides a quasi-2D cross sections of the
atmosphere. Therefore, no in situ measurements deployed on the M55-Geophysica
during this flight would be able to detect these structures without extensive flight ma-
neuvers at lower altitudes, which would require some predictive knowledge of the struc-
ture.10

Hegglin (2010) argued that for ACE-FTS, which has a similar observation geometry
but from space, it is extremely unlikely, that air from lower altitudes than the tangent
point is observed along the LOS. Therefore the high values of PAN above 12 km (Fig. 5)
can not be caused by the measurement geometry or the extent of the field of view. It is
possible, that the retrieved tropospheric O3 values are increased due to the influence15

of higher stratospheric O3 above, but these influence should be about the same for
all values in the same altitude. Hence, horizontal gradients should not be influenced.
Because mixed and not mixed air is found within the same altitudes and because the
layer with mixed air is wider than 4 km, the observed mixing can not be only an artifact
of the resolution.20

The limb geometry and the field of view of CRISTA-NF may lead to an overesti-
mation of mixing due to enhanced values of stratospheric trace gases and it can be
expected that structures have an even smaller vertical extent than seen by the mea-
surements. For this reason it is not possible to give a quantitative estimate of the mixing
between stratospheric and tropospheric air or decide if the intrusion of stratospheric air25

into the troposphere is reversible or irreversible. This can be facilitated by potential fu-
ture satellite missions, which can provide a similar sampling and spectral resolution as
CRISTA-NF with on a global coverage.
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4.3 What kind of structure is observed?

To get a better insight in the kind of structure that was observed, Fig. 8 resembles
the information obtained from CRISTA-NF, CLaMS and ECMWF along the flight path.
The gray lines show the 1.5, 2 and 4 PVU surfaces as taken from the ECMWF data,
the black line shows the flight altitude. The position of the subtropical jet is marked by5

golden contour lines showing the horizontal wind speed from ECMWF. Light blue dia-
monds show the laps-rate (or thermal) tropopause calculated from CRISTA-NF mea-
surements following the WMO definition. The laps-rate tropopause lays at about 11–
12 km in the northern and at about 16 km in the southern part of the flight. At 07:00 and
08:45 there is a jump in the altitude of the thermal tropopause of about 4 km. ζ -levels10

from CLaMS are shown as red contours. The measurements indicating mixed air from
Fig. 8a are again marked as pink circles in Fig. 8b.

The dynamical tropopause, often defined as the 2 PVU surface (e.g. Pan et al.,
2004), is situated at about 10 km altitude in the northern part of the flight. During the
southern part the 2 PVU surface is located somewhat higher up, at about 13 km. during15

most of the flight the lapse-rate tropopause is located above the 4 PVU surface (agree-
ing well with the findings of Kunz et al., 2009). The vertical and meridional wind speeds
in the ECMWF data show that the rise of the 2 PVU surface and the shift in the thermal
tropopause from low to high altitudes is located precisely at the center of the subtrop-
ical jet. Figure 8b shows that the mixed air identified by the tracer-tracer correlation in20

Fig. 8a is found at the northern side of the jet up to about 14.5 km altitude and ζ =380 K
and at up to about 13 km further northwards in the lowermost stratosphere (above the
2 PVU line and around the laps-rate tropopause).

Shapiro (1980) described tropopause folds as mixing regions characterized by a
chemical characterization between troposphere and stratosphere. The 2 PVU surface25

in the ECMWF data is not folded as sharply as one might expect in this case, but one
should remember that the O3 intrusion seen in the CRISTA-NF measurements is not
resolved in the ECMWF data, too. Nevertheless, all PVU surfaces shown in Fig. 8 rise
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at least 2 km, where the O3 intrusion is observed by CRISTA-NF. Also the relatively high
O3 values in the northern part of the flight down to below 10 km concur with decreasing
altitudes of the shown PVU surfaces. In the ECMWF O3 (Fig. 4c) no corresponding
structure is present. These results indicate that the CRISTA-NF measurements show
a detailed cross section through a tropopause fold.5

Tropopause folds are suspected to be one of the main mechanisms for cross-
tropopause-transport (e.g. Shapiro, 1980 and Seo et al., 2008). Hoor et al. (2002)
observed a greater depth of the mixing layer above the extra-tropical tropopause dur-
ing summer and explained it with transport across the tropopause at the subtropical jet.
Mixing between tropospheric and lower stratospheric air is observed to occur often in10

connection with tropopause folds (e.g. Gettelman et al., 2011 and references therein).
In summary, the results of the AMMA flight on 29 July 2006 show that CRISTA-NF

provides detailed measurements in the UTLS. The data obtained agree well with mod-
eled data from CLaMS. CRISTA-NF observations and CLaMS simulations indicate, that
a tropopause fold was observed, which was not resolved by the ECMWF operational15

analysis.

5 Conclusions and outlook

Utilizing the retrieval setup presented in Weigel et al. (2010) a detailed analysis is
performed for the flight on 29 July 2005. CRISTA-NF data provides a detailed, two
dimensional insight into the UTLS, measuring both trace gases of tropospheric and20

stratospheric origin. This allows to observe and analyze mesoscale processes. Better
understanding of mesoscale processes has implications for the medium range weather
forecast and ozone chemistry (WMO, 2006). A sharp transition between tropospheric
and stratospheric air was observed over the Mediterranean Sea, identified by strong
gradients in O3, HNO3, and PAN. The structure was reproduced by CLaMS simulations25

but was not completely resolved in the ECMWF operational analysis data set.
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It is most probable that the observed intrusion of stratospheric air into the tropo-
sphere is the result of a tropopause fold, which is not well resolved in the ECMWF data.
CLaMS simulations made it possible to gain further information about the origin and the
fate of the observed air masses. They indicate that the observed air originated on the
one hand from the tropopause close to the Asian monsoon anticyclone and on the5

other hand in the extra tropical lowermost stratosphere along the subtopical jet. Tracer-
tracer correlations between PAN and O3 retrieved from the CRISTA-NF measurements
show the presence of mixed tropospheric and stratospheric air. This emphasizes that
vertically high resolved limb soundings are capable to provide a detailed picture of the
chemical composition in the UTLS.10

To investigate the UTLS in such detail on a global scale could help to gain a bet-
ter understanding of the whole atmosphere. This could be achieved in the future by
limb-imaging spectrometers as Imaging spectrometers as the GLObal limb Radiance
Imager for the Atmosphere (GLORIA), see e.g. Riese et al., 2005; Friedl-Vallon et al.,
2006). An air-borne version of this intrument, GLORIA-AB (Gimballed Limb Observer15

for Radiance Imaging of the Atmosphere, airborne version) has been developed for
the High Altitude and Long Range Research Aircraft (HALO) and M55-Geophysica air-
craft. The instrument was successfully tested on M55-Geophysica in December 2011.
GLORIA-AB will provide an even better resolved view of such small scale structures
(Ungermann et al., 2011a). GLORIA-AB serves as a prototype for a next generation20

satellite-borne limb-imager like the ESA candidate mission PREMIER (PRocesses Ex-
ploration through Measurements of Infrared and millimeter-wave Emitted Radiation,
ESA, 2008; Ungermann et al., 2010). This instrument can offer the possibility to pro-
vide global observations of small- and mesoscale processes and quantify their effect
on the total exchange between troposphere and stratosphere.25
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Fig. 1. Map of CLaMS H2O and O3 on the ζ =350 K level with 2 and 4 PVU line (white, solid)
and horizontal wind speed of 25 and 35 m s−1 from ECMWF (grey, solid) marking the position
of the subtropical jet.
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Fig. 2. Flight track and PAN mixing ratios as retrieved for the AMMA flight on 29 July 2006. Red
line: Flight path, black dots: Cloud Index <3.5.
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Fig. 3. H2O from CRISTA-NF, CLaMS, and ECMWF analysis data. Colour scale shows the H2O
volume mixing ratio, gray lines show the ECMWF potential vorticity at 1.5, 2 and 4 PVU, black
line the flight track, black dots spectra with optical dense conditions, grey diamonds retrieval
results with a total error larger than 90 % (with CRISTA-NF H2O). Note nonlinear colour scale.
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Fig. 4. O3 from CRISTA-NF, CLaMS, and ECMWF analysis data. Colour scale shows the O3
volume mixing ratio, gray lines show the ECMWF potential vorticity at 1.5, 2 and 4 PVU, black
line the flight track, black dots spectra with optical dense conditions, grey diamonds retrieval
results with a total error larger than 90 % (with CRISTA-NF O3). Note nonlinear colour scale.
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Fig. 5. CRISTA-NF retrieval results for HNO3, PAN, and Temperature. Gray lines show the
ECMWF potential vorticity at 1.5, 2 and 4 PVU, black line the flight track, black dots spectra
with optical dense conditions, and grey diamonds retrieval results with a total error larger than
90 %. Note nonlinear colour scales.
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Fig. 6. Map with 10 day backward trajectories from the CRISTA-NF grid positions between
350 and 360 K ζ . Color coding shows the CLaMS O3 on the CRISTA-NF grid (without filtering)
during the flight on 29 July 2006. The measurement positions are marked with red diamonds.
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Fig. 7. Scatter plot of CRISTA-NF O3 (a) and PAN (b) agains potential temperature. Color
scales display the altitude of the measured mixing ratios, grey stars show values, with a vertical
resolution coarser then 3 km.
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Fig. 8. Panel (a): Scatter plot of CRISTA-NF O3 and PAN. Color scales display the altitude
of the measured mixing ratios. Pink circles indicate mixing identified through O3 mixing ratios
above 100 ppbV at the same time as PAN mixing ratios above 120 pptV. Panel (b): Gray lines
show the ECMWF potential vorticity at 1.5, 2 and 4 PVU, black line the flight track, and black
dots the cloudy spectra. Red contour show ζ -level from CLaMS, light blue diamonds show the
lapsrate tropopause from CRISTA-NF measurements, and gold contours show the horizontal
ECMWF wind speed. Pink circles show positions, where the tracer-tracer correlation in Panel
a indicates mixing.
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